Contents

Note to the Reader xvii

Acknowledgements xix

Introduction xxi

1 Introductory Concepts and Noise Fundamentals 1
 1.1 Introduction: The Noise Concept 1
 1.2 Functional Classification of Noise 2
 1.2.1 Constant Term: Thermal Noise 3
 1.2.2 Linear Term: Shot Noise 4
 1.2.3 Quadratic Term: Beat Noise 5
 1.3 Total Noise 7
 1.4 Bit Error Rate Performance 10
 1.5 Timing Jitter 18
 1.6 Partition of Noise Sources 22
 1.7 Conclusions 30

References 30

2 Noise Principles in Optical Fiber Communication 31
 2.1 Introduction 31
 2.2 Receiver Thermal Noise 32
 2.3 Dark Shot Noise 34
 2.4 Signal Shot Noise 35
 2.4.1 Optimized Multilevel Quantum Detection 35
 2.4.1.1 Level Optimization 38
 2.5 Multiplication Shot Noise 41
 2.6 Optical Amplification and Beat Noises 47
 2.6.1 ASE Spectrum 47
 2.6.2 Population Inversion and the Spontaneous Emission Factor 48
 2.6.3 Amplifier Gain 49
 2.6.4 Optical Bandwidth 52
 2.6.5 Photocurrent Equivalent 54
 2.6.6 Signal-Spontaneous Beat Noise 55
 2.6.7 Spontaneous-Spontaneous Beat Noise 58
 2.6.8 Optically Amplified Receivers 59
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>Optical Noise and Coherence</td>
<td>65</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Instantaneous Frequency Deviation</td>
<td>65</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Integral Phase Process</td>
<td>67</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Phase Noise</td>
<td>71</td>
</tr>
<tr>
<td>2.7.3.1</td>
<td>Mean</td>
<td>71</td>
</tr>
<tr>
<td>2.7.3.2</td>
<td>Autocorrelation</td>
<td>73</td>
</tr>
<tr>
<td>2.7.3.3</td>
<td>Power Spectrum</td>
<td>74</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Coherence Time and Length</td>
<td>75</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Frequency Chirping and Laser Linewidth</td>
<td>78</td>
</tr>
<tr>
<td>2.7.5.1</td>
<td>Linewidth Enhancement Factor</td>
<td>79</td>
</tr>
<tr>
<td>2.7.5.2</td>
<td>Chirped Source Spectrum</td>
<td>80</td>
</tr>
<tr>
<td>2.8</td>
<td>Relative Intensity Noise</td>
<td>83</td>
</tr>
<tr>
<td>2.9</td>
<td>Mode Partition Noise</td>
<td>85</td>
</tr>
<tr>
<td>2.10</td>
<td>Modal Noise</td>
<td>89</td>
</tr>
<tr>
<td>2.11</td>
<td>Reflection Noise</td>
<td>94</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Fabry–Perot Interferometer</td>
<td>95</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Interferometric Intensity Noise</td>
<td>98</td>
</tr>
<tr>
<td>2.11.2.1</td>
<td>Autocorrelation Function</td>
<td>99</td>
</tr>
<tr>
<td>2.11.2.2</td>
<td>Power Spectrum</td>
<td>101</td>
</tr>
<tr>
<td>2.12</td>
<td>Polarization Noise in Multimode Fibers</td>
<td>103</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Theoretical Concepts</td>
<td>105</td>
</tr>
<tr>
<td>2.12.1.1</td>
<td>Mode Group Power</td>
<td>106</td>
</tr>
<tr>
<td>2.12.1.2</td>
<td>Modal Power Coupling</td>
<td>107</td>
</tr>
<tr>
<td>2.12.1.3</td>
<td>Source Polarization and Axis Rotation</td>
<td>109</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Heuristic Approach</td>
<td>110</td>
</tr>
<tr>
<td>2.12.3</td>
<td>Azimuth Scanning Compliant Test (ASCOT)</td>
<td>111</td>
</tr>
<tr>
<td>2.12.4</td>
<td>Experimental Survey</td>
<td>111</td>
</tr>
<tr>
<td>2.12.5</td>
<td>Comments</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>115</td>
</tr>
</tbody>
</table>

3 Theory of Stochastic Processes

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td>3.2</td>
<td>Fundamentals of Random Processes</td>
<td>120</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Definition</td>
<td>121</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Probability Density Functions</td>
<td>122</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Expectation Operator</td>
<td>123</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Mean</td>
<td>124</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Variance</td>
<td>125</td>
</tr>
<tr>
<td>3.3</td>
<td>Autocovariance Function</td>
<td>125</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Statistical Uncorrelation and Independence</td>
<td>126</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Definition and Basic Properties</td>
<td>127</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Relation with the Variance</td>
<td>128</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Conjugate Symmetric Property</td>
<td>128</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Cross-Covariance Function</td>
<td>128</td>
</tr>
<tr>
<td>3.4</td>
<td>Degree of Coherence</td>
<td>130</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Uncorrelated (Incoherent) Processes</td>
<td>131</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Correlated (Coherent) Processes</td>
<td>131</td>
</tr>
<tr>
<td>3.5</td>
<td>Autocorrelation Function</td>
<td>134</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Uncorrelated (Incoherent) Process</td>
<td>135</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Ensemble Average Power</td>
<td>135</td>
</tr>
</tbody>
</table>
3.5.3 Symmetric Conjugate Property

3.5.4 Example: Harmonic Field with Random Amplitude

3.6 Linear Combination of Random Processes

3.6.1 Statistical Homogeneity

3.6.2 Mutual Statistical Independence

3.6.3 Convolution Theorem of Probability Densities

3.6.4 Theorem of Composite Probability Density

3.6.5 Scaling Theorem of Probability Density

3.6.6 Central Limit Theorem

3.7 Characteristic Function

3.7.1 Conjugate Symmetry

3.7.2 Upper Bound

3.7.3 Shifting Theorem

3.7.4 Expectation Form

3.7.5 Inversion Formula

3.7.6 Scaling Theorem of Characteristic Function

3.7.7 Examples of Probability Densities

3.7.8 Linear Combination of Stochastic Processes

3.7.9 Process Estimator for Uniform Density

3.8 Stationary Processes

3.8.1 Stationary Processes of the Nth Order

3.8.2 Strict-Sense Stationary (SSS) Processes

3.8.3 Wide-Sense Stationary (WSS) Processes

3.8.4 Characterization of WSS Random Processes

3.9 Ergodic Processes

3.9.1 Temporal Averages of Stochastic Processes

3.9.2 Wide-Sense Ergodic (WSE) Processes

3.10 Spectral Representation

3.10.1 Mean

3.10.2 Autocorrelation
3.10.3 Finite Energy Processes: An Integral Theorem
3.10.3.1 Example: Smoothed Random-Amplitude Harmonic Field
3.10.4 Stationary Processes: The Wiener–Khintchin Theorem
3.10.4.1 Example: Harmonic Field with Random Amplitude
3.11 Normal Processes
3.11.1 Jointly Normal Random Variables
3.11.2 Definition of Normal Processes
3.11.3 Properties of Normal Processes
3.12 White Noise Modeling
3.12.1 Stationary White Noise
3.12.2 Ergodic White Noise
3.12.3 Gaussian White Noise
3.13 Conclusions and Remarks

References

4 Linear Systems and Noise
4.1 Introduction
4.2 Linear Systems with Stochastic Inputs
4.2.1 Definitions
4.2.2 Output Mean
4.2.2.1 Example: Filtered Additive Noise
4.2.3 Output Autocorrelation
4.2.3.1 Stationary Processes
4.3 Noise Bandwidth
4.4 Basic Electrical Filters
4.4.1 Ideal Low-Pass (NYQUIST) Filter
4.4.1.1 Noise Bandwidth
4.4.2 Single-Pole Filter
4.4.2.1 Noise Bandwidth
4.4.3 Gaussian Filter
4.4.3.1 Noise Bandwidth
4.4.3.2 Relative Frequency Attenuation Ratio
4.4.4 Conjugate Gaussian Relationships
4.4.4.1 Impulse Response
4.4.4.2 Fourier Transform Pairs
4.4.4.3 Normalization Properties
4.4.4.4 Uncertainty Relationship
4.4.4.5 Conjugate FWHM
4.4.4.6 Unilateral HWHM Bandwidth
4.4.4.7 Cut-Off Bandwidth
4.4.4.8 Transient Times
4.4.4.9 Gaussian Integrals
4.4.4.10 Noise Bandwidth
4.4.4.11 Applications
4.4.4.12 Example: 10 ps RMS Pulse
4.4.4.13 Example: 10 GbE Optical Link
4.5 Raised-Cosine Filter
4.5.1 Frequency Response
4.5.2 Impulse Response
4.5.2 First Set of Zeros
4.5.2.1 First Set of Zeros
4.5.2.2 Second Set of Zeros
4.5.3 Shaping Factor and Windowing Function
4.5.4 Noise Bandwidth
4.5.4.1 A Noteworthy Integral
4.6 Bessel–Thompson Filter
4.6.1 Transfer Function
4.6.2 Cut-off Frequency
4.6.3 Group Delay
4.6.4 Half-Bit Delay Line
4.6.5 Computer Simulations
4.6.5.1 Frequency Responses
4.6.5.2 MATLAB® Source Code
4.6.6 Impulse Response
4.6.7 Center of Gravity and Temporal Average
4.6.8 Real-Time Representations
4.6.8.1 MATLAB® Source Code
4.6.9 Fourth-Order Bessel–Thompson Filter
4.6.10 Noise Bandwidth
4.6.10.1 MATLAB® Code: Noise Bandwidth
4.7 Noise Bandwidth Comparison
4.8 Conclusions

5 Statistical Theory of Intersymbol Interference
5.1 Introduction
5.2 Theory of Signal Interference
5.2.1 Definitions
5.2.2 Space and Time Representations
5.2.3 Definition of the Interfering Terms
5.2.4 Signal Sample
5.2.5 Analysis of the Interfering Terms
5.2.5.1 Isolated Symbol Sample
5.2.5.2 Postcursor Interference
5.2.5.3 Precursor Interference
5.2.6 Random Binary Sequence
5.2.7 Postcursor Interfering Term
5.2.7.1 Mean
5.2.7.2 A Theorem for the Variance
5.2.7.3 Variance
5.2.8 Precursor Interfering Term
5.2.9 Probability Density Function
5.2.9.1 Postcursor Interference
5.2.9.2 Precursor Interference
5.2.10 Stationarity of the Random Sequences
5.2.11 Cyclostationary Binary Sequence
5.2.11.1 Pseudorandom Binary Sequence
5.2.11.2 Example
5.2.11.3 Random Sequences of Finite Length
6.3.5.1 Analysis of the Interfering Terms 428
6.3.5.2 Amplitude Fluctuations 428
6.3.5.3 MATLAB® Code: GSNRZ_Multi_Sequences 431

6.3.6 Full-Width-at-Half-Maximum 433
6.3.6.1 MATLAB® Code: GSNRZ_FWHM 435

6.3.7 Transition Time 436
6.3.7.1 Rise Time and Fall Time 438
6.3.7.2 Relation between the Rise Time and the FWHM 440

6.3.8 Interfering Terms 441
6.3.9 Mean of the Interference 445
6.3.10 Variance of the Interference 447
6.3.11 Two Mathematical Theorems 448
6.3.11.1 Theorem I: Power Series of Error Functions 448
6.3.11.2 Application of Theorem I to the Calculus of the Variance 449
6.3.11.3 Theorem II: Series Solution by Parts 452
6.3.11.4 Applications of Theorem II to the Calculus of the Variance 454

6.3.12 Limiting Behavior of the Variance 462
6.3.12.1 Large Value of the Standard Deviation: \(\kappa \geq 1 \) 462
6.3.12.2 Theorem III – Series of Gaussian Samples: \(\kappa \geq 1 \) 464
6.3.12.3 Small Value of the Standard Deviation: \(\kappa \leq 1/(2\sqrt{2}) \) 467
6.3.12.4 MATLAB® Code: GSNRZ_Variance 471

6.3.13 On the Solution of the Series of Gaussians 472
6.3.14 Probability Density Functions (Histograms) 473
6.3.14.1 Standard Deviation: \(\kappa = 0.5 \) 477
6.3.14.2 Standard Deviation: \(\kappa = 3.0 \) 478
6.3.14.3 Standard Deviation: \(\kappa = 5.0 \) 479
6.3.14.4 Comments 479
6.3.14.5 MATLAB® Code: GSNRZ_HISTO 479

6.3.15 Summary of the GS-NRZ Pulse Modeling 482
6.3.16 Conclusions 484

6.4 Solution of the Variance Series 485
6.5 Bessel–Thompson NRZ Pulse 488
6.5.1 Frequency Response 490
6.5.2 Impulse Response 492
6.5.3 Synthesis of the BT-NRZ Pulse 494
6.5.3.1 BT-NRZ Pulse Alignment Procedure 494
6.5.3.2 Center-of-Gravity Theorem 498
6.5.3.3 Group Delay Theorem 501
6.5.3.4 Application to the BT-NRZ Pulse 503
6.5.4 Self-Aligned BT-NRZ Pulse 506
6.5.4.1 MATLAB® Code: BTNRZ_CAP_Pulse 507
6.5.5 Pulse Profiles and Characteristic Parameters 509
6.5.5.1 Normalized Cut-off \(\nu_c = 0.25 \) 509
6.5.5.2 Normalized Cut-off \(\nu_c = 0.75 \) 509
6.5.5.3 Normalized Cut-off \(\nu_c = 2.0 \) 510
6.5.6 Full-Width-at-Half-Amplitude (FWHA) 512
6.5.6.1 MATLAB® Code: BTNRZ_FWAHA 515
6.5.7 Interfering Terms 517
6.5.7.1 Postcursor Sequence 517
6.5.7.2 Precursor Sequence 517

6.5.8 Mean of the Interference 519
6.5.8.1 Mean Value of the Postcursor Intersymbol Interference 521
6.5.8.2 Mean Value of the Precursor Intersymbol Interference 521

6.5.9 Variance of the Interference 522
6.5.9.1 Variance of the Postcursor Intersymbol Interference 522
6.5.9.2 MATLAB® Code: BTNRZ_Variance_PST 525
6.5.9.3 Variance of the Precursor Intersymbol Interference 527

6.5.10 Probability Density Functions (Histograms) 528
6.5.10.1 Low Cut-off Frequency: \(\nu_c = 0.05 \) 530
6.5.10.2 Mid Cut-off Frequency: \(\nu_c = 0.20 \) 533
6.5.10.3 High Cut-off Frequency: \(\nu_c = 1.0 \) 534
6.5.10.4 MATLAB® Code: BTNRZ_HISTO 536

6.5.11 Conclusions 540

References 542

7 Frequency Representation of Intersymbol Interference 543

7.1 Introduction 543

7.2 ISI in the Frequency Domain 544

7.2.1 Fourier Series Kernel 544

7.2.1.1 Solutions and Properties of the Partial Sums 545
7.2.1.2 Solution and Properties of the Symmetric Sum 548
7.2.1.3 Limiting Behavior of the Symmetric Sum for \(N \to \infty \) 551
7.2.1.4 Limiting Behavior of the Partial Sums for \(N \to \infty \) 553

7.2.2 Sum of the Interfering Terms 560
7.2.2.1 Sum of Precursors 561
7.2.2.2 Sum of Postcursors 563
7.2.2.3 Discussion: The Spectral Overlapping Mechanism 564

7.3 Total ISI Theorem 572

7.3.1 Coincidence of the Sums of Partial Intersymbols 573

7.3.1.1 Application to the Even-Symmetric Pulse 573

7.3.2 Sum of All Intersymbol Interferences 573

7.3.3 Concept and Definition of the Total ISI 574

7.3.4 Corollary I: NRZ Synthesized Pulse 575

7.3.5 Proof of the Total ISI Theorem 576

7.4 Applications and Examples 579

7.4.1 Fourth-Order Bessel–Thompson NRZ Pulse 579

7.4.1.1 Reference Amplitude \(\psi_0 < 1 \) 579
7.4.1.2 Reference Amplitude \(\psi_0 = 1 \) 582
7.4.1.3 Reference Amplitude \(\psi_0 > 1 \) 584
7.4.1.4 MATLAB® Code: BTNRZ_Total_ISI_Theorem 586

7.4.2 Gaussian NRZ Pulse (Error Function) 587

7.4.2.1 Comments on the Spectrum of the NRZ Synthesized Pulses 588
7.4.2.2 MATLAB® Code: GSNRZ_Total_ISI_Theorem 589

7.4.3 Variable-Width Raised-Cosine Pulse 590
7.4.3.1 Narrowband VWRC Pulse 593
7.4.3.2 Broadband VWRC Pulse 594
7.4.3.3 Simulation Results 594
7.4.3.4 MATLAB® Code: VWRC_Total_ISI 597
7.5 Statistical Theorems 598

7.5.1 Mean Value Theorem 601

7.5.2 Comments and Applications 603

7.5.2.1 SP-NRZ Pulse 603

7.5.2.2 GS-NRZ Pulse 603

7.5.2.3 BT-NRZ Pulse 604

7.5.2.4 Narrowband VWRC Pulse 604

7.5.2.5 MATLAB® Code: Total_ISI_Mean_Theorem 611

7.5.3 Variance Theorem 616

7.5.3.1 Solution for the Series \(S_1 \) 618

7.5.3.2 Series \(S_3 \) 668

References 670

8 DBRV Method for Calculation of the ISI Statistic 671

8.1 Introduction 671

8.2 Matrix Method for the Total ISI 672

8.2.1 Characteristic Function 674

8.2.2 Mean of the Intersymbol Interference 675

8.2.3 Variance of the Intersymbol Interference 675

8.2.4 Correction Term for Finite Binary Sequences 679

8.2.4.1 Calculation of the Mean 679

8.2.4.2 Calculation of the Variance 681

8.3 Simulations of ISI PDF 682

8.3.1 BT-NRZ Pulse 684

8.3.1.1 Low Cut-off Frequencies 684

8.3.1.2 High Cut-off Frequency 686

8.3.2 VWRC Pulse 688

8.3.2.1 Synchronized Pulse \(\Lambda = 1.0 \) 689

8.3.2.2 Lower Detuned Rate Parameter \(\Lambda = 0.95 \) 689

8.3.2.3 Higher Detuned Rate Parameter \(\Lambda = 1.05 \) 690

8.3.2.4 Low Rate Parameter \(\Lambda = 0.35 \) 692

8.3.3 SP-NRZ Pulse 694

8.3.4 MATLAB® Code: ISI_Histo_TOT 696

8.4 Concepts for the Gaussian Statistic 706

8.4.1 Central Limit Theorem 706

8.4.1.1 A Theorem on the Characteristic Function 707

8.4.1.2 Heuristic Approach to the Central Limit Theorem 709

8.4.1.3 Series of Independent and Uniform Random Variables 711

8.4.1.4 Normalized Sum of Independent Random Variables 713

8.4.2 Statistical Estimator of a Random Sequence 713

8.4.2.1 Mean and Variance 714

8.4.2.2 Characteristic Function 715

8.4.2.3 Probability Density Function 716

8.4.2.4 Summary 716

8.4.3 Gaussian Estimator of a Random Sequence 717

8.4.4 Repeated Trials 718

8.4.4.1 Characteristic Function 719

8.4.4.2 Probability Density Function 720

8.4.4.3 Summary 720

8.4.5 Examples and Simulations 721