Contents

Contributors ix
Preface xi

1 Fatty acids: structure, occurrence, nomenclature, biosynthesis and properties 1
Richard J. Hamilton

1.1 Introduction 1
1.2 Fatty acid nomenclature 2
1.2.1 Saturated acids 2
1.2.2 Monounsaturated acids 4
1.2.3 Diunsaturated acids 7
1.2.4 Triunsaturated acids 7
1.3 Occurrence 7
1.4 Fatty acid biosynthesis 12
1.4.1 Saturated fatty acids 12
1.4.2 Monoenoic fatty acids 12
1.4.3 Polyunsaturated fatty acids 14
1.5 Properties of trans fatty acids 15
1.5.1 Melting points 17
1.5.2 Ultraviolet spectra 18
1.5.3 Infrared spectra 20
1.5.4 Nuclear magnetic resonance spectroscopy 22
1.6 Labelling and legislation 23

2 Trans fatty acids intake: epidemiology and health implications 25
Geok Lin Khor and Norhaizan Mohd Esa

2.1 Introduction 25
2.2 Food sources of trans fatty acids 26
2.3 Trans fatty acids intake 30
2.4 Trans fatty acids in human milk 39
2.5 Trans fatty acids intake and health implications 40
2.5.1 Coronary heart disease 40
2.5.2 Diabetes 43
2.5.3 Cancer 44
2.6 Concluding remarks 45
3 Conjugated linoleic acid effects on body composition and clinical biomarkers of disease in animals and man: metabolic and cell mechanisms 54
Klaus W.J. Wahle, Marie Goua, Simona D’Urso and Steven D. Heys

3.1 General introduction: conjugated linoleic acids and health 54
3.2 Structure, dietary origins and consumption of CLAs in man 55
3.2.1 Structure 55
3.2.2 Origins of CLAs in the human diet 56
3.2.3 Dietary consumption of CLAs in man 59
3.3 CLAs in cancer prevention and treatment 59
3.3.1 Epidemiology of dietary fats and cancer risk 60
3.3.2 CLAs and breast cancer 60
3.3.3 CLAs and prostate cancer 62
3.3.4 CLAs in gastrointestinal cancer 64
3.3.5 CLAs and other cancers (hepatic, pancreatic and dermal) 66
3.4 Cellular mechanisms of CLAs’ anti-cancer effects 67
3.4.1 Inhibition of angiogenesis 72
3.4.2 Attenuation of cancer metastasis 73
3.4.3 Reduction of cancer cachexia 74
3.5 Effect of CLAs on body composition and energy metabolism in animals and men 75
3.5.1 Body composition in animals 75
3.5.2 Body composition in man 76
3.5.3 Possible mechanisms underlying reported changes in body composition 78
3.5.4 Efficacy of different CLA isomers in regulating body composition 78
3.6 Other reported health benefits of CLAs 79
3.6.1 Effects on insulin resistance and diabetes 80
3.6.2 Modulation of immune functions 81
3.6.3 Effects of CLAs on biomarkers of cardiovascular disease 87
3.7 Reported adverse health effects of CLAs in vivo and in vitro 90
3.8 Conclusions 91

4 Analysis of trans mono- and polyunsaturated fatty acids 102
Jean-Louis Sébédio and W.M. Nimal Ratnayake

4.1 Introduction 102
4.2 Isomeric fatty acids in the human diet 102
4.3 Gas chromatography and Fourier transform infrared spectroscopy 106
4.4 Direct GC analysis 106
4.4.1 Analysis of monounsaturated isomers 106
4.4.2 Isomers of linoleic and α-linolenic acids 111
4.4.3 Resolution of eicosenoic and α-linolenic acid isomers 113
4.4.4 Effect of the type of carrier gas and flow rate on cis and trans isomer resolution and fatty acid quantification 114
4.4.5 Conjugated fatty acids 116
4.5 Silver nitrate thin-layer and high-performance liquid chromatography separation of cis and trans isomers 123
Contents

4.5.1 Monounsaturated fatty acid isomers 123
4.5.2 Conjugated fatty acids 125
4.6 Utilisation of pre-fractionation steps prior to chromatographic analysis: the case of dairy fats 127
4.7 Conclusion 128

5 Controlling physical and chemical properties of fat blends through their triglyceride compositions 132
Albert J. Dijkstra
5.1 Introduction 132
5.2 Defining triglyceride compositions 133
5.3 Melting points and sfc 135
5.4 The effect of oil processing on triglyceride groups 136
5.4.1 Hydrogenation 136
5.4.2 Fractionation 138
5.4.3 Interesterification 139
5.4.4 Other oil treatments 141
5.5 Using triglyceride groups in product development 143

6 Trans isomer control in hydrogenation of edible oils 147
Annemarie Beers, Rob Ariaansz and Douglas Okonek
6.1 Introduction 147
6.1.1 Hydrogenation process 147
6.1.2 History of hydrogenation 147
6.1.3 Reasons for hydrogenation 147
6.2 Isomerisation 148
6.2.1 Geometric and positional isomerisation 148
6.2.2 Controlling isomerisation 149
6.3 Reaction mechanism 149
6.3.1 ‘Half-hydrogenated’ intermediate 149
6.3.2 Saturation, positional and geometric isomerisation 149
6.4 Industrial hydrogenation 150
6.4.1 Batch process 150
6.4.2 Reactor types and features 151
6.4.3 Reaction parameters 151
6.4.4 Influence of feedstock on trans 153
6.4.5 Influence of reaction conditions on trans 157
6.4.6 Influence of catalyst on trans 158
6.4.7 Influence of reactor design on trans 160
6.4.8 Trans isomer control 160
6.5 New developments in low trans hydrogenation 162
6.5.1 Alternative reaction conditions 162
6.5.2 Alternative hydrogenation processes 163
6.5.3 Hydrogenation additives 169
6.5.4 Alternate catalysts 169
6.6 Summary 175
Contents

7 Fractionation and interesterification 181
 Wim De Greyt and Albert J. Dijkstra
 7.1 Introduction 181
 7.2 Fractionation 182
 7.2.1 Historical 182
 7.2.2 Fat crystallisation theory 183
 7.2.3 Fat crystallisation practice 185
 7.2.4 Separation processes 185
 7.2.5 Fractionation products 187
 7.3 Interesterification 191
 7.3.1 Historical 191
 7.3.2 Interesterification mechanism 192
 7.3.3 Interesterification practice 196
 7.3.4 Interesterification products 198

8 Food applications of trans fatty acids 203
 John Podmore
 8.1 Introduction 203
 8.2 Margarine 205
 8.2.1 Table margarine 205
 8.2.2 Cake margarine 208
 8.2.3 Pastry margarine 209
 8.3 Biscuit fats 210
 8.3.1 Dough fats – short dough biscuits 210
 8.3.2 Dough fat – laminated biscuits 211
 8.3.3 Cream filling fat 211
 8.4 Fats for chocolate confectionery 211
 8.5 Fats for sugar confectionery 214
 8.6 Vanaspati 215
 8.7 Synthetic creams 216
 8.7.1 Whipped toppings 216
 8.7.2 Coffee whiteners 216
 8.8 Concluding remarks 217

9 Food products without trans fatty acids 219
 Pernille Gerstenberg Kirkeby
 9.1 Introduction 219
 9.2 Fat phase 219
 9.3 Margarine and related products 222
 9.4 Manufacturing process 225
 9.5 Optimal processing conditions 230
 9.6 Final remarks 233

Index 235

The colour plate section follows page 228