Contents

Preface xi
Acknowledgements xiii

1 Fundamentals of Hydrodynamic Bearings 1
1.1 Reynolds Equation 3
 1.1.1 Boundary Conditions for Reynolds Equation 6
 1.1.2 Short Bearing Approximation 7
 1.1.3 Long Bearing Approximation 7
1.2 Short Bearing Theory 8
 1.2.1 Analytical Pressure Distribution 8
 1.2.2 Hydrodynamic Fluid Force 9
 1.2.3 Static Performance of Short Journal Bearings 11
1.3 Long Bearing Theory 13
 1.3.1 Analytical Pressure Distribution of Long Journal Bearings 13
 1.3.2 Hydrodynamic Fluid Force of Long Journal Bearings 17
 1.3.3 Static Performance of Long Journal Bearings 19
1.4 Finite Bearing Solution 26
References 28

2 Governing Equations for Dynamic Analysis 29
2.1 Equation of Motion 29
2.2 Decomposition of the Equations of Motion Based on Short Bearing Theory 31
 2.2.1 Laminar Flow Simplification 33
3 Conventional Methods on System Instability Analysis

3.1 Linearized Stiffness and Damping Method

3.1.1 Derivation of Linearized Bearing Stiffness and Damping Coefficients

3.1.2 Instability Threshold Speed Based on the Linearized Stiffness and Damping Coefficients

3.2 Nonlinear Method

3.2.1 Brief Description of Trial-and-Error Method

3.2.2 Illustration of the Trial-and-Error Method

3.2.3 Comparison Between Different Types of Fluid-Film Boundary Conditions

4 Introduction to Hopf Bifurcation Theory

4.1 Brief Description of Hopf Bifurcation Theory

4.2 Shape and Size and Stability of Periodic Solutions

4.3 Definition of Orbital-Asymptotically Stable with an Asymptotic Phase

5 Application of HBT to Fluid-Film Bearings

5.1 Application I: Prediction of Stability Envelope

5.1.1 Definition of Stability Envelope

5.1.2 Equations of Motion

5.1.3 Application of Hopf Bifurcation Theory to the Equations of Motion

5.1.4 Numerical Investigation of the Stability Envelope R_s

5.1.5 Illustrative Case Study

5.2 Application II: Explanation of Hysteresis Phenomenon Associated with Instability

5.2.1 Introduction

5.2.2 Definition of Hysteresis Phenomenon Associated with Instability

5.2.3 Experimental Investigation

5.2.4 Relationship between Hysteresis Phenomenon and Subcritical Bifurcation

5.2.5 Case Studies
6 Analysis of Thermohydrodynamic Instability

6.1 Inlet Temperature Effects

6.1.1 Theoretical Prediction

6.1.2 Experimental Studies

6.1.3 Explanation of Newkirk and Lewis’s Experimental Results

6.1.4 Design Guidelines for Improving System Stability Based on Oil Supply Temperature

6.2 Effects of Inlet Pressure and Inlet Position

6.2.1 Equations of Motion with Consideration of Inlet Pressure and Position Effects

6.2.2 Influence of Oil Inlet Pressure on the Instability Threshold Speed

6.2.3 Influence of Oil Inlet Position on the Instability Threshold Speed

6.2.4 Design Guidelines on Inlet Pressure and Inlet Position

6.3 Rotor Stiffness Effects

6.3.1 Equations of Motion of a Flexible Rotor

6.3.2 Effects of Rotor Flexibility

6.3.3 Comparison with the Results Based on Rigid-Rotor Model

6.3.4 Experimental Verification

6.3.5 Application Examples

6.3.6 Design Guidelines on Rotor Stiffness

6.4 Worn Bearing Bushing Effects

6.4.1 Wear Profile Model

6.4.2 Dynamic Pressure Distribution in Worn Journal Bearing

6.4.3 Hydrodynamic Fluid Force in Worn Journal Bearing

6.4.4 Example Showing the Worn Bearing Bushing Profile and Its Pressure Profile

6.4.5 Bearing Bushing Wear Effect on System Stability

6.5 Shaft Unbalance Effects

6.5.1 Equation of Motion with Shaft Unbalance

6.5.2 Decomposition of the Equations of Motion with Shaft Unbalance

6.5.3 Numerical Solution of the Equations of Motion

6.5.4 Example Showing Shaft Unbalance Effects on Journal Orbits

6.6 Turbulence Effects

6.6.1 Governing Equations for Turbulent Flow

6.6.2 Effects of Turbulence on the Dynamic Performance

6.6.3 Effects of Turbulence on the Shape and Size and Stability of the Periodic Solutions

6.7 Drag Force Effect

6.7.1 Dynamic Fluid Forces in Journal Bearings
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7.2 Equations of Motion</td>
<td>162</td>
</tr>
<tr>
<td>6.7.3 Effects of Drag Force on the Hopf Bifurcation Profile</td>
<td>163</td>
</tr>
<tr>
<td>References</td>
<td>165</td>
</tr>
<tr>
<td>Appendix A: Derivation of the Dynamic Pressure for Long Journal Bearing</td>
<td>169</td>
</tr>
<tr>
<td>Reference</td>
<td>171</td>
</tr>
<tr>
<td>Appendix B: Integrals Used in Section 1.3</td>
<td>173</td>
</tr>
<tr>
<td>References</td>
<td>174</td>
</tr>
<tr>
<td>Appendix C: Curve-fitting Functions for Long Journal Bearings</td>
<td>175</td>
</tr>
<tr>
<td>Reference</td>
<td>177</td>
</tr>
<tr>
<td>Appendix D: Jacobian Matrix of the Equations of Motion</td>
<td>179</td>
</tr>
<tr>
<td>Reference</td>
<td>181</td>
</tr>
<tr>
<td>Appendix E: Matlab Code to Evaluate Rotor Shaft Unbalance Effects</td>
<td>183</td>
</tr>
<tr>
<td>E1 Main Code</td>
<td>183</td>
</tr>
<tr>
<td>E2 Functions</td>
<td>189</td>
</tr>
<tr>
<td>E2.1 Function whirl_fullflexiblewithunbalance.m</td>
<td>189</td>
</tr>
<tr>
<td>E2.2 Function kshaft.m</td>
<td>190</td>
</tr>
<tr>
<td>Appendix F: Nomenclature</td>
<td>193</td>
</tr>
<tr>
<td>Index</td>
<td>197</td>
</tr>
</tbody>
</table>