INDEX

Admittance inverters, 317–336
Aggressive space mapping (ASM), 319

Balanced coupled-resonator filters
design procedure, 74
dual-band loaded with common-mode rejection sections
CM rejection stages, 82, 85, 87
coupling coefficients, 84–86
design procedure, 84
external quality factor, 84–86
LC-loaded lines, 83, 85, 87
modified input/output lines, 85–86
second-order filter, 73–74, 85
loaded with common-mode rejection sections, artificial differential lines, 73–74, 81

Balanced diplexers
balanced-to-balanced diplexer, 505–508
balanced-to-unbalanced diplexer, 502–505
balun diplexers, 499–500
unbalanced-to-balanced diplexer, 500–501

Balanced filters and diplexers, 567
Balanced filters, S-CSRRs, 367, 369
design and modeling, 365–367
Balanced RF circuits, 567
Balanced-to-balanced power dividers/combiners
characteristic impedances, 575, 580, 583, 598
constraint rules, 571
Balanced-to-balanced power dividers/combiners (cont’d)
filtering with unequal power division, 585, 598, 599
Gysel power divider
with arbitrary power division, 585–589
with bandpass filtering response, 590–598
with half-mode SIW, 580–585
mixed-mode scattering matrix, 569–570
mixed-mode S-parameters, 575–577
odd-and even-mode scattering matrices, 572
simulated and measured results, 576–580
transmission-line power divider, 572–575
Wilkinson power divider with microstrip line, 569–572
Balanced-to-unbalanced diplexer, 502–505
Balanced transceiver with balanced filters, 177–178
Balanced transmission line, 3, 4
Balanced UWB filter by combining UWB BPF with UWB BSF, 135–142
Balanced vs. single-ended transmission lines and circuits, 4–5
Balanced vs. unbalanced systems, 3
Balanced wideband filter
using coupled line stubs, 142–148
using internal cross-coupling, 148–154
internal-coupling technique, 148
\(\lambda/4 \) internal cross-coupling section, 150
using modified coupled feed lines and coupled line stubs, 166–173
coupled line stubs, 163
coupling coefficient, 164
open-and short-circuited stub-loaded resonator, 165
short-circuited CLS, 163
using stub-loaded ring resonator, 155–160
T-shaped stubs, 161
Balun diplexers, 499–500, 502, 505
Branch-line balanced wideband bandpass filter, 98–104
Branch-line coupler, 287
Butterworth filter, 428, 437, 447
Capacitor–resistor loaded FSIR, 477–480
Center-loaded stepped-impedance resonator, 528–531
Center-loaded uniform impedance resonator, 516
even-mode operation, 517
even-mode resonant frequencies, 517, 518
odd-mode operation, 517
resistor-loaded uniform impedance resonator, 519
Characteristic impedance, 9
Chebyshev bandpass filter, 122
Common-mode choke, 6
Common-mode filter (CMF) design, 609, 612–613
Common and differential mode, 11–13
Common-mode characteristic impedance, 12
Common-mode filters (CMF), 6
Common-mode (CM) noise, 3, 5–6, 28, 426
Common-mode signal, 6
Common-mode radiation, 5
Common-mode rejection filters with coupled CSRRs or DS-CSRRs, 61–64
with coupled patches grounded through inductive strips, 64–65
Common-mode rejection ratio (CMRR), 23–24, 74, 353–354, 426
Common-mode suppression filters, 23, 25, 27, 58–61
based on metallic patches, 57
based on patterned ground planes
complementary split ring resonators, 30–40
C-shaped patterned ground structures, 44–49
defected ground plane artificial line, 40–44
dumbbell-shaped patterned ground plane, 27–30
based on quarter wavelength open stubs, 58
electromagnetic bandgaps, 24, 49–50
nonuniform coupled lines, 50–54
uniplanar compact photonic bandgap structure, 55–56
EMI emission, 24
patterned ground structures, 25
Common-mode suppression, in
dual-band balanced filters, 516
Common-mode voltage, 12
Complementary split ring resonators (CSRRs), 27, 35–40, 426
Composite port, 11
Composite right-/left-handed (CRLH), 356
Coplanar strips (CPS), 7
Coplanar waveguides (CPWs), 7, 30
Coupled feed lines (CFLs), 155
Coupled lines stub-loaded resonator (CLSLR), 164
Coupled line stubs (CLSs), 163
Coupled-resonator balanced filters
coupled line balanced bandpass filter circuit structure, 494
DM and CM operation, 495
type II balanced filter, 495–499
with intrinsic common-mode rejection balanced bandpass filters based on
dielectric resonators, 466–468
dual-mode and dual-behavior resonators, 452–464
electric coupling implementations, 427
interdigital line resonators (ILRs), 449–452
low-temperature co-fired ceramics (LTCC), 464–466
magnetic coupling
(see Magnetically coupled open-loop resonators)
SIR resonator filters
(see Stepped-impedance resonators (SIRs))
loaded resonators for common-mode suppression improvement filters with DGS, 484–490
folded SIR loaded filter
(see Folded SIR loaded filter)
multilayer loaded resonators, 490–494
open-loop UIR-loaded filter
(see Open-loop UIR-loaded filter)
Coupled-resonator circuit model, Gysel power divider with bandpass filtering response, 590–591
Coupled stepped-impedance resonators, dual-band balanced filters with, 540–542
configuration, 538
coupled line sections, 538, 539
equivalent half circuits, 538, 539
Coupled stub-loaded short-ended resonators, dual-band balanced filter with, 542–545
common-mode operation, 543
common-mode transmission zeros, 543–546
differential-mode operation, 543
Coupling coefficient, 76–78
CRLH transmission line, 356
Crosstalk, 4
C-shaped patterned ground structures, 44–49
DBRs. See Dual-behavior resonators (DBRs)
Defected ground plane artificial line, 41, 44, 45
Bloch–Floquet analysis, 43
lumped element equivalent circuit model, 40, 42
Defected ground structures (DGS), 249
common-mode filters (CMFs), 609, 612, 613
FSIRs balanced filter, 428–429, 447–448, 484–490
DGS. See Defected ground structures (DGS)
Dielectric resonators (DRs), 467
Differential-mode characteristic impedance, 12
Differential-mode current, 12
Differential-mode equalizer and common-mode filter
(DME–CMF), 628–633
coplanar waveguide (CPW), 614, 615
Differential-mode equalizer and common-mode filter (DME–CMF), (cont’d)

differential shunt stub (DSS) effect
common-mode noise suppression, 638–639
differential-mode equalization, 640–641
half-circuit models, 634–636
three-layer PCB, circuit layout in, 637, 638
equivalent circuit model, 613, 614
even-mode analysis, 623–628
odd-mode analysis, 616–624
Differential-mode excitation, 189–191
Differential-mode (DM) signal, 4, 73–74
Differential microstrip-to-slot line transition (MST), 255–264
differential wideband filters, resonant modes, 256–258
three-layer structure, 252–253
two-layer structure, 251–252
UWB differential notched-band filter, folded triple-mode slotline resonator, 272–277
Differential port, 7
Differential shunt stub (DSS) effect, DME–CMF, 633
common-mode noise suppression, 638–639
differential-mode equalization, 640–641
half-circuit models, 634–636
three-layer PCB, circuit layout in, 637, 638
Differential signal, 6
Differential transmission lines, 4, 25–27
propagating modes
common and differential mode, 11–13
even and odd modes, 8–11
topology, 6–8
Differential UWB filters with enhanced stopband suppression, 277–280
Differential voltage, 11
Differential wideband filters based on the conventional MST, 256
designed DM bandpass filter, 254–255
stepped-impedance slotline multimode resonator, 253
based on the differential MST, 255–264
resonant modes, 256–258
based on the strip-loaded slotline resonator
back-to-back microstrip resonators, 262
quadruple-mode slotline resonator, 267–268, 270–271
triple-mode slotline resonator, 265–269
Diplexers, 426. See also Balanced diplexers
Distributed microwave filters, 284
DME–CMF. See Differential-mode equalizer and common-mode filter (DME–CMF)
DM external quality factor, 76–77
Double-sided parallel-strip line (DSPSL), 457–458
Double-slit CSRRs (DS-CSRRs), 32
Dual-band balanced bandpass filters, 549
common-mode signal, 552
coupling and routing scheme, 552
DM signal, 553
equivalent 2-port circuit schematic topology, 552, 553
external quality factor, 554
high-order resonant modes in SIW cavity, 555
internal coupling coefficients, 554
coupling schematic topologies, of DM passbands, 557, 558
modified dual-band balanced bandpass filters, 560
Dual-band balanced filters common-mode suppression, 516
with coupled stepped-impedance resonators, 538–542
with coupled stub-loaded short-ended resonators, 542–546
with loaded stepped-impedance resonators
with capacitor and resistor loaded in series, 534
with center-loaded lumped elements, 531–535
center-loaded stepped-impedance resonator, 528–531
without loaded elements, simulated differential-and common-mode response, 532, 533
with loaded uniform impedance resonators
with center-loaded lumped elements, 520–526
center-loaded uniform impedance resonator, 516–519
using stub-loaded resonators stepped-impedance resonators, 535–538
uniform impedance resonators, 526–528
Dual-band balanced-to-balanced power dividers, 599–603
Dual-band bandpass filter loaded with common-mode rejection sections, 83, 84
CM rejection stages, 82, 85, 87
coupling coefficients, 85–86
differential passband, 82, 88
LC-loaded lines, 85
modified input/output lines, 85–86
second-order filter, 85
Dual-behavior resonators (DBRs), 458–463
dual-mode square patch resonator filters
double-sided parallel-strip line (DSPSL), 457–458
magnetic wall model, 453
second-order balanced BPF, 454–456
filters based on
basic structure of, 458, 460
CM frequency response, 462
CM suppression, 464
Dual-mode resonators (DMRs), 426, 451, 454, 457

EBGs. See Electromagnetic bandgaps (EBGs)
Edge-coupled line resonators, 426
Electric wall, 14
Electromagnetic bandgaps (EBGs), 24, 49–50
nonuniform coupled lines, 54
bandwidth enhancement, 53
coupling coefficient, 51
differential-and common-mode insertion and return loss, 51–52
weighting coefficient, 53
uniplanar compact photonic bandgap structure, 55–56

Electromagnetic interference (EMI), 4
Even and odd modes, 8–11
Even-mode characteristic impedance, 10
Eye diagram, 38, 608, 611, 624, 631–633

Folded SIR loaded filter, 476–483
Folded stepped-impedance resonators (FSIRs), 428–430. See also
Magnetically coupled open-loop resonators
classical electrically coupled FSIRs, 75
coupling coefficient, 77–78
external quality factor, 76, 77
folded stepped-impedance resonators, 75–76
inter-resonator coupling coefficient, 76
second-order balanced bandpass filter, 76
Fractional rejection bandwidth, 35–36
FSIRs. See Folded stepped-impedance resonators (FSIRs)

Gysel power divider
with arbitrary power division, 585–589
with bandpass filtering response
coupled-resonator circuit model, 590–591
external Q factor, 594–595
internal coupling coefficient, 592–594
stub loading technique, 595
with half-mode SIW
mixed-mode S-parameters, 583, 584
operating bandwidth, 585
single-ended circuit conversion, 580–581
SIW ring structure, 581–583

Half-mode SIW, Gysel power divider, 583–585
single-ended circuit conversion, 580–581
SIW ring structure, 581–583
Highly selective balanced wideband bandpass filters, 116
differential- and common-mode excitations, 127–128
differential- and common-mode transmission coefficients, 129–130
differential-mode frequency response, 126
coupled line stubs, 163
differential-mode and common-mode
equivalent circuits, 168, 170
open-and short-circuited stub-loaded
resonator, 165
short-circuited CLS, 163
Multilayer integrated passive device
(IPD) process, 61
Multilayer microstrip-to-slotline
transition (MST), 250–251
Multilayer resonators, 426
Multiple-mode resonator (MMR), 96
Multi-section mirrored SIR, 312–317
Mushroom-type CMFs, 612–613, 633, 638
Narrowband bandpass filters (BPFs)
ILRs (see Interdigital line resonators
(ILRs) filters)
standard-elliptic response
bi-and trisection, 434, 435
Butterworth filter, 428, 437, 447
DM coupling coefficients, 430, 431
DM external quality factor,
436, 437
external quality factor, 431, 432
FSIRs, 428–430
Nonuniform coupled lines,
EBGs, 50–54
bandwidth enhancement, 53
coupling coefficient, 51
weighting coefficient, 53
Odd-and even-mode scattering matrices,
balanced-to-balanced power
divider, 572
Odd-mode characteristic impedance, 9
Open complementary split ring resonators
(OCSRR), 353
Open-loop UIR-loaded filter,
common-mode response
for capacitor–resistor loading, 470–472
for inductance–resistor loading,
472–476
Open/shorted coupled lines, 215, 218, 221
3-dB bandwidth, 219
differential-mode passband
selectivity, 219
even-/odd-mode phase velocities, 219
matrices of the differential-mode/
common-mode circuit, 216
open/shorted coupled lines, 217
Open split ring resonators
(OSRR), 353
Optimum filter schematic, 319–325
Parallel-coupled lines, balanced-to-
balanced diplexer, 505–507
Parasitic feedback, 285
Passband ripple constant, 107
Passive equalizers, 609
design considerations, 610
equalization concept, 610
frequency-domain analysis, 612
topologies and properties, 610, 611
Patterned ground planes
complementary split ring resonators
common-mode rejection
bandwidth, 30
common-mode return loss and
insertion loss, 36–37
lumped element equivalent circuit
model, 33–34
measured element equivalent circuit
model, 38–40
multiple tuned resonators, 37
third-order common-mode
filter, 38–39
C-shaped patterned ground structures
circuit schematic, 45–46
common-mode circuit, 45–46
differential-mode circuit, 45–46
systematic synthesis method, 47
defected ground plane artificial
line, 41–44
Bloch–Floquet analysis, 43
lumped element equivalent circuit
model, 40, 42
dumbbell-shaped patterned ground
plane, 27–30
measured time-domain waveforms,
28, 30
series-connected parallel
resonators, 27
Patterned ground structures (PGSs), 25
Photonic bandgaps (PBGs), 24
Photonic crystals (PCs), 24
Point-to-point characteristic
impedance, 49
Power amplifiers (PA), 95
Power spectral density, of random digital signal, 607

Propagating modes
common and differential mode, 11–13
even and odd modes, 8–11

Quadruple-mode slotline resonator, 267–268, 270–271
Quadruple-mode strip-loaded slotline resonator, 403
equivalent circuit model, 404
geometrical structure, 403
physical layout and S-parameters, 402–407

Quarter-wavelength differential lines, 336
Quasi-Chebyshev filter response, 321
Quasi-elliptic/elliptic responses, 428
Quasi-TEM mode, 8

Reflection gain concept, 609
RL-or RC-type equalizer, 611

Scattering parameters
mixed-mode S-parameters, 16–19
single-ended S-parameters, 13–16
Selective mode suppression, 25–27
Short-circuited CLS, 163
Short-circuited CLSLR, 163
Signal integrity degradation, 5
Signal interference technique
filter example, on ring resonator, 287–288
fundamental theory, 284–287
signal flow graphs, 284
simplified circuit model, 288–290
transfer function, 285
for wideband differential filters
circuit model, bandpass filter, 290–292
S-matrix for, bandpass filter, 292–293
Signal-to-noise ratio (SNR), 4

Single-band balanced bandpass filter
classical electrically coupled FSIRs, 75
coupling coefficient, 76–77
external quality factor, 76–78
folded stepped-impedance resonators, 75–76
inter-resonator coupling coefficient, 76
second-order balanced bandpass filter, 76
Single-ended port, 6
Single-ended S-parameters, 13–16
Single-ended transmission line, 3, 4
SIW cavity. See Substrate integrated waveguide (SIW) cavity

Slotline, 7
Slotline multimode resonator, wideband balanced BPFs, 374, 388–392
differential-mode performance, 390
electric field distribution, 375–377
feeding schemes, 378
synthesis method, 378–382
working mechanism, 375–378

S-parameter for six-port differential network
mixed mode scattering matrix, 223
mixed-mode S-parameters, 226
phase balanced power dividing/combining network, 225
wideband balanced power dividing/combining networks, 223–224
wideband balun power divider, 227

Split ring resonators (SRRs), 27
Spurious emission interference, 283
Square patch resonators, 426
S-shaped complementary split ring resonators (S-CSRR), 354
S-shaped split ring resonator (S-SRR), 363–369

Stepped-impedance resonators (SIRs), 426
with capacitor and resistor loaded in series, 534
with center-loaded lumped elements balanced dual-band bandpass filter configuration, 531, 532
differential-mode feeding and coupling scheme, 531, 532
center-loaded stepped-impedance resonator, 528–531
coupled, 538–542
with coupled stub-loaded short-ended resonators, 542–546
multi-section mirrored, 312–317
quarter-wavelength transmission lines, 314
UWB differential bandpass filter, 297
UWB differential notched-band filter
based on the differential MST, 272,
274–276
folded triple-mode slotline
resonator, 277
guided wavelengths, 273
phase constant, 275
based on the traditional MST, 270,
272–274
Vector network analyzer (VNA), 103
Voltage-controlled oscillators (VCO), 95

Wideband and ultrawideband (UWB)
balanced bandpass filter, 106
balanced/differential devices, 94
balun, 95
block diagram of an RF receiver, 95
branch-line balanced wideband
bandpass filter, 97–105
characteristic admittances, 98
Chebyshev-type filter, 99
2-port common-mode bisection, 98
2-port differential-mode
bisection, 98
branch-line-like structure, 96
common-mode excitation, 94
common-mode suppression, 112–116
modified two-stage branch-line
structure, 116
quarter-wavelength open-end
stub, 116
signal interference technique, 112
wideband bandstop filter, 112
differential circuit topology, 94
distributed active filter theory, 97
externally coupled noise, 94
fabricated balanced UWB bandpass
filter, 109
highly selective balanced wideband
bandpass filters, 116–126
differential- and common-mode
excitations, 127–128
differential- and common-mode
transmission coefficients, 129–130
differential-mode operation, 121
four-port filter circuits, 128
optimized first-type balanced
wideband bandpass filter,
124–125
optimized second-type balanced
wideband bandpass filter, 125, 127
parasitic passbands, 123
high-pass filter with short-circuited
stubs, 96
multiple-mode resonator, 96
open/short T-shaped structure, 97
two-port common-mode bisection,
105–106
two-port differential-mode
bisection, 105
unbounded microstrip-line UWB
bandpass filter, 110
Wideband balanced bandpass filters,
with common-mode rejection,
373, 374, 382–392, 408–410
slotline multimode resonator
electric field distribution, 375–377
feeding schemes, 377, 378
initial DM circuit models, 378, 379
working mechanism, 375–378
on strip-loaded slotline resonator,
392–408
Wideband bandpass filter, 288, 289
Wideband differential bandpass filters,
220–223
based on DSPSL UWB 180° phase
inverter
common-mode analysis, 305–308
differential-mode analysis, 305
filter design and measurement, 308
based on π-type UWB 180° phase
shifters, 299–302
based on wideband Marchand baluns,
293–299
circuit model, UWB differential
filter, 295
full-wavelength ring resonators
characteristic impedance, 209
differential-mode circuit, 209
dual-mode resonator, 208
filter circuits, 206–208
matrices of common mode circuit, 213
maximum coupling coefficient, 211
structure parameters, 213, 215
half-wavelength ring resonators, 201–207
Marchand balun
- S-parameter for six-port differential network, 223–226
- wideband in-phase differential network, 227–235
- wideband out-of-phase differential network, 236–245
open/shorted coupled lines, 215–217
- 3-dB bandwidth, 219
- differential-mode passband selectivity, 219
- even-/odd-mode phase velocities, 219
- matrices of the differential-mode/common-mode circuit, 216
open/shorted coupled lines, 217
Wideband differential bandpass filters using T-shaped resonators
- with cross coupling, 193–201
mixed-mode S-parameters for four-port balanced circuits
- definition, 179
- differential-and common-mode impedances, 181
- general single-ended S-parameter matrix relation, 180
- individual S-parameter matrix elements, 181
- mixed-mode S-matrix, 181
standard input/output algebraic relations, 180
transformation matrix, 182–183
T-shaped structures
- with open stub, 185–187
- with shorted stubs, 184–186
- without cross coupling, 187–188
- common-mode excitation, 191–195
differential-mode excitation, 189–191
Wideband in-phase differential network
- 234–235, 242–243
- bandwidth, 230, 232
- characteristic impedance, 228
- common-mode circuit, 227–228
differential-mode and common-mode conversion, 235
differential-mode circuit, 227–228
odd-mode capacitance, 232
optimization procedure, 232
quarter-wavelength transmission line, 227
simulated and measured phase differences, 240, 244
susceptance slope parameter, 230
Wideband out-of-phase differential network
- bandwidth, 237, 240
differential-mode circuit, 236
Gysel power dividers, 240
out-of-phase power division, 237
Wilkinson power divider with microstrip line
constraint rules, 571
mixed-mode scattering matrix, 569–570
odd-and even-mode scattering matrices, 572