INDEX

Ab initio calculations:
 hydrogen-atom translocation, 19–22
 hypericin ground state heterogeneity, 9–10
thiophosgene electronic states:
 carbon-sulfur double bonds, 32–34
 first triplet electronic state (T1), 52–56
 second singlet excited state (S2), 57–64
Add-on toning, Dylux technology and, 237–238
Adduct formation, Paternò-Büchi reaction, furan derivatives, 88–92, 98–103
Agfa-Gevaert, competition to Dylux from, 245–246
Aldehydes, Paternò-Büchi reaction:
 asymmetric furan reactions, 111–116
 2,3-dihydrofuran, 93–95
 furan compounds, 84–92
Allylic alcohols, Paternò-Büchi reaction,
 asymmetric furan reactions, 114–116
Analytical Hessian calculations, hypericin ground state heterogeneity, 9–10
Antibonding electron density, thiophosgene molecules, first excited singlet state (S1 (n,π*)), 45–47
Aromaticity, Paternò-Büchi reaction, non-furan compounds, 122–123
Asteltoxin formation, Paternò-Büchi reaction, furan derivatives, 98–103
Asymmetric reactions, Paternò-Büchi reaction, furan derivatives, 103–116
Atomic coefficients, Paternò-Büchi reaction, furan compounds, 89–92
Automatic clinical analyzer, Dylux technology and, 215–217
Avenaciolide, Paternò-Büchi reaction, furan derivatives, 100–103
Azaindole, Paternò-Büchi reaction, 122
Balon, Walter, 149–150
Band contour analysis, thiophosgene molecules:
 first triplet electronic state (T1), 53–56
 second singlet excited state (S2), 59–64
BBO crystals, hypericin ground state heterogeneity analysis, 12–15
Benzaldehyde, Paternò-Büchi reaction:
 asymmetric furan reactions, 112–116
 2,3-dihydrofuran, 93–95
 furan compounds, 88–92
Benzene, Paternò-Büchi reaction:
 2,3-dihydrofuran, 93–95
 furan derivatives, 87–92
Benzofuran, Paternò-Büchi reaction, 92–93
Benzophenone, thiophene, Paternò-Büchi reaction, 117

263
Biimidazoles:
HABI chemistry and synthesis of, 139–141
permanent color and, 145–147
TCTM-HABI chemistry and, 223–224
ultraviolet light and, 160–161
Biradical intermediates, Paterno-Buchi reaction:
asymmetric reactions, 107–116
2,3-dihydrofuran, 93–95
furan compounds, 85–92
Black Dylux 535 product, development and patenting of, 234–237
Bleistine, Cy (Mrs.), 139
Blue-line technology, Dylux papers and, 196–197
Boeing project, Dylux technology and, 183–184
Booth, Bruce (Dr.), 216–217
Born-Oppenheimer states, thiophosgene molecules,
first excited singlet state \((S_1 (n,\pi^*)) \), 64–72
Botsolas, Philip, 212–213
Brannock gauge, development of, 166–167
Breslow, Ron, 144
Business planning, Dylux development and, 184–185
Butacite®, development of, 135, 143
Carbon-sulfur double bonds, thiophosgene molecules, 28–29
electronic states, 32–34
first triplet electronic state \((T_1) \), 50–56
second singlet excited state \((S_2) \), 56–64
Carbonyl compounds:
1,2-cycloaddition reaction:
Paterno-Buchi reaction:
 furan derivatives, 83–116
 asymmetric reactions, 103–116
 benzofuran, 92–93
 2,3-dihydrofuran, 93–95
 furan, 83–92
 synthetic applications, 96–103
non-furan pentaatomic heterocycles,
 116–123
 azaindole, 122
 imidazole, 119–120
 indole, 120–121
 pyrrole, 117–118
 reactivity observations, 122–123
 selenophene, 118–119
 thiazole, isoxazole, and isothiazole, 120
 thiophene, 116–117
research background, 82–83
hypericin interaction with, 17–19
thiophosgene electronic states, second singlet excited state, 75–76
Cathode ray tube (CRT) imaging:
 Boeing project involving, 183–184
 HABI chemistry and, 176–177
 Cavity ring-down (CRD) experiments, thiophosgene molecules, first triplet electronic state \((T_1) \), 49–56
CDM-HABI compound:
development of, 165–166
TCTM-HABI development and, 223–227
Chilton, Tim, 151–152
China, Dylux technology marketing in, 239–240
Chiral phenylglyoxylates, Paterno-Buchi reaction, furan derivatives, 104–116
Chloranil (tetrachlorobenzophenone), spirit duplication systems and, 147–148
\(\alpha\)-Cl-HABI:
 chemistry of, 223–224
 Photomarker® Corp. technology and, 228
 photopolymerization and, 255–256
 Thermal Dylux® proofpaper and, 253–255
Chlorine isotope effects, thiophosgene molecules, 29
Cis isomers, Paterno-Buchi reaction, asymmetric furan reactions, 113–116
Cohen, Robert (Dr.), 160, 165, 168–169, 173
Color-overlay film, Dylux technology for, 218–221
Commercial product development, Dylux technology and, 251
Competition, for Dylux technology, 245–251
Computer simulation, Dylux technology and, 207–209
Computer to plate (CTP) technology:
development of, 251
 Thermal Dylux® proofpaper, 252–255
Condon approximation, thiophosgene molecules, first excited singlet state \((S_1 (n,\pi^*)) \), 64–72
Continuum generation, hypericin ground state heterogeneity analysis, 11–15
Copiart product, patents for, 248–250
INDEX

Corfam®, 166–167, 203
Cronapaque®, photo-oxidation and, 153
1,2-Cycloaddition reaction, carbonyl and pentaatomic heterocyclic compounds:
 Paternò-Buchi reaction:
 furan derivatives, 83–116
 asymmetric reactions, 103–116
 benzofuran, 92–93
 2,3-dihydrofuran, 93–95
 furan, 83–92
 synthetic applications, 96–103
 non-furan pentaatomic heterocycles, 116–123
 azaindole, 122
 imidazole, 119–120
 indole, 120–121
 pyrrole, 117–118
 reactivity observations, 122–123
 selenophene, 118–119
 thiazole, isoxazole, and isothiazole, 120
 thiophene, 116–117
 research background, 82–83
 Dark state analysis, thiophosgene molecules, second singlet excited state (S2), 73–76
 Dayton, Herb, 139
 Deactivation speed, imaging technology and, 168–173
 de Campi, John, 187–188
 Decay curve lifetime measurements, thiophosgene molecules:
 first excited singlet state (S1 (n,π*)), 68–72
 second singlet excited state (S2), 73–76
 Deuterium isotope effect:
 absence of, in excited-state intramolecular H-atom transfer, hypericin and hypocrellin, 6–7, 17–19
 hydrogen-atom translocation and, 19–22
 Deutsch, Albert, 155
 DFF filter technology:
 Dylux applications for, 213–214
 portable copiers and, 217–218
 Diastereoisomeric excess, Paternò-Buchi reaction, asymmetric furan reactions, 104–116
 Dichroic beam splitter techniques, hypericin ground state heterogeneity analysis, 12–15
 2,3-Dihydrofuran, Paternò-Buchi reaction, 93–95
 Dihydropyridines (DHP), add-on toning technology and, 237–238
 Dimethylsulfoxide (DMSO), hypericin ground state heterogeneity analysis, 13–15
 Dipole moment operator, thiophosgene molecules, first excited singlet state (S1 (n,π*)), 36–47
 Double minimum potential, thiophosgene molecules, first excited singlet state (S1 (n,π*)), 42–47
 Dual response imaging systems:
 patents for, 192
 updating of, 233
 DuPont Company:
 Apex programs at, 134
 development of Dylux® system at, 133–135
 Orchem division at, 134–135
 Photo Products Department at, 134–135, 202–204, 233–234
 Radiation Physics Laboratory, 157–163
 venture concept at, 134, 177–178
 Dylux 503:
 limitations of, 200–201
 watermark applications, 251–252
 Dylux 503B, Copiart technology and, 250
 Dylux®-4C overlay films, development of, 218–221
 Dylux® instant-access imaging materials:
 add-on toning system, 237–238
 Black Dylux® 535 proofpaper, 234–237
 Botsolas’ contributions to, 212–213
 cathode ray tube imaging, 176–177
 Cescon’s work on, 137
 Chinese operations, 240
 commercial product development, 251
 competition against, 245–251
 computer simulation techniques, 207–209
 DFF filter development, 213–214
 dual response systems, 233
 DuPont research on, 133–135
 European operations, 197–198, 215
 foot imaging technology, 166–167
 GTE-Sylvania home of office copier, 217–218
 higher speed systems, 168–173
 polymerization initiation, 171–172
 historical assessment of, 257–259
 historical evolution of, 135–137
 J.C. Penney inventory control project, 229–230
 Kalography development, 186–187
Dylux® instant-access imaging
materials (Continued)
large wall-screen displays, 183–184
limitations of, 200–201
literature sources on, 141–143, 257
management changes and, 172–173
marketing efforts, 178–189
business planning, 184–185
de Campi’s contributions, 187–188
Mattel’s involvement with, 188–189
point-of-sales opportunities, 179
Wilbur’s contributions, 178–179
medical imaging systems, 215–217
microfilm market for, 173–176
military applications, 199–200
operations restructuring, 202–204
optical printing, 167–168
opto-magnetic printing, 185–186
origin of name, 181–182
overlay film development, 218–221
patent history and documentation, 138–145
patent statistics, 259–260
permanent color development, 145–165
applications, 151–152
Looney’s research on, 155–157
optimization experiments, 164
patents for, 164–165
radiation physics laboratory research, 157–163
stabilization problems, 152–155
phenidone technology, 222–223
photodecoration applications, 204–207, 218
Photoimaging, Ltd. formed, 244–245
Photomarker® Corp., 227–228
photopolymerization patent, 238
photopaper products, 255–256
Photo Products difficulties, 228–229
phototropic materials, 137–138
proofing technology, 168, 190–191
proofpaper properties, 193–197
research background, 132–133
rewards and awards for, 260–261
SPSE meeting introduction of, 191–192
SPSE Tokyo meeting, 230–232
TCTM-HABE process, 223–227
technological improvements in, 165–168
thermal Dylux® proofpaper, 252–255
transfer to Photo Products, 233–234
Universal Product Code operations, 209–212
UVI movie production, 179–181
venture capital for, 177–178
W. H. Brady Co. and, 186–187
Wartell’s contributions to, 189–198
watermarks, 251–252
xeroprinting technology, 241–244
X-Raylux invention, 232–233

Eastman Kodak, competition to Dylux from,
246–247
Electron configurations, thiophosgene electronic
states, 29–34
Electronic integral, thiophosgene molecules, first
excited singlet state (S1 (n,π*)), 65–72
Electronic matrix elements, thiophosgene
molecules:
first excited singlet state (S1 (n,π*)), 65–72
second singlet excited state (S2), 72–76
Electronic states, thiophosgene molecules,
29–64
basic properties, 28–29
first excited singlet state (S1 (n,π*)), 36–47
first triplet electronic state (T1), 47–56
ground electronic state (S0), 34–36
molecular orbitals and electron configurations,
29–34
second singlet excited state (S2), 56–64
Electro-optical printing, UPC-Dylux technology
for, 211–212
Electrophotography, xeroprinting and, 241–244
Ellefson, Bob, 203–204
Endo selectivity, Paternò–Büchi reaction, 2,3-
dihydrofuran, 94–95
Energy level diagram:
thiophosgene electronic states:
first excited singlet state (S1 (n,π*)),
40–47
molecular structure, 33–34
second singlet excited state (S2), 73–76
Equilibrium geometry, thiophosgene molecules,
variation in, 77–78
Esters, Paternò–Büchi reaction:
asymmetric reactions, 107–116
furan compounds, 88–92
o-EtO-HABI, add-on toning technology and,
237–238
European expansion, of Dylux technology,
197–198, 215
Excited-state intramolecular H-atom transfer:
hydrogen-atom translocation, 19–22
hypericin-like perylene quinones, 2–7
Excited-state kinetics, multiple hydrogen-atom transfers in perylene quinones, 15–20

Exo stereoselectivity, Paternò-Büchi reaction: 2,3-dihydrofuran, 95
furan derivatives, 86–92
Exposure equipment, for Dylux development, 178–179
Fabricius, Dietrich, 253
Fermi correlation, thiophosgene molecules, first triplet electronic state (T1), 50–56
Firmani, Ray, 173
First excited singlet state (S1 (n,π*)), thiophosgene molecules:
 - basic properties, 36–47
 - Herzberg notation, 31–34
 - photophysical properties, 64–72
First triplet electronic state (T1), thiophosgene molecules, 47–56
Flexible filter, Dylux technology and, 213–214
Fluorescence breakoff, thiophosgene electronic states, first excited singlet state (S1 (n,π*)), 70–72
Fluorescence depletion (FD), thiophosgene molecules, second singlet excited state (S2), 74–76
Fluorescence spectra:
 - excited-state intramolecular H-atom transfer, hypericin and hypocrellin, 2–7
 - multiple hydrogen-atom transfers in perylene quinones, 17–19
 - thiophosgene electronic states:
 - first excited singlet state, 66–72
 - first triplet electronic state (T1), 54–56
 - ground electronic state, 36–37
 - thiophosgene molecules:
 - first excited singlet state (S1 (n,π*)), 45–47
 - second singlet excited state (S2), 57–64
Foot imaging, HABI chemistry and, 166–167
Fourier transform analysis:
 - thiophosgene electronic states, first triplet electronic state (T1) lifetimes, 55–56
 - thiophosgene molecules, first excited singlet state (S1 (n,π*)), 67–72
Franck-Condon factors, thiophosgene molecules:
 - basic properties, 29
 - first excited singlet state (S1 (n,π*)), 38–47, 65–72
 - first triplet electronic state (T1), 52–56
Frequency calculations, hydrogen-atom translocation, 19–22
Friar, Larry, 168
Fuji Photofilm, competition to Dylux from, 247–250
Furan derivatives, Paternò-Büchi reaction, 83–116
 - asymmetric reactions, 103–116
 - benzofuran, 92–93
 - 2,3-dihydrofuran, 93–95
 - furan, 83–92
 - synthetic applications, 96–103
Furfural derivatives, Paternò-Büchi reaction, furan compounds, 88–92
2-Furylmethanol, Paternò-Büchi reaction, furan compounds, 91–92
Gardner-Kasha supposition, thiophosgene electronic states, first excited singlet state, 66–72
Gauche interactions, Paternò-Büchi reaction, 2,3-dihydrofuran, 94–95
Gaussian terms, thiophosgene molecules, first excited singlet state (S1 (n,π*)), 44–47
Glyoxylates, Paternò-Büchi reaction, furan derivatives, 103–116
Grenewalt, Crawford, 167
Griesbeck rule, Paternò-Büchi reaction, asymmetric furan reactions, 114–116
Ground electronic state (S0):
 - thiophosgene electronic states, first triplet electronic state (T1) lifetimes, 55–56
 - thiophosgene molecules, 34–36
Ground-state heterogeneity, hypericin-like perylene quinones, 7–15
Gruebele Hamiltonian, thiophosgene electronic states, second singlet excited state, 75–76
GTE-Sylvania home office copier, Dylux technology and, 217–218
Half-wave plate techniques, hypericin ground state heterogeneity analysis, 11–15
Hammett free energy correlation, Paternò-Büchi reaction, asymmetric furan reactions, 115–116
Hammond, George (Dr.), 144
Hanson, Victor F., 157–158
Haven, Alfred C., 150–151
Herzberg notation, thiophosgene electronic states, 30–34
Herzberg-Teller coupling, thiophosgene molecules, first excited singlet state \((S_1 (n,\pi^*))\), 38–47

Hessian matrices:
- hydrogen-atom translocation, 19–22
- hypericin ground state heterogeneity, 9–10

Hexaarylbimidazole (HABI) chemistry:
- Dylux instant-access imaging using:
 - add-on toning system, 237–238
 - Black Dylux® 535 proofpaper, 234–237
- Botsolas’ contributions to, 212–213
- cathode ray tube imaging, 176–177
- Cescon’s work on, 137
- Chinese operations, 240
- commercial product development, 251
- competition against, 245–251
- computer simulation techniques, 207–209
- DFF filter development, 213–214
- dual response systems, 233
- DuPont research on, 133–135
- European operations, 197–198, 215
- foot imaging technology, 166–167
- GTE-Sylvania home office copier, 217–218
- historical assessment of, 257–259
- historical evolution of, 135–137
- imaging speed technology, 168–173
- polymerization initiation, 171–172

J.C. Penney inventory control project, 229–230
- Kalography development, 186–187
- large wall-screen displays, 183–184
- limitations of, 200–201
- literature sources on, 141–143, 257
- management changes and, 172–173
- marketing efforts, 178–189
- business planning, 184–185
- de Campi’s contributions, 187–188
- Mattell’s involvement with, 188–189
- point-of-sales opportunities, 179
- Wilbur’s contributions, 178–179
- medical imaging systems, 215–217
- microfilm market for, 173–176
- military applications, 199–200
- operations restructuring, 202–204
- optical printing, 167–168
- opto-magnetic printing, 185–186
- origin of name, 181–182
- overlay film development, 218–221
- patent history and documentation, 138–145
- patent statistics, 259–260

permanent color development, 145–165
- applications, 151–152
- Loone’s research on, 155–157
- optimization experiments, 164
- patents for, 164–165
- radiation physics laboratory research, 157–163
- stabilization problems, 152–155
- phenidone technology, 222–223
- photodecoration applications, 204–207, 218
- Photoimaging, Ltd. formed, 244–245
- Photomarker® Corp., 227–228
- photopolymerization patent, 238
- photopolymer products, 255–256
- Photo Products difficulties, 228–229
- phototropic materials, 137–138
- proofing technology, 168, 190–191
- proofpaper properties, 193–197
- research background, 132–133
- rewards and awards for, 260–261
- SPSE meeting introduction of, 191–192
- SPSE Tokyo meeting, 230–232
- TCTM-HABE process, 223–227
- technological improvements in, 165–168
- thermal Dylux® proofpaper, 252–255
- transfer to Photo Products, 233–234
- Universal Product Code operations, 209–212
- UVI movie production, 179–181
- venture capital for, 177–178
- W. H. Brady Co. and, 186–187
- Wartell’s contributions to, 189–198
- watermarks, 251–252
- xeroprinting technology, 241–244
- X-Raylux invention, 232–233
- fatigue properties of, 144
- oxidation systems patent, 148–149
- spectral properties, 153–154

Highest occupied molecular orbital (HOMO),
- Paterno-Büchi reaction:
 - 2,3-dihydrofuran, 95
 - furan compounds, 89–92
- Human serum albumin, hypericin interaction
 with, 17–19

Hydrogen atom transfer rate:
- excited-state intramolecular H-atom transfer,
 - hypericin and hypocrellin, 5–7
- excited-state intramolecular transfer in
 - hypericin, 2–7
hypericin ground state heterogeneity, 7–15
multiple transfers, perylene quinones, 15–19
Hydrogen atom translocation, vibrational
calculations, 19–22
Hydrogen bonding, Paternò-Büchi reaction,
asymmetric furan reactions, 113–116
Hydroquinone derivatives, HABI chemistry and,
153–154
5-Hydroxytropolone, hydrogen-atom transfer in,
7–8
Hyperfine coupling (HFC), Paternò-Büchi
reaction, furan derivatives, 86–92
Hypericin-like perylene quinones:
excited-state intramolecular H-atom transfer,
2–7
ground-state heterogeneity, 7–15
hydrogen atom translocation, 19–22
multiple hydrogen-atom transfers, 15–19
Hypocrellins: excited-state intramolecular H-atom transfer in,
2–7
ground-state heterogeneity in, 7, 9
hydrogen-atom translocation, 19–22
multiple hydrogen-atom transfers in, 15–19
Hypomycin B, multiple hydrogen-atom transfers in,
15–19
Image-forming materials, patents for, 248–250
Imaging speed technology, HABI chemistry and,
168–173
polymerization initiation, 171–172
Imidazole, Paternò-Büchi reaction, 119–120
Imidazolyl radical:
HABI chemistry, 144–145
thermally activated imaging, 156
Indole, Paternò-Büchi reaction, 120–121
Infrared (IR) spectroscopy:
hypericin-like quinones, hydrogen atom
translocation, 20–22
thiophosgene electronic states, ground
electronic states, 36
In-plane totally asymmetric mode, thiophosgene
molecules, first excited singlet state, 65–72
In-plane totally symmetric modes, thiophosgene
molecules, first excited singlet state, 65–72
Internal conversion (IC) process, thiophosgene
molecules:
first excited singlet state (S_1 (n,\pi^*)), 65–72
second singlet excited state (S_2), 72–76
symmetry absence, 77
Intersystem crossing (ISC), thiophosgene
molecules:
first excited singlet state (S_1 (n,\pi^*)), 71–72
first triplet electronic state (T_1), 51–56
Intramolecular excited-state intramolecular H-
atom transfer, in hypericin, 2–7
Intramolecular vibrational energy redistribution
(IVR), thiophosgene electronic states:
first excited singlet state (S_1 (n,\pi^*)), 70–72
first triplet electronic state (T_1) lifetimes,
55–56
ground electronic state, 36
Inventory control, Dylux technology and,
229–230
Inversion doubling splittings, thiophosgene
molecules, 29
first excited singlet state (S_1 (n,\pi^*)), 44–47
first triplet electronic state (T_1), 50–56
second singlet excited state (S_2), 59–64
Isatine derivatives, Paternò-Büchi reaction,
asymmetric furan reactions, 110–116
Isothiazole, Paternò-Büchi reaction, 120
Isoxazole, Paternò-Büchi reaction, 120
James, Dan (Dr.), 163
Japan, Dylux research presented in, 230–232
J.C. Penney, Dylux technology applications at,
229–230
Johnson, Donald R., 215–217
Kalography, Dylux solutions and, 187
Kellogg, Reid (Dr.), 158
Ketones, Paternò-Büchi reaction:
2,3-dihydrofuran, 93–95
furan compounds, 84–92
Labeling industry, UPC-Dylux technology for,
209–212
Large wall-screen displays, Dylux technology
and, 183–184
Laser-induced fluoroscence (LIF), thiophosgene
molecules, 28–29
first excited singlet state (S_1 (n,\pi^*)), 46–47
lifetime measurements, 68–72
second singlet excited state (S_2), 56–64
photophysical properties, 72–76
Leuco Crystal Violet (LCV), Thermal Dylux®
proofpaper, 253–255

Leuco dye photocopy system. See also Dylux® instant-access imaging materials
color-overlay film development and, 221
development and patenting of, 149–150
proofpaper containing, 200–201
ultraviolet and visible light in, 160–162
Lewis acid catalysis, Paternò-Büchi reaction, furan derivatives, 96–103
Lifetime results, thiophosgene electronic states, first excited singlet state, 66–72
Literature sources. See also Publications on Dylux technology, 202–203
HABI chemistry, 141–143, 257
Long path length absorption, thiophosgene molecules, first triplet electronic state (T1), 49–56
Looney, Catherine, 155–157, 170, 175, 207, 214
Lowest unoccupied molecular orbital (LUMO), Paternò-Büchi reaction, 2,3-dihydrofuran, 95
MacLachlan, Al, 157–163, 260
Magnetic rotation spectra (MRS), thiophosgene molecules, first triplet electronic state (T1), 49–56
Mahler, Walter, 202–204
Manos, Phil, 153–155
Marketing efforts, Dylux® instant-access imaging materials, 178–189
business planning, 184–185
de Campi’s contributions, 187–188
Matter’s involvement with, 188–189
point-of-sales opportunities, 179
Wilbur’s contributions, 178–179
Marking transfer sheets, patents for, 212
Mark Systems, Dylux technology and, 186
Markus, Bernard, 186
Mattell Corporation, Dylux technology and, 188–189
Medical imaging systems, Dylux technology and, 215–217
Mesonaphthobianthrone, hypericin-like fluorescence in, 2–7
2-Methylfuran, Paternò-Büchi reaction: asymmetric reactions, 105–116
furan compounds, 84–92
5-Methyl-2-furyl derivatives, Paternò-Büchi reaction, asymmetric furan reactions, 115–116
N-Methylimidazole, Paternò-Büchi reaction, 119–120
Microencapsulation technology, Dylux applications in, 248–250
Microfilm:
blowback, Dylux technology and, 192
HABI chemistry applications in, 173–176
Military applications, of Dylux technology, 199–200
Mirror image symmetry, hypericin and hypocrellin, 7
ground-state heterogeneity, 7–15
Molecular orbitals. See also Highest occupied molecular orbital; Lowest unoccupied molecular orbital
thiophosgene electronic states, 29–34
Moyer, Robert, 206
Naphthaldehydes, Paternò-Büchi reaction: 2,3-dihydrofuran, 95 thiophene, 117
Naphthazarin, hydrogen-atom transfer in, 7–8
α-Nitroaromatic photoinhibitor, patent for, 233
Nonradiative lifetime, thiophosgene molecules, first triplet electronic state (T1), 52–56
“Normal” form hypericin, ground state heterogeneity in, 10–11
N-pyridylsydnone (N-PS), photochromic properties of, 136–137
Nuclear kinetic energy operator, thiophosgene molecules, first excited singlet state (S1 (n, p*)), 64–72
Nuclear magnetic resonance spectroscopy: hypericin-like quinones, ground-state heterogeneity, 9
Paternò-Büchi reaction, furan compounds, 83–92
Nuclear Overhauser effect (NOE) analysis, Paternò-Büchi reaction:
asymmetric furan reactions, 115–116
furan compounds, 84–92
One-photon excitation, thiophosgene molecules, 77
Optical-optical double resonance (OODR) spectroscopy, thiophosgene molecules:
basic properties, 28–29
first excited singlet state (S1 (n, p*)), 46–47
lifetime results, 66–72
first triplet electronic state (T1), 49–56
second singlet excited state (S₂), 56–64
fluorescence depletion, 74–76
Optical parametric amplifier pump, hypericin
ground state heterogeneity analysis, 10–15
Optical printing, HABI chemistry and,
167–168
Optimization, HABI chemistry and, 160
Opto-magnetic printing, Dylux technology and,
185–186
Out-of-plane motion, thiophogene molecules:
first excited singlet state (S₁ (n,π*))), 44–47, 65–72
second singlet excited state (S₂), 56–64
Overlaid film, Dylux technology for, 218–221
Overlap integral, thiophogene molecules, first
excited singlet state (S₁ (n,π*)), 65–72
Oxetane formation, Paternò-Büchi reaction:
furan derivatives, 96–103
pyrrole, 117–118
Oxetanocin formation, Paternò-Büchi reaction,
furan derivatives, 102–103
Panar, M., 202–204
Paris, Jean, 143
Patents:
automatic inventory control technology, 230
biimidazoles, 140–141
coi-irradiation method for producing positive
images utilizing phototropic spiropyrans
or indenone oxide or dual response
photosensitive composition, 192
coi-irradiation system for producing positive
images, 192
dimers derived from unsymmetrical 2,4,5-
triphenylimidazole compounds as
photoinitiators, 226–227
direct-positive photoimaging material for
electrographic master preparation, 243
dry silver-free photographic process, 158
dual-response photosensitive compositions
containing acyl ester of triethanolamine, 195
dual-response photosensitive compositions
containing alkylbenzenesulfonic acid and
arene sulfonamide, 196
elements for forming print-out images, 250–251
flexible ultraviolet radiation transmitting
filters, 214
heat-bleachable composition useful in
photography, 246–247
heat-sensitive reactive products of
hexaarylbimidazole and antihalation
dyes, 247
hexaarylbimidazole oxidation systems, 148–150
hexaarylbisimidazole oxidation systems, 149–150
image-producing layer of nearly uniform
thickness for holography, 175–176
imaging and fixing radiation-sensitive
compositions by sequential irradiation, 169–170
imaging composition, 246
leuco compounds oxidizable to dyes, 235
leuco dye/hexaarylbimidazole thermally
activated imaging process, 156
leuco dye photocopy system, 149
leuco triarylmethane/hexaarylbimidazole
color forming system with deactivator, 159–160
light-sensitive composition of organic color-
generator, photooxidant and organic
thermally activable reducing agent
progenitor, 154–155
marking transfer sheets, 212
method for preparing positive and negative
images using photohardenable
electrostatic master, 242–243
microencapsulation technologies, 248–250
nonphotosensitive, thermally imageable
element having improved room light
stability, 254
photoactivatable hexaarylbimidazole-
coumarin compositions, 160
photodecorating sheet material with matched
colored designs, 206–207
photohardenable electrostatic master having
improved backtransfer and charge decay, 242
photoimaging systems with cyclic hydrazides, 222
photopolymerizable composition containing
o-nitroaromatic photoinhibitor, 233
photopolymerizable compositions and
elements, 171–172
photosensitive composition, 148
Patents (Continued)

photosensitive composition comprising organic nitrogen-containing color-generator, photo-oxidant, and redox couple, 159
photothermographic reproduction system and photosensitive materials, 245–246
portable copier using flash lamp article, 217–218
preparation of papers coated on both sides with photosensitive composition, 194
research on HABI and searching of, 164–165
storage-stable, light-sensitive composition, aminotriaryl-methane and organic photooxidant, 149
storage-stable photoimageable deuteroleuco dye/photooxidation compositions with improved leuco dye, 250
thermally imageable monochrome proofing product with high contrast and fast photospeed, 253–254
triphenylmethane dyes, 156
2,4,5-triphenylimidazole dimers, 140
universal product code marking composition containing photosensitive dye former, pigment, and binder, 210
visible light-activated phototropic compositions comprising a hexaarylbiimidazole and bist(alkylamino)acridine dye, 163
visible light-activated phototropic compositions comprising a hexaarylbiimidazole and hydroxyphthalain dye, 163
visible light-sensitive phototropic compositions comprising hexaarylbiimidazole and carbocyanine dye, 160, 163
xeroprinting with photopolymer master, 241–244
Paterno-Büchi reaction:
visible light-activated phototropic compositions comprising a hexaarylbiimidazole and bist(alkylamino)acridine dye, 163
visible light-activated phototropic compositions comprising a hexaarylbiimidazole and hydroxyphthalain dye, 163
visible light-sensitive phototropic compositions comprising hexaarylbiimidazole and carbocyanine dye, 160, 163
xeroprinting with photopolymer master, 241–244
indole, 120–121
pyrrole, 117–118
reactivity observations, 122–123
selenophene, 118–119
thiazole, isoxazole, and isothiazole, 120
thiophene, 116–117
Pentaatomic heterocyclic compounds, 1,2-cycloaddition reaction, Paterno-Büchi reaction:
furan derivatives, 83–116
asymmetric reactions, 103–116
benzofuran, 92–93
2,3-dihydrofuran, 93–95
furan, 83–92
synthetic applications, 96–103
non-furan pentaatomic heterocycles, 116–123
azaindole, 122
imidazole, 119–120
indole, 120–121
pyrrole, 117–118
reactivity observations, 122–123
selenophene, 118–119
thiazole, isoxazole, and isothiazole, 120
thiophene, 116–117
Permanent color, HABI chemistry and, 145–151
Perturbation gaps, thiophosgene molecules:
first triplet electronic state (T1), 47–56
second singlet excited state (S2), 62–64
Perylenequinones. See also Hypericin-like perylenequinones
multiple hydrogen atom transfers in, 15–19
Phantom states, thiophosgene molecules, second singlet excited state (S2), 73–76
Phenanthrenequinones:
DYLUX 503 development and, 163
visible light and, 160, 162
Phenidone, development and patents for, 221–222
Phosphorescence emission, thiophosgene molecules:
absence of, 77
first triplet electronic state (T1), 53–56
Photochemical research, color-overlay film development and, 218–221
Photochromic sunglasses, HABI chemistry and, 144–145
Photodecoration:
Dylux technology and, 204–209
HABI chemistry and, 207–209
termination of, 218
Photoelastic modulator (PEM), thiophosgene molecules, second singlet excited state (S_2), 63–64

Photofix system, patents for, 195–196

Photogenerated protons, excited-state intramolecular H-atom transfer in hypericin-like perylene quinones, 2–7

Photohorizons technology, military application of, 199–200

Photoimaging, Ltd., Dylux technology and, 244–245

Photogenerated protons, excited-state intramolecular H-atom transfer in hypericin-like perylene quinones, 2–7

Photophysical properties, thiophosgene molecules, 64–76

first excited singlet state (S_1), 64–72

first triplet electronic state (T_1), 51–56

second excited singlet state (S_2), 72–76

Photopolymerization process:
• HABI chemistry and, 170–172, 255–256
• o-nitroaromatic photoinhibitor, 233
 xeroprinting and, 241–244

Photosensitive composition:
• coatings technology for, 193–197
 patents, 148, 194–196
 UPC development and, 211–212

Phototropic technology, HABI chemistry and, 137–138

Picosecond temporal resolution, thiophosgene molecules, second singlet excited state (S_2), 73–76

Planar conformation:
• thiophosgene molecule electronic states:
 carbon-sulfur double bonds, 32–34
 ground electronic state, 34–36

thiophosgene molecules:
• first excited singlet state (S_1 (n,π*)), 40–47
• second singlet excited state (S_2), 57–64

Platelet-activating factor formation, Paterno-Büchi reaction, furan derivatives, 100–103

Point-of-sales opportunities, for Dylux, 179

Polarization-dependent OODR spectra, thiophosgene molecules, second singlet excited state (S_2), 63–64

Polymeric HABIs, permanent color production, 145–151

Polymerization, HABI chemistry and, imaging speed and initiation of, 171–172

Portable copiers, Dylux technology and, 217–218

Porter, George, 158

Potential energy functions:
• hypericin ground state heterogeneity, 9–10

thiophosgene molecules:
• first excited singlet state (S_1 (n,π*)), 41–47
• first triplet electronic state (T_1), 52–56
• second singlet excited state (S_2), 56–64

Predissociation, thiophosgene electronic states, first excited singlet state (S_1 (n,π*)), 70–72

Printing industry, HABI chemistry applications in, 151

Project Apollo, Dylux technology and, 183

Proofing technologies:
• Dylux development and, 190–191
• HABI chemistry and, 168

Proofpaper:
• black Dylux 535 product, 234–237
 limits of Dylux technology for, 200–201
 properties of, 193–197

TCTM-HABI development and, 223–227

Thermal Dylux® proofpaper, 252–255

Proton-transfer species, hypericin and hypocrellin, 7–8

10-ps component, excited-state intramolecular H-atom transfer, hypericin and hypocrellin, 4–7

Publications. See also Literature sources
• computer simulation with Dylux technology, 207
 on Dylux technology, 202–203
• HABI chemistry, 141–143, 257–259
• miscellaneous, 199
• photopolymerization systems, 239
• photopolymers in electrostatic imaging applications, 243–244
• on photosensitive and heat sensitive recording materials, 231–232
• watermarks technology, 252

Pump wavelength, hypericin transient absorption kinetics and, 13–15

Pyramidal conformation, thiophosgene molecules:
• first excited singlet state (S_1 (n,π*)), 41–47
• second singlet excited state (S_2), 57–64

Pyrrole, Paterno-Büchi reaction, 117–118
Quadratic terms, thiophosgene molecules, first excited singlet state (S1 (n,π*)), 44–47
Quantum beat-modulated fluorescence decay, thiophosgene molecules: electronic states, 77
first excited singlet state (S1 (n,π*)), 67–72
Quantum mechanical calculations:
hypericin ground state heterogeneity, 9–10
multiple hydrogen-atom transfers in perylene quinones, 17–19
Quenching properties, Paterno-Büchi reaction, non-furan compounds, 122–123
Radiationless transitions, thiophosgene molecules, first excited singlet state (S1 (n,π*)), 64–72
Radiation physics, HABI chemistry and, 157–163
Raman spectroscopy, thiophosgene electronic states, ground electronic states, 36
Reactivity studies, Paterno-Büchi reaction, non-furan compounds, 122–123
Recording materials, Dylux technology for, 231–232
Regioselectivity, Paterno-Büchi reaction:
asymmetric furan reactions, 112–116
benzofuran, 92–93
furan compounds, 84–92
Restricted Hartree-Fock (RHF) theory, hypericin ground state heterogeneity, 9–10
Riehm, Roland (Dr.), 158
Ring-opening reactions, Paterno-Büchi reaction, furan derivatives, 97–103
Rotational analysis, thiophosgene molecules, first excited singlet state (S1 (n,π*)), 45–47
Rydberg states, thiophosgene molecules, first excited singlet state (S1 (n,π*)), 39–47
Scharf’s hypothesis, Paterno-Büchi reaction, furan compounds, 92
Schulz, D. (Dr.), 196–197
Second singlet excited state (S2), thiophosgene molecules, 56–64
Herzberg notation, 31–34
photophysical properties, 72–76
spin sublevel transitions, 78
Selection rules, thiophosgene molecules, 29
first excited singlet state, electronic matrix elements, 65–72
first triplet electronic state (T1), 47–56
second singlet excited state (S2), 60–64
Selenophene, Paterno-Büchi reaction, 118–119
Seminumerical Hessian calculations, hypericin ground state heterogeneity, 9–10
Sern-Volmer plot, Paterno-Büchi reaction, non-furan compounds, 122–123
Signaigo, Frank (Dr.), 151
Silversmith, Ernest (Dr.), 139, 160
Silyl furan derivatives, Paterno-Büchi reaction, 86–92
Singlet-triplet transitions, thiophosgene molecules, first triplet electronic state (T1), 47–56
Sinnott, Richard, 185–186
Skeletal coordinates, hydrogen atom translocation, 21–22
Society of Photographic Engineers and Scientists (SPSE):
Dylux presentations to, 191–192
Tokyo meeting of (1977), 230–232
Spectrographic analysis, thiophosgene molecules, first excited singlet state (S1 (n,π*)), 43–47
Spectroscopy, HABI chemistry and, 155–157
Spin-orbit coupling (SOC), Paterno-Büchi reaction, furan derivatives, 86–92
Spin-orbit operator, thiophosgene molecules:
first triplet electronic state (T1), 47–56
second singlet excited state (S2), 61–64
Spirit duplication, history of, 147–148
Stannyl furan derivatives, Paterno-Büchi reaction, 86–92
synthetic applications, 101–103
Statistical analysis, in HABI chemistry, 259–260
Statistical limit of radiationless transitions, thiophosgene molecules, first excited singlet state (S1 (n,π*)), 64–72
Stereochemical behavior, Paterno-Büchi reaction:
asymmetric reactions, 107–116
furan compounds, 91–92
Stereoselectivity, Paterno-Büchi reaction, asymmetric furan reactions, 111–116
Stick spectra, thiophosgene molecules, first excited singlet state (S1 (n,π*)), 43–47
Stimulated emission pumping (SEP), thiophosgene electronic states:
ground electronic state, 36
second singlet excited state (S2), 75–76
Strilko, Peter (Dr.), 159, 164
Symmetry axes:
thiophosgene electronic states, 29–34
first excited singlet state \((S_1 (n,\pi^*))\), 38–47
Synthetic applications, Paternò-Büchi reaction, furan derivatives, 96–103
Tautomeric forms, of hypericin and hypocrellin, 7–8
TCM-HABI, photopolymerization and, 256
TCTM-HABI:
Black Dylux 535 product and, 235–237
development and patenting of, 223–227
Terss, Robert, 172–173
Tertiary amines, photopolymerizable compositions and elements, 171–172
Tetracyanoethylene (TCNE), HABI chemistry and, 208–209
Thermal Dylux® proofpaper, 252–255
Thiazole, Paternò-Büchi reaction, 120
Thin-film polarizer (TFP), hypericin ground state heterogeneity analysis, 11–15
Thiophene, Paternò-Büchi reaction, 116–117
Thiophosgene:
 basic properties, 28–29
electronic states, 29–64
 first excited singlet state \((S_1 (n,\pi^*))\), 36–47
 first triplet electronic state \((T_1)\), 47–56
 ground electronic state \((S_0)\), 34–36
 molecular orbitals and electron configurations, 29–34
 second singlet excited state \((S_2)\), 56–64
future research issues, 77–78
photophysical properties, 64–76
 first excited singlet state \((S_1)\), 64–72
 first triplet electronic state \((T_1)\), 51–56
 second excited singlet state \((S_2)\), 72–76
 3M, competition to Dylux from, 246
Time constants, multiple hydrogen-atom transfers in perylene quinones, 17–19
Time delay measurements, thiophosgene molecules, first triplet electronic state \((T_1)\), 53–56
TLA-454, 149–150
DYLUX 503 development and, 163
proofpaper containing, 200–201
Trademark registration, for Dylux, 181–182
Transient absorption kinetics, hypericin ground state heterogeneity analysis, 13–15
Triarylimidazoles, HABI chemistry, 139–141
2,4,5-Triphenylimidazole dimers, patent, 140
Triplet biradical intermediates, Paternò-Büchi reaction, asymmetric furan reactions, 110–116
Tunable pump laser analysis:
 hypericin ground state heterogeneity, 10–15
 thiophosgene electronic states, first triplet electronic state \((T_1)\), 54–56
Turro, Nick, 144
Universal Product Code (UPC), Dylux technology and, 209–212
Urey-Bradley molecules, thiophosgene electronic states, 36
UVI movie, for Dylux promotion, 179–181
UVI-Ultraviolet imaging, patenting for, 148–150
Vibrational deficiency, thiophosgene molecules, first excited singlet state, 65–72
Vibrational modes:
 hydrogen atom translocation, 19–22
 multiple hydrogen-atom transfer in perylene quinones and, 18–19
 thiophosgene molecules, 28–29
 electronic states, ground electronic state, 35–36
 first excited singlet state \((S_1 (n,\pi^*))\), 38–47
 first triplet electronic state \((T_1)\), 49–56
 second singlet excited state \((S_2)\), 58–64
Vibronic coupling integral, thiophosgene molecules, first excited singlet state \((S_1 (n,\pi^*))\), 65–72
Vibronic interactions, thiophosgene molecules:
 first excited singlet state \((S_1 (n,\pi^*))\), 38–47
 second singlet excited state \((S_2)\), 60–64
Viscosity dependence, excited-state intramolecular H-atom transfer, hypericin and hypocrellin, 5–7
W. H. Brady Co., Kalograph technology and, 186–187
Walsh correlation diagram:
 thiophosgene electronic states, 32–34
 thiophosgene molecules:
 first excited singlet state \((S_1 (n,\pi^*))\), 40–47
 second singlet excited state \((S_2)\), 56–64
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartell, William S.</td>
<td>189–198</td>
<td>Xero printing, Dylux technology and</td>
</tr>
<tr>
<td>Watermarks</td>
<td></td>
<td>X-Raylux, development of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X-ray prints, Dylux technology for</td>
</tr>
<tr>
<td>Wheeler, Phil</td>
<td>144</td>
<td>Yembrick, Charles (Dr.), 159, 164–165, 168</td>
</tr>
<tr>
<td>Whitman, G. M.</td>
<td>151</td>
<td>Zwicker, Harry, 252–255</td>
</tr>
<tr>
<td>Wilbur, Harold</td>
<td>178–179, 203–204</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>VOL</td>
<td>PAGE</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Addition of Atoms to Olefins, in Gas Phase (Cvetanovic)</td>
<td>1</td>
<td>115</td>
</tr>
<tr>
<td>Advances in the Measurement of Correlation in Photoproduction Motion</td>
<td>23</td>
<td>279</td>
</tr>
<tr>
<td>(Morgan, Drabell, and Wodtke)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFM and STM in Photochemistry Including Photon Tunneling (Kaupp)</td>
<td>19</td>
<td>119</td>
</tr>
<tr>
<td>Alcohols, Ethers, and Amines, Photolysis of Saturated (von Sonntag and Schuchmann)</td>
<td>10</td>
<td>59</td>
</tr>
<tr>
<td>Alkanes and Alkyl Radicals, Unimolecular Decomposition and Isotope Effects of (Rabinovitch and Setser)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Alkyl Nitrites, Decomposition of and the Reactions of Alkoxyl Radicals (Heicklen)</td>
<td>14</td>
<td>177</td>
</tr>
<tr>
<td>Alternative Halocarbons, Atmospheric Photochemistry of (Francisco and Maricq)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracenes, Excited State Reactivity and Molecular Topology Relations in Chromophorically Substituted (Becker)</td>
<td>20</td>
<td>79</td>
</tr>
<tr>
<td>Anti-Stokes Fluorescence, Cooling of a Dye Solution by (Zander and Drexhage)</td>
<td>15</td>
<td>139</td>
</tr>
<tr>
<td>Aromatic Hydrocarbon Solutions, Photochemistry of (Bower)</td>
<td>20</td>
<td>59</td>
</tr>
<tr>
<td>Asymmetric Photoreactions of Conjugated Enones and Esters (Pete)</td>
<td>21</td>
<td>135</td>
</tr>
<tr>
<td>Atmospheric Reactions Involving Hydrocarbons, FTIR Studies of (Niki and Maker)</td>
<td>15</td>
<td>69</td>
</tr>
<tr>
<td>Benzene, Excitation and Deexcitation of (Cundall, Robinson, and Pereira)</td>
<td>10</td>
<td>147</td>
</tr>
<tr>
<td>Biocatalysis and Biomimetic Systems, Artificial Photosynthetic Transformations Through (Willner and Willner)</td>
<td>20</td>
<td>217</td>
</tr>
<tr>
<td>Biochromomorphic Systems, Excited State Behavior of Some (De Schryver, Boens, and Put)</td>
<td>10</td>
<td>359</td>
</tr>
<tr>
<td>Cancer Treatment, Photochemistry in (Dougherty)</td>
<td>17</td>
<td>275</td>
</tr>
<tr>
<td>Carbonyl Compounds, The Photocycloaddition of, to Unsaturated Systems: The Syntheses of Oxetanes (Arnold)</td>
<td>6</td>
<td>301</td>
</tr>
<tr>
<td>VOL.</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>489</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>Heterogeneous Catalysts, the Question of Artificial Photosynthesis of Ammonia on (Davies, Boucher, and Edwards)</td>
<td>19 235</td>
<td></td>
</tr>
<tr>
<td>Hydrogen-Oxygen Systems, Photochemical Gas Phase Reactions in (Volman)</td>
<td>1 43</td>
<td></td>
</tr>
<tr>
<td>Hydroxyl and Oxygen Atoms, Mechanisms and Rate Constants of Elementary Gas Phase Reactions Involving (Avramenko and Kolesnikova)</td>
<td>2 25</td>
<td></td>
</tr>
<tr>
<td>Hydroxyl Radical with Organic Compounds in the Gas Phase, Kinetics and Mechanisms of the Reactions of (Atkinson, Darnall, Winter, Lloyd, and Pitts)</td>
<td>11 375</td>
<td></td>
</tr>
<tr>
<td>Hypericin and Its Perylene Quinone Analogs: Probing Structure, Dynamics, and Interactions with the Environment (Das, Halder, Chowdhury, Park, Alexeev, Gordon, and Petrich)</td>
<td>28 1</td>
<td></td>
</tr>
<tr>
<td>Hypophalites, Developments in Photochemistry of (Akhtar)</td>
<td>2 263</td>
<td></td>
</tr>
<tr>
<td>Imaging Systems, Organic Photochemical (Delzenne)</td>
<td>11 1</td>
<td></td>
</tr>
<tr>
<td>Intramolecular Proton Transfer in Electronically Excited Molecules (Klöpffer)</td>
<td>10 311</td>
<td></td>
</tr>
<tr>
<td>Invention of Dylux® Instant-Access Imaging Materials and the Development of Habi Chemistry—A Personal History (Dessauer)</td>
<td>28 129</td>
<td></td>
</tr>
<tr>
<td>Ionic States, in Solid Saturated Hydrocarbons, Chemistry of (Kevan and Libby)</td>
<td>2 183</td>
<td></td>
</tr>
<tr>
<td>Isotopic Effects in Mercury Photosensitization (Gunning and Strausz)</td>
<td>1 209</td>
<td></td>
</tr>
<tr>
<td>Ketone Photochemistry, a Unified View of (Formosinho and Arnaut)</td>
<td>16 67</td>
<td></td>
</tr>
<tr>
<td>Lanthanide Complexes of Encapsulating Ligands at Luminescent Devices (Sabbatini, Guardigli, and Manet)</td>
<td>23 213</td>
<td></td>
</tr>
<tr>
<td>Mechanism of Energy Transfer, in Mercury Photosensitization (Gunning and Strausz)</td>
<td>1 209</td>
<td></td>
</tr>
<tr>
<td>Mechanistic Organic Photochemistry, A New Approach to (Zimmerman)</td>
<td>1 183</td>
<td></td>
</tr>
<tr>
<td>Mercury Photosensitization, Isotopic Effects and the Mechanism of Energy Transfer in (Gunning and Strausz)</td>
<td>1 209</td>
<td></td>
</tr>
<tr>
<td>Metallocenes, Photochemistry in the (Bozak)</td>
<td>8 227</td>
<td></td>
</tr>
<tr>
<td>Methylene, Preparation, Properties, and Reactivities of (De More and Benson)</td>
<td>2 219</td>
<td></td>
</tr>
<tr>
<td>Molecular Distortions in Excited Electronic States, Electronic and Resonance Raman Spectroscopy Determination of (Zink and Shin)</td>
<td>16 119</td>
<td></td>
</tr>
<tr>
<td>Neutral Oxides and Sulfides of Carbon, Vapor Phase Photochemistry of the (Fileeth)</td>
<td>10 1</td>
<td></td>
</tr>
<tr>
<td>Nitrile Oxide, Role in Photochemistry (Heicklen and Cohen)</td>
<td>5 157</td>
<td></td>
</tr>
<tr>
<td>Noyes, W., A., Jr., a Tribute (Heicklen)</td>
<td>13 vii</td>
<td></td>
</tr>
<tr>
<td>Nucleic Acid Derivatives, Advances in the Photochemistry of (Burr)</td>
<td>6 193</td>
<td></td>
</tr>
<tr>
<td>Olefins, Photolysis of Simple, Chemistry of Electronic Excited States or Hot Ground States? (Colling)</td>
<td>14 135</td>
<td></td>
</tr>
<tr>
<td>Onium Salts, Photochemistry and Photophysics of (DeVoe, Olofson, and Sahyun)</td>
<td>17 313</td>
<td></td>
</tr>
<tr>
<td>Optical Single-Molecule Detection at Room Temperature (Meixner)</td>
<td>24 1</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Volume</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Organic Molecules, Photochemical Rearrangements of</td>
<td>1</td>
<td>323</td>
</tr>
<tr>
<td>Organic Molecules in Adsorbed or Other Perturbing</td>
<td>8</td>
<td>315</td>
</tr>
<tr>
<td>Photochemical and Spectroscopic Properties of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Nichollas and Leermakers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Molecules in their Triplet States, Properties</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>and Reactions of (Wagner and Hammond)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Nitrites, Developments in Photochemistry of</td>
<td>2</td>
<td>263</td>
</tr>
<tr>
<td>(Akhtar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Photochemical Refractive-Index Image</td>
<td>12</td>
<td>201</td>
</tr>
<tr>
<td>Recording Systems (Tomlinson and Chandross)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organized Media on Photochemical Reactions, A Model for</td>
<td>18</td>
<td>67</td>
</tr>
<tr>
<td>the Influence of (Ramamurthy, Weiss, and Hammond)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organo-Transition Metal Compounds, Primary Photoprocesses</td>
<td>10</td>
<td>221</td>
</tr>
<tr>
<td>of (Bock and von Gustorf)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perhalocarbons, Gas Phase Oxidation of (Heicklen)</td>
<td>7</td>
<td>57</td>
</tr>
<tr>
<td>Phenyl Azide, Photochemistry of (Schuster and Platz)</td>
<td>17</td>
<td>69</td>
</tr>
<tr>
<td>Phosphorescence and Delayed Fluorescence from Solutions</td>
<td>2</td>
<td>305</td>
</tr>
<tr>
<td>(Parker)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorescence-Microwave Multiple Resonance Spectroscopy</td>
<td>9</td>
<td>311</td>
</tr>
<tr>
<td>(El-Sayed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photoassociation in Aromatic Systems (Stevens)</td>
<td>8</td>
<td>161</td>
</tr>
<tr>
<td>Photochemical Mechanisms, Highly Complex</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>(Johnston and Cramarossa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemical Oxidation of Aldehydes by Molecular</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Oxygen, Kinetics and Mechanism of (Niclause, Lemaire,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Letort)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemical Reactivity, Reflections on (Hammond)</td>
<td>7</td>
<td>373</td>
</tr>
<tr>
<td>Photochemical Rearrangements of Conjugated Cyclic</td>
<td>4</td>
<td>81</td>
</tr>
<tr>
<td>Ketones: The Present State of Investigations (Schaffner)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemical Transformations of Polyenic Compounds</td>
<td>4</td>
<td>195</td>
</tr>
<tr>
<td>(Mousseron)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemically Induced Dynamic Nuclear Polarization</td>
<td>23</td>
<td>63</td>
</tr>
<tr>
<td>(Goez)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemistry in Cyclodextrin Cavities (Bortolus and</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Monti)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemistry of Triaryl methane Dye Leuconitriles</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>(Jarikov and Neckers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemistry of Conjugated Dienes and Trienes (Srinivasan)</td>
<td>4</td>
<td>113</td>
</tr>
<tr>
<td>Photochemistry of Rhodopsins, The (Ottolenghi)</td>
<td>12</td>
<td>97</td>
</tr>
<tr>
<td>Photochemistry of Simple Aldehydes and Ketones in the</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Gas Phase (Lee and Lewis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemistry of the Troposphere (Levy)</td>
<td>9</td>
<td>369</td>
</tr>
<tr>
<td>Photochemistry of Vitamin D and Its Isomers and of</td>
<td>11</td>
<td>305</td>
</tr>
<tr>
<td>Simple Trienes (Jacobs and Havinga)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemistry, Vocabulary of (Pitts, Wilkinson,</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hammond)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochromism (Dessauer and Paris)</td>
<td>1</td>
<td>275</td>
</tr>
<tr>
<td>Photodissociation Dynamics of Hydride Molecules: H Atom</td>
<td>21</td>
<td>217</td>
</tr>
<tr>
<td>Photofragment Translational Spectroscopy (Ashfold,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mordaunt, and Wilson)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo-Fries Rearrangement and Related Photochemical</td>
<td>8</td>
<td>109</td>
</tr>
<tr>
<td>(i.j) Shifts of (j = 3,5,7) of Carbonyl and Sulfonl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groups (Bellus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photography, Silver Halide, Chemical Sensitization,</td>
<td>13</td>
<td>329</td>
</tr>
<tr>
<td>Spectral Sensitization, Latent Image Formation (James)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo-Induced and Spontaneous Proton Tunneling in</td>
<td>24</td>
<td>147</td>
</tr>
<tr>
<td>Molecular Solids (Trommsdorff)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photoionization and Photodissociation of Aromatic</td>
<td>2</td>
<td>385</td>
</tr>
<tr>
<td>Molecules, by Ultra violet Radiation (Terenin and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vilessov)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vol.</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>427</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Small Molecules, Photodissociation of (Jackson and Okabe)</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Solid Saturated Hydrocarbons, Chemistry of Ionic States in (Kevan and Libby)</td>
<td>2</td>
<td>183</td>
</tr>
<tr>
<td>Solvation, Ultrafast Photochemical Intramolecular Charge Transfer and Excited State (Barbara and Jarzeba)</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Spectroscopy and (Photochemistry of Polyatomic Alkaline Earth Containing Molecules (Bernath))</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>Spin Conservation (Matsen and Klein)</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Stilbenes, Bimolecular Photochemical Reactions of (Lewis)</td>
<td>13</td>
<td>165</td>
</tr>
<tr>
<td>Stilbenes and Stilbene-Like Molecules, Cis-Trans Photoisomerization of (Görner and Kuhn)</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>Structure and Reactivity of Organic Intermediates as Revealed by Time-Resolved Infrared Spectroscopy (Toscano)</td>
<td>26</td>
<td>41</td>
</tr>
<tr>
<td>Sulfur Atoms, Reactions of (Gunning and Strausz)</td>
<td>4</td>
<td>143</td>
</tr>
<tr>
<td>Sulfur and Nitrogen Heteroatomic Organic Compounds, Photochemical Reaction of (Mustafa)</td>
<td>2</td>
<td>63</td>
</tr>
<tr>
<td>Supramolecularly Organized Luminescent Dye Molecules in the Channels of Zeolite L (Calzaferri, Maas, Pauchard, Pfenniger, Megelski, Devaux)</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>Surfactant Solutions, Photochemistry in (von Büna and Wolff)</td>
<td>14</td>
<td>273</td>
</tr>
</tbody>
</table>

The EPR Spectroscopic D Parameter of Localized Triplet Diradicals as Probe for Electronic Effects in Benzyl-type Monoradicals (Adam, Harrer, Kita, and Nau) | 24 | 205 |

The Photochemistry of Indoles (Weedon) | 22 | 229 |

Theory and Applications of Chemically Induced Magnetic Polarization in Photochemistry (Wan) | 12 | 283 |

Thiophosgene: A Tailor-Made Molecule for Photochemical and Photophysical Studies (Moule, Fujiwara, and Lim) | 28 | 27 |

Transition Metal Complexes, Primary Processes in (Forster) | 16 | 215 |

Triatomic Free Radicals, Spectra and Structures of (Herzberg) | 5 | 1 |

Ultraviolet Photochemistry, Vacuum (McNesby and Okabe) | 3 | 157 |

Ultraviolet Photodissociation Studies of Organosulfur Molecules and Radicals: Energetics, Structure Identification, and Internal State Distribution (Cheuk-Yiu Ng) | 22 | 1 |

Ultraviolet Radiation, Photoionizational and Photodissociation of Aromatic Molecules by (Terenin and Vilessov) | 2 | 385 |

Up-Scaling Photochemical Reactions (Braun, Jakob, Oliveros, Oller do Nascimento) | 18 | 235 |

Velocity Mapping of UV Multiphoton Excited Molecules (Chandler and Parker) | 25 | 59 |

Weakly Bonded Complexes, Photoinitiated Reactions in (Shin, Chen, Nickolaisen, Sharpe, Beaudet, and Wittig) | 16 | 249 |

Xanthine Dyes, Photochemistry of the (Neckers and Valdes-Aguilera) | 18 | 315 |