CONTENTS

1 INTRODUCTION TO MECHANICS OF MATERIALS 1
1.1 What Is Mechanics of Materials? 1 (Includes Color-Photo Insert) 1
1.2 The Fundamental Equations of Deformable-Body Mechanics, 4 2
1.3 Problem-Solving Procedures, 6 3
1.4 Review of Static Equilibrium; Equilibrium of Deformable Bodies, 8 4
1.5 Problems, 17 5
Chapter 1 Review, 21 6

2 STRESS AND STRAIN; INTRODUCTION TO DESIGN 22 7
2.1 Introduction, 22 8
2.2 Normal Stress, 23 9
2.3 Extensional Strain; Thermal Strain, 31 10
2.4 Stress-Strain Diagrams; Mechanical Properties of Materials, 37 11
2.5 Elasticity and Plasticity; Temperature Effects, 45 12
2.6 Linear Elasticity; Hooke’s Law and Poisson’s Ratio, 48 13
2.7 Shear Stress and Shear Strain; Shear Modulus, 51 14
2.8 Introduction to Design—Axial Loads and Direct Shear, 57 15
2.9 Stresses on an Inclined Plane in an Axially Loaded Member, 65 16

2.10 Saint-Venant’s Principle, 67 17
2.11 Hooke’s Law for Plane Stress; The Relationship Between E and G, 69 18
2.12 General Definitions of Stress and Strain, 72 19
*2.13 Cartesian Components of Stress; Generalized Hooke’s Law for Isotropic Materials, 82 20
*2.14 Mechanical Properties of Composite Materials, 87 21
2.15 Problems, 89 22
Chapter 2 Review, 113 23

3 AXIAL DEFORMATION 118 24
3.1 Introduction, 118 25
3.2 Basic Theory of Axial Deformation, 118 26
3.3 Examples of Nonuniform Axial Deformation, 126 27
3.4 Statically Determinate Structures, 136 28
3.5 Statically Indeterminate Structures, 143 29
3.6 Thermal Effects on Axial Deformation, 152 30
3.7 Geometric “Misfits,” 163 31
3.8 Displacement-Method Solution of Axial-Deformation Problems, 168 32
*3.9 Force-Method Solution of Axial-Deformation Problems, 180 33
*3.10 Introduction to the Analysis of Planar Trusses, 189 34
*3.11 Inelastic Axial Deformation, 197 35
3.12 Problems, 209 36
Chapter 3 Review, 234 37
4 TORSION 237

4.1 Introduction, 237
4.2 Torsional Deformation of Circular Bars, 238
4.3 Torsion of Linearly Elastic Circular Bars, 241
4.4 Stress Distribution in Circular Torsion Bars; Torsion Testing, 249
4.5 Statically Determinate Assemblages of Uniform Torsion Members, 253
4.6 Statically Indeterminate Assemblages of Uniform Torsion Members, 258
*4.7 Displacement-Method Solution of Torsion Problems, 266
4.8 Power-Transmission Shafts, 272
*4.9 Thin-Wall Torsion Members, 275
*4.10 Torsion of Noncircular Prismatic Bars, 280
*4.11 Inelastic Torsion of Circular Rods, 284
4.12 Problems, 290

Chapter 4 Review, 307

5 EQUILIBRIUM OF BEAMS 309

5.1 Introduction, 309
5.2 Equilibrium of Beams Using Finite Free-Body Diagrams, 314
5.3 Equilibrium Relationships Among Loads, Shear Force, and Bending Moment, 318
5.4 Shear-Force and Bending-Moment Diagrams: Equilibrium Method 321
5.5 Shear-Force and Bending-Moment Diagrams: Graphical Method 326
*5.6 Discontinuity Functions to Represent Loads, Shear, and Moment, 333
5.7 Problems, 340

Chapter 5 Review, 348

6 STRESSES IN BEAMS 351

6.1 Introduction, 351
6.2 Strain-Displacement Analysis, 354
6.3 Flexural Stress in Linearly Elastic Beams, 360
6.4 Design of Beams for Strength, 369
6.5 Flexural Stress in Nonhomogeneous Beams, 375
*6.6 Unsymmetric Bending, 383
*6.7 Inelastic Bending of Beams, 392
6.8 Shear Stress and Shear Flow in Beams, 402
6.9 Limitations on the Shear-Stress Formula, 408
6.10 Shear Stress in Thin-Wall Beams, 411
6.11 Shear in Built-Up Beams, 421
*6.12 Shear Center, 425
6.13 Problems, 432

Chapter 6 Review, 460

7 DEFLECTION OF BEAMS 463

7.1 Introduction, 463
7.2 Differential Equations of the Deflection Curve, 464
7.3 Slope and Deflection by Integration—Statically Determinate Beams, 470
7.4 Slope and Deflection by Integration—Statically Indeterminate Beams, 483
*7.5 Use of Discontinuity Functions to Determine Beam Deflections, 488
7.6 Slope and Deflection of Beams: Superposition Method, 495
*7.7 Slope and Deflection of Beams: Displacement Method, 513
7.8 Problems, 520

Chapter 7 Review, 539

8 TRANSFORMATION OF STRESS AND STRAIN; MOHR’S CIRCLE 541

8.1 Introduction, 541
8.2 Plane Stress, 542
8.3 Stress Transformation for Plane Stress, 544
8.4 Principal Stresses and Maximum Shear Stress, 551
8.5 Mohr’s Circle for Plane Stress, 557
8.6 Triaxial Stress; Absolute Maximum Shear Stress, 564

Chapter 8 Review, 577
D SECTION PROPERTIES OF SELECTED STRUCTURAL SHAPES D-1

D.1 Properties of Steel Wide-Flange (W) Shapes (U.S. Customary Units), D-2
D.2 Properties of Steel Wide-Flange (W) Shapes (SI Units), D-3
D.3 Properties of American Standard (S) Beams (U.S. Customary Units), D-4
D.4 Properties of American Standard (C) Channels (U.S. Customary Units), D-5
D.5 Properties of Steel Angle Sections—Equal Legs (U.S. Customary Units), D-6
D.6 Properties of Steel Angle Sections—Unequal Legs (U.S. Customary Units), D-7
D.7 Properties of Standard-Weight Steel Pipe (U.S. Customary Units), D-8
D.8 Properties of Structural Lumber (U.S. Customary Units), D-9
D.9 Properties of Aluminum Association Standard I-Beams (U.S. Customary Units), D-10
D.10 Properties of Aluminum Association Standard Channels (U.S. Customary Units), D-11

E DEFLECTIONS AND SLOPES OF BEAMS; FIXED-END ACTIONS E-1

E.1 Deflections and Slopes of Cantilever Uniform Beams, E-1

E.2 Deflections and Slopes of Simply Supported Uniform Beams, E-3
E.3 Fixed-End Actions for Uniform Beams, E-4

F MECHANICAL PROPERTIES OF SELECTED ENGINEERING MATERIALS F-1

F.1 Specific Weight and Mass Density, F-2
F.2 Modulus of Elasticity, Shear Modulus of Elasticity, and Poisson’s Ratio, F-3
F.3 Yield Strength, Ultimate Strength, Percent Elongation in 2 Inches, and Coefficient of Thermal Expansion, F-4

G COMPUTATIONAL MECHANICS G-1

G.1 MDSolids, G-1

ANSWERS TO SELECTED ODD-NUMBERED PROBLEMS ANS-1

REFERENCES R-1

INDEX I-1