Contents

Preface xxix
List of Contributors xxxi

Section 1 Introduction 1

1 **Molecular and Biochemical Toxicology: Definition and Scope** 3
 Ernest Hodgson and Robert C. Smart
1.1 Introduction 3
1.2 Sources of Information 5
1.3 Toxicology 5
1.4 Molecular and Cellular Toxicology 6
1.5 Proteomics and Metabolomics 8
1.6 Role of Molecular, Cellular, and Biochemical Toxicology: Implications for Risk Assessment 8
1.7 Conclusions 9

Suggested Reading 9

Section 2 Techniques in Biochemical and Molecular Toxicology 11

2 **Molecular Techniques for the Study of Gene Function** 13
 Yoshiaki Tsuji and Robert C. Smart
2.1 Applicability of Molecular Techniques to Toxicology 13
2.2 Overview of Genes, Chromatin, and Their Relationship 15
2.2.1 The Genetic Code and Flow of Genetic Information 15
2.2.2 Chromatin and Gene Regulation 18
2.3 Approaches to Characterize the Functions of Genes 20
2.3.1 Molecular Cloning and Plasmid Vectors 20
2.3.2 Construction of cDNA and Genomic Libraries 23
2.3.3 Eukaryotic Expression Systems 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3.1</td>
<td>Gene Delivery into Mammalian Cells: Plasmid Vectors</td>
<td>26</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Inducible Expression Vector: The TET-Inducible System</td>
<td>28</td>
</tr>
<tr>
<td>2.3.3.3</td>
<td>Gene Delivery into Mammalian Cells: Viral Vectors</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Gene Targeting Technologies</td>
<td>31</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Gene Silencing by Knockdown with Small Interfering RNA (siRNA)</td>
<td>31</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Protein-Guided Gene Targeting: ZFN and TALEN</td>
<td>33</td>
</tr>
<tr>
<td>2.4.3</td>
<td>RNA-Guided Gene Targeting: The CRISPR/CAS System</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>Analysis of Gene Expression and Regulatory Mechanisms</td>
<td>35</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Southern and Northern Blot Analyses</td>
<td>35</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Western Blot Analysis</td>
<td>37</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Polymerase Chain Reaction (PCR)</td>
<td>37</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Reverse Transcription PCR (RT-PCR) and Real-Time PCR</td>
<td>39</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Promoter Deletion Analysis/Reporter Gene Assays</td>
<td>40</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Electrophoretic Mobility Shift Assay (EMSA) and Pulldown with Biotinylated Probe and Streptavidin Beads</td>
<td>41</td>
</tr>
<tr>
<td>2.5.7</td>
<td>Chromatin Immunoprecipitation (ChIP) and RNA Immunoprecipitation (RIP)</td>
<td>42</td>
</tr>
<tr>
<td>2.5.8</td>
<td>Microarrays and RNA Sequencing</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>Methods to Evaluate Gene Function in an Animal Model</td>
<td>45</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Procedure for Making Transgenic Mice Using Zygote Injection</td>
<td>45</td>
</tr>
<tr>
<td>2.6.2</td>
<td>General Procedure for Making Knockout Mice Using Embryonic Stem Cells</td>
<td>47</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Making Conditional Knockout Mice Using the Cre/loxP Recombinant System</td>
<td>49</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Making Knockout Mice Using the CRISPR/CAS9 System</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>Transcriptomics</td>
<td>55</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td>3.1.1</td>
<td>The Transcriptome</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Cellular Organization and the Transcriptome</td>
<td>58</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Transcription</td>
<td>58</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Genes and Transcripts: Traits and Functions</td>
<td>60</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Annotation of the Transcriptome</td>
<td>62</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Annotation</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>RNA Isolation</td>
<td>62</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Sample Collection for Transcriptome Analysis</td>
<td>62</td>
</tr>
<tr>
<td>3.3.2</td>
<td>RNA Isolation Methods</td>
<td>63</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Quantitative and Qualitative RNA Measures</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Platforms for Transcriptome Analysis: Microarrays</td>
<td>64</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Microarray Platforms</td>
<td>64</td>
</tr>
<tr>
<td>3.4.2</td>
<td>How Is Microarray Analysis Performed?</td>
<td>65</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Data Normalization</td>
<td>68</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Differential Expression and Data Analysis</td>
<td>69</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Genomes, Transcriptomes, and Microarrays</td>
<td>69</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Application of Microarrays to Toxicogenomics</td>
<td>71</td>
</tr>
<tr>
<td>3.5</td>
<td>RNA-seq: NextGen Sequencing of the Transcriptome</td>
<td>72</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Introduction</td>
<td>72</td>
</tr>
<tr>
<td>3.5.2</td>
<td>DNA Sequencing</td>
<td>72</td>
</tr>
<tr>
<td>3.5.3</td>
<td>RNA-seq</td>
<td>73</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Advantages and Disadvantages of RNA-seq</td>
<td>75</td>
</tr>
<tr>
<td>3.5.5</td>
<td>RNA-seq Analysis</td>
<td>76</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Choosing RNA-seq or Microarray</td>
<td>78</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Application of RNA-seq to Chemical Toxicity</td>
<td>79</td>
</tr>
<tr>
<td>3.6</td>
<td>Validation of Transcriptome Analysis</td>
<td>81</td>
</tr>
<tr>
<td>3.7</td>
<td>Analysis of Gene Expression Data</td>
<td>82</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Introduction</td>
<td>82</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Hierarchical Clustering</td>
<td>82</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Principal Component Analysis (PCA)</td>
<td>85</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Biological Functional Analysis</td>
<td>85</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Pathway Analysis</td>
<td>86</td>
</tr>
<tr>
<td>3.8</td>
<td>Summary</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>87</td>
</tr>
</tbody>
</table>

4 Proteomics 91

Michael S. Bereman

<table>
<thead>
<tr>
<th>4.1</th>
<th>Introduction to Proteomics</th>
<th>91</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Mass Spectrometry</td>
<td>94</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Fundamentals of Mass Measurement</td>
<td>94</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Sample Preparation in Bottom-Up Proteomics</td>
<td>98</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Liquid Chromatography: An Essential Tool</td>
<td>99</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Ionization Methods</td>
<td>100</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Tandem Mass Spectrometry</td>
<td>102</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Bioinformatic Pipeline</td>
<td>106</td>
</tr>
<tr>
<td>4.3</td>
<td>Quantitation of Proteins by LC-MS/MS</td>
<td>107</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Label-Free Quantitation</td>
<td>107</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Metabolic Labeling</td>
<td>108</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Isobaric Tags</td>
<td>109</td>
</tr>
<tr>
<td>4.4</td>
<td>Emerging Research Areas in Proteomics</td>
<td>109</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Posttranslational Modifications</td>
<td>109</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Interactomics</td>
<td>111</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Toxicoproteomics</td>
<td>111</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Suggested Reading</td>
<td>112</td>
</tr>
</tbody>
</table>
5 Metabolomics 115
Susan C. J. Sumner, Wimal Pathmasiri, James E. Carlson,
Susan L. McRitchie, and Timothy R. Fennell
5.1 Introduction 115
5.2 Endogenous and Exogenous Metabolites 116
5.2.1 Endogenous Metabolites 116
5.2.2 Exogenous Metabolites 116
5.2.3 Exposome 117
5.3 Study Design and Experimental Considerations 117
5.3.1 Study Design Considerations 117
5.3.2 Sample Collection, Storage, and Processing Considerations 119
5.4 Applications of Metabolomics 120
5.4.1 Behavior and Diagnosis 120
5.4.2 Drug Exposure and Adverse Outcomes 121
5.4.3 Chemical Exposure 121
5.4.4 Linking In Utero Exposure to Birth and Health Outcomes 122
5.5 Technologies for Targeted and Broad-Spectrum Metabolomics 122
5.5.1 Nuclear Magnetic Resonance (NMR) Spectroscopy for Targeted and Broad-Spectrum Metabolomics 123
5.5.2 Mass Spectrometry for Targeted and Broad-Spectrum Metabolomics 124
5.5.2.1 Targeted Mass Spectrometry Metabolomics 124
5.5.2.2 Stable Isotope Resolved Metabolomics (SIRM) and Metabolic Flux Analysis 125
5.5.2.3 Broad-Spectrum Mass Spectrometry Metabolomics 125
5.5.2.4 Coulometric Methods for Neurotransmitter Detection 126
5.6 Statistical and Multivariate Analysis and Pathway Mapping 127
5.6.1 Standard Statistical Approaches 127
5.6.2 Multivariate Analysis 127
5.6.3 Quality Control 128
5.6.4 Mapping Metabolites to Biochemical Pathways 129
5.6.5 Modeling Approaches 129
5.7 Summary 130
Acknowledgment 130
References 131
6 Cellular Techniques 135
Sharon A. Meyer and Barbara A. Wetmore
6.1 Introduction 135
6.2 Cellular Studies in Intact Tissue 137
6.2.1 Whole Animal Studies 137
6.2.2 Tissue Slices 138
6.3 Studies with Dispersed, Isolated Cells 138
6.3.1 Tissue Digestion and Cell Separation 138
6.3.2 Limited Maintenance in Defined Media 141
6.3.3 Long-Term Suspension Culture 141
6.4 Monolayer Cell Culture 142
6.4.1 Propagation of Primary and Passaged Cultures 142
6.4.2 Immortalized Cells 143
6.4.2.1 Cell Line Contamination 144
6.4.3 Modifications to Monolayer Cell Culture 146
6.4.3.1 Reconstructed/Bioengineered Tissue 146
6.4.4 Stem Cell Cultures 147
6.5 Observation of Cultured Cells 148
6.6 Indicators of Toxicity 149
6.6.1 Intact Tissue 149
6.6.2 Cell Culture 149
6.6.3 High-Throughput Cellular Systems 151
6.7 Important Considerations and Advances 152
6.7.1 Considerations in In Vitro Cytotoxicity Assessments 152
6.7.2 Experimental Confounders to Interpretation of In Vitro Data 153
6.7.3 Relating In Vitro Effects to In Vivo Exposures 154
6.8 Replacement of Animal Testing with Cell Culture Models 155
6.9 Conclusion 157

Suggested Reading 157

Journals 158

7 Basic Concepts of Molecular Epidemiological Research Methods 159
Cathrine Hoyo, David A. Skaar, and Randy L. Jirtle
7.1 Introduction 159
7.2 Molecular Epidemiology 160
7.2.1 Definition 160
7.2.2 Criteria for Biomarker Identification and Validation 162
7.2.3 Biomarker Development and Validation 162
7.2.3.1 Biomarker Development 162
7.2.3.2 Validity 162
7.2.3.3 Reliability 163
7.2.3.4 An Example 163
7.3 Descriptive Epidemiologic Study Designs 164
7.3.1 Descriptive Epidemiology Is Used to Identify Patterns of Disease and Exposure 164
7.3.2 Disease and Death Occurrence Measurement 165
7.3.3 Example of Descriptive Study 166
7.4 Analytic Epidemiologic Studies 167
7.4.1 Observational Studies 167
7.4.1.1 Cross-Sectional Studies 167
7.4.1.2 Case–Control Studies 169
7.4.1.3 Cohort Studies 171
7.5 Experimental Studies 173
7.5.1 Analytic Approach 173
7.5.2 Experimental Study Example 173
7.6 Inferring Causality from Molecular Epidemiologic Data 174
7.6.1 Evidence of Statistical Associations and Apparent Dose–Response 175
7.6.1.1 Statistical Association 175
7.6.1.2 Random Error in Estimating the Magnitude of Associations 175
7.6.1.3 Dose–Response 176
7.6.1.4 Interaction or Effect Modification 176
7.6.1.5 Mediation 177
7.6.1.6 Confounding 177
7.6.1.7 Information Bias 179
7.6.1.8 Selection Bias 179
7.6.1.9 Statistical Power 180
7.6.2 Temporal Sequence 180
7.6.2.1 An Example 181
7.6.3 Replicable Associations 181
7.6.3.1 An Example 181
7.6.4 Biological Plausibility of Associations Observed 181
7.6.4.1 An Example 182
7.7 Summary 182
References 183
Suggested Reading 184
Reading Materials Related to Examples 184

Section 3 Mechanisms in Molecular and Biochemical Toxicology 187

8 Phase I and Phase II Metabolism and Metabolic Interactions: A Summary 189
Ernest Hodgson
8.1 Introduction 189
8.2 Metabolic Enzymes 189
8.3 Phase I Reactions 191
8.3.1 Monooxygenases 191
8.3.2 Non-Microsomal Oxidations 194
8.3.3 Cooxidation by Cyclooxygenase 195
8.3.4 Reduction Reactions 195
8.3.5 Hydrolysis 195
8.4 Phase II Reactions 196
8.4.1 Glucuronide Conjugation 197
8.4.2 Sulfate Conjugation 197
8.4.3 Methyltransferases 197
8.4.4 Glutathione S-Transferases (GSTs) and Mercapturic Acid Formation 197
8.4.5 Acylation Reactions 198
8.4.6 Amino Acid Conjugation 198
8.5 Reactive Metabolites 199
8.6 Factors Affecting Metabolism 200
8.6.1 Introduction 200
8.6.2 Gender, Genetics, and Polymorphisms 200
8.6.3 Inhibition and Induction 201
8.6.3.1 Introduction 201
8.6.3.2 Inhibition 201
8.6.3.3 Induction 203
8.7 Synergy and Potentiation 204
8.8 Biphasic Effects 204
8.9 Environmental Effects 204
8.10 Human Variation in Toxicant Metabolism 204
8.11 Summary of Toxicant Metabolism 205

Suggested Reading 206

9 Structure, Mechanism, and Regulation of Cytochromes P450 209
John M. Seubert, Matthew L. Edin, and Darryl C. Zeldin
9.1 Introduction 209
9.2 Complexity of the Cytochrome 450 Gene Superfamily 210
9.2.1 CYP Gene Families and Subfamilies 210
9.2.2 Pseudogenes and Alternate Splice Variants 211
9.3 Cytochrome P450 Structure 214
9.4 Mechanisms of P450 Catalysis 217
9.4.1 Catalytic Cycle 217
9.4.2 Catalytic Requirements 219
9.4.3 Substrate Specificity and Overlap 219
9.4.4 Endogenous Substrates 220
9.5 Cytochrome P450 Regulation 225
9.5.1 Tissue Distribution 225
9.5.2 Constitutive and Inducible P450 Enzymes 225
9.5.3 Aromatic Hydrocarbon Receptor Induction of P450s 227
9.5.4 Phenobarbital Induction of P450s 229
9.5.5 Induction of P450s by Peroxisome Proliferators 230
9.5.6 Hormonal Regulation of P450s 230
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5.7</td>
<td>233</td>
</tr>
<tr>
<td>Nutritional Regulation of P450s</td>
<td>233</td>
</tr>
<tr>
<td>9.5.8</td>
<td>234</td>
</tr>
<tr>
<td>Regulation of P450s by Cytokines</td>
<td>234</td>
</tr>
<tr>
<td>9.5.9</td>
<td>234</td>
</tr>
<tr>
<td>Regulation of P450s by Nitric Oxide</td>
<td>234</td>
</tr>
<tr>
<td>9.6</td>
<td>235</td>
</tr>
<tr>
<td>Transgenic Animal Models</td>
<td>235</td>
</tr>
<tr>
<td>9.7</td>
<td>235</td>
</tr>
<tr>
<td>Reactive Oxygen Species</td>
<td>235</td>
</tr>
<tr>
<td>9.8</td>
<td>236</td>
</tr>
<tr>
<td>Posttranslational Modification of P450s</td>
<td>236</td>
</tr>
<tr>
<td>9.9</td>
<td>237</td>
</tr>
<tr>
<td>Summary</td>
<td>237</td>
</tr>
<tr>
<td>Suggested Reading</td>
<td>238</td>
</tr>
</tbody>
</table>

10 Polymorphisms in Phase I and Phase II Genes and Outcomes 239

Yoshiaki Tsuji, Edward L. Croom, and Ernest Hodgson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>239</td>
</tr>
<tr>
<td>Introduction</td>
<td>239</td>
</tr>
<tr>
<td>10.2</td>
<td>240</td>
</tr>
<tr>
<td>Toxicogenetics and Single Nucleotide Polymorphisms (SNPs)</td>
<td>240</td>
</tr>
<tr>
<td>10.3</td>
<td>242</td>
</tr>
<tr>
<td>Polymorphic Cytochrome P450 and Xenobiotics Metabolism</td>
<td>242</td>
</tr>
<tr>
<td>10.3.1</td>
<td>244</td>
</tr>
<tr>
<td>CYP2A6</td>
<td>244</td>
</tr>
<tr>
<td>10.3.2</td>
<td>245</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>245</td>
</tr>
<tr>
<td>10.3.3</td>
<td>245</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>245</td>
</tr>
<tr>
<td>10.3.4</td>
<td>245</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>245</td>
</tr>
<tr>
<td>10.3.5</td>
<td>246</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>246</td>
</tr>
<tr>
<td>10.3.6</td>
<td>247</td>
</tr>
<tr>
<td>Other CYP Polymorphisms and Outcomes</td>
<td>247</td>
</tr>
<tr>
<td>10.4</td>
<td>248</td>
</tr>
<tr>
<td>Other Polymorphic Phase I Genes and Xenobiotics Metabolism</td>
<td>248</td>
</tr>
<tr>
<td>10.4.1</td>
<td>248</td>
</tr>
<tr>
<td>Alcohol Dehydrogenase</td>
<td>248</td>
</tr>
<tr>
<td>10.4.2</td>
<td>249</td>
</tr>
<tr>
<td>Aldehyde Dehydrogenase</td>
<td>249</td>
</tr>
<tr>
<td>10.4.3</td>
<td>249</td>
</tr>
<tr>
<td>Flavin-Containing Monooxygenases</td>
<td>249</td>
</tr>
<tr>
<td>10.4.4</td>
<td>250</td>
</tr>
<tr>
<td>Epoxide Hydrolase</td>
<td>250</td>
</tr>
<tr>
<td>10.4.5</td>
<td>250</td>
</tr>
<tr>
<td>Serum Cholinesterase</td>
<td>250</td>
</tr>
<tr>
<td>10.4.6</td>
<td>251</td>
</tr>
<tr>
<td>Paraoxonase</td>
<td>251</td>
</tr>
<tr>
<td>10.5</td>
<td>251</td>
</tr>
<tr>
<td>Polymorphisms: Mechanistic Classification</td>
<td>251</td>
</tr>
<tr>
<td>10.6</td>
<td>252</td>
</tr>
<tr>
<td>Methods for the Study of Polymorphisms</td>
<td>252</td>
</tr>
<tr>
<td>10.7</td>
<td>253</td>
</tr>
<tr>
<td>Phase II Gene Polymorphisms and Xenobiotics Metabolism</td>
<td>253</td>
</tr>
<tr>
<td>10.7.1</td>
<td>253</td>
</tr>
<tr>
<td>UDP-Glucuronosyl Transferases (UGTs)</td>
<td>253</td>
</tr>
<tr>
<td>10.7.2</td>
<td>256</td>
</tr>
<tr>
<td>Glutathione Synthesis and Glutathione S-Transferases</td>
<td>256</td>
</tr>
<tr>
<td>10.7.3</td>
<td>262</td>
</tr>
<tr>
<td>N-Acetyltransferases</td>
<td>262</td>
</tr>
<tr>
<td>10.7.4</td>
<td>264</td>
</tr>
<tr>
<td>Sulfotransferases</td>
<td>264</td>
</tr>
<tr>
<td>10.8</td>
<td>267</td>
</tr>
<tr>
<td>Regulation of Phase II Genes Via Antioxidant Responsive Element</td>
<td>267</td>
</tr>
<tr>
<td>Suggested Reading</td>
<td>271</td>
</tr>
</tbody>
</table>

11 Cellular Transport and Elimination 273

David S. Miller and Ronald E. Cannon

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>273</td>
</tr>
<tr>
<td>Transport as a Determinant of Xenobiotic Action</td>
<td>273</td>
</tr>
</tbody>
</table>
11.2 Factors Affecting Membrane/Tissue Permeability 274
11.2.1 Cellular Level Transport 275
11.2.2 Tissue Level Transport 277
11.3 Xenobiotic Transporters 279
11.3.1 Transporter Families 279
11.3.1.1 ABC Transporters 280
11.3.1.2 Organic Anion Transporters (OATs; SLC22A) 283
11.3.1.3 Organic Cation Transporters (OCTs; SLC22A) 283
11.3.1.4 Organic Anion Transporters (OATPs) 284
11.3.1.5 Nucleoside and Nucleotide Transporters (SLC28 and SLC29) 284
11.3.1.6 Peptide Transporters (SLC15) 284
11.3.2 Determining the Molecular Basis for Transport in Cells and Tissues 285
11.4 Altered Xenobiotic Transport 285
11.4.1 Competition for Transport 285
11.4.2 Specific Regulation 287
11.4.2.1 Transporter Expression 287
11.4.2.2 Transporter Function 288
11.4.3 Genetic Heterogeneity 290
Suggested Reading 290

12 Nuclear Receptors 293
Seth W. Kullman, William S. Baldwin, and Gerald A. LeBlanc
12.1 Introduction 293
12.2 NR Structure Function 294
12.3 Nomenclature 296
12.4 NR Transactivation 297
12.4.1 DNA Binding 297
12.4.2 RXR Heterodimerization 303
12.4.3 Coregulators 304
12.5 NRS in Toxicology 306
12.5.1 Endocrine Disruption 306
12.5.2 Estrogen Receptor (ER) 307
12.5.3 Retinoid X Receptor (RXR) 311
12.5.4 Thyroid Hormone Disruption (TR) 313
12.5.5 Peroxisome Proliferator-Activated Receptors (PPARs) 316
12.6 Endobiotic and Xenobiotic Metabolism 319
12.6.1 Pregnane X Receptor/Constitutive Androstane Receptor (PXR, CAR) 319
12.6.2 FXR/LXR Bile Acid and Cholesterol Homeostasis 321
12.7 Defining New NR Targets for Toxicity: Toxcast and Tox21 323
13 Mechanisms of Cell Death 327

Mac Law and Susan Elmore

13.1 Introduction 327

13.2 How Cells/Tissues React to “Stress” 328

13.2.1 Levels of Adaptation: Physiology Versus Pathology 328

13.2.2 Hypertrophy 328

13.2.3 Hyperplasia 329

13.2.4 Atrophy 329

13.2.5 Metaplasia 329

13.2.6 Dysplasia 330

13.3 Cell Injury and Cell Death 330

13.3.1 Causes of Cell Injury and Cell Death 331

13.3.1.1 Hypoxia 331

13.3.1.2 Physical Agents 332

13.3.1.3 Chemicals 332

13.3.1.4 Microbial Agents 332

13.3.1.5 Other Causes 332

13.3.2 Pathogenesis of Reversible Versus Irreversible Cell Injury 333

13.3.2.1 Irreversible Injury 333

13.3.2.2 Leakage Enzymes Correlate with Cell Injury 336

13.3.3 Mechanisms of Irreversibility in Cell Injury 337

13.4 Morphology of Cell Injury and Cell Death 339

13.4.1 Cell Swelling (Hydropic Degeneration) 339

13.4.2 Types of Necrosis 339

13.4.2.1 Coagulative Necrosis 339

13.4.2.2 Caseous Necrosis 340

13.4.2.3 Fat Necrosis 341

13.4.2.4 Liquefactive Necrosis 341

13.4.3 Microscopic Appearance of Necrosis 341

13.5 Apoptosis, Morphology, and Mechanisms 342

13.5.1 Morphology of Apoptosis 343

13.5.2 Mechanisms of Apoptosis 347

13.5.2.1 Biochemical Features 348

13.5.2.2 Extrinsic Pathway 349

13.5.2.3 Perforin/Granzyme Pathway 349

13.5.2.4 Intrinsic Pathway 351

13.5.2.5 Execution Pathway 353

13.5.3 Physiologic Apoptosis 356

13.5.4 Pathologic Apoptosis 356

13.5.5 Inhibition of Apoptosis 358
13.5.6 Assays for Apoptosis 359
13.5.6.1 Cytomorphological Alterations 360
13.5.6.2 DNA Fragmentation 361
13.5.6.3 Detection of Caspases, Cleaved Substrates, Regulators, and Inhibitors 362
13.5.6.4 Membrane Alterations 363
13.5.6.5 Detection of Apoptosis in Whole Mounts 363
13.5.6.6 Mitochondrial Assays 364
13.6 Other Cell Death Modalities 364
13.6.1 Autophagy 365
13.6.2 Necroptosis 366
13.6.3 Pyroptosis 366
13.6.4 Eryptosis 367
13.6.5 Anoikis 368
Acknowledgments 369
Reference 369
Suggested Reading 369

14 Mitochondrial Dysfunction 371
Jun Ninomiya-Tsuji
14.1 Introduction 371
14.2 Mitochondrial Function 372
14.2.1 Structure: Outer and Inner Membranes 372
14.2.2 Generating High-Energy Electrons (TCA Cycle, Fatty Acid Oxidation, FADH₂, and NADH) 373
14.2.3 Respiratory Chain (Complexes I, II, III, and IV and Ubiquinone, Cytochrome c, Proton Pump, Membrane Potential, Proton Motive Force) 374
14.2.3.1 Step 1: Complex I 375
14.2.3.2 Step 1’: Complex II 375
14.2.3.3 Step 2: Complex III 376
14.2.3.4 Step 3: Complex IV 376
14.2.3.5 Step 4: ATP Synthase 376
14.2.4 Mitochondrial Membrane Pore Complex (VDAC, ANT) 377
14.2.5 Dynamic Organelle: Mitochondria (Fusion and Fission) 378
14.3 Mitochondrial Apoptosis/Necrosis 378
14.3.1 Mitochondrial Membrane Permeabilization 378
14.3.2 Caspase Activation: Effector and Initiator Caspases 379
14.3.3 Mitochondria Are “Pandora’s Box” 380
14.3.4 Interplay of Bcl2 Family (BH3-only, Bcl2, Bax/Bak) 382
14.3.5 Inner-Membrane Permeabilization 385
14.3.6 Cross Talk Between Bax/Bak and Inner-Membrane Permeabilization 386
14.4 Toxicant-Induced Mitochondrial Apoptosis/Necrosis 387
14.4.1 Electron Transport Inhibitors 387
14.4.2 Energy Transfer Inhibitors 388
14.4.3 Uncouplers 388
References 389

15 Reactive Metabolites, Reactive Oxygen Species (ROS), and Toxicity 391
Elizabeth L. MacKenzie and Yoshiaki Tsuji
15.1 Introduction 391
15.2 Enzymes Involved in Bioactivation 394
15.2.1 Phase I Oxidations 394
15.2.1.1 Cytochrome P450 394
15.2.1.2 Flavin-Containing Monoxygenase 397
15.2.1.3 Prostaglandin Synthetase 397
15.2.2 Phase II Conjugations 400
15.2.3 Intestinal Microflora 402
15.3 Stability of Reactive Metabolites 403
15.4 Factors Affecting Metabolic Balance and Toxicity 405
15.4.1 Saturation of Detoxication Pathways 405
15.4.2 Enzyme Induction 405
15.4.3 Genetic and Physiological Factors 406
15.4.4 Metabolic Interactions 407
15.4.5 DNA Adduct Formation 407
15.4.6 Redox Cycling 408
15.5 Reactive Oxygen Species (ROS) and Toxicity 409
15.5.1 Generation and Detoxication of ROS 409
15.5.2 Measurement of ROS 412
15.5.3 Oxidative DNA Damage 413
15.5.4 Protein Oxidation 415
15.5.5 Lipid Peroxidation 417
15.5.6 ROS and Human Diseases 418
Suggested Reading 419

16 DNA Damage and Mutagenesis 421
Zhigang Wang
16.1 Introduction 421
16.2 Endogenous DNA Damage 422
16.2.1 DNA Base Mismatches 422
16.2.2 Base Deamination 423
16.2.3 AP Site 424
16.2.4 Oxidative DNA Damage 426
16.2.5 DNA Adducts Formed from Lipid Peroxidation Products 429
16.2.6 DNA Methylation 432
16.2.7 Incorporation of Inappropriate and Damaged dNTP into DNA during Replication 432
16.2.7.1 Incorporation of Uracil into DNA 432
16.2.7.2 Genomic DNA of the Bacillus subtilis Phage PBS2 Naturally Contains Uracil instead of Thymine 433
16.2.7.3 Incorporation of 8-Oxoguanine into DNA 434
16.3 Environmental DNA Damage 435
16.3.1 DNA Damage by Ionizing Radiation 435
16.3.1.1 Base Damage and Single-Strand Breaks 436
16.3.1.2 Multiply Damaged Sites and Double-Strand Breaks 437
16.3.2 DNA Damage by UV Radiation 438
16.3.2.1 The Major UV Lesions: Cyclobutane Pyrimidine Dimers and (6-4) Photoproducts 438
16.3.2.2 Minor DNA Lesions of UV Radiation 441
16.3.3 DNA Damage by Chemicals 441
16.3.3.1 DNA-Damaging Chemicals Without Metabolic Activation 442
16.3.3.2 DNA-Damaging Chemicals That Require Metabolic Activation 445
16.3.4 Nanoparticles and DNA Damage 451
16.4 Concepts of Mutagenesis 453
16.4.1 Definition of Terms 453
16.4.1.1 General Terms 453
16.4.1.2 Terms Based on Phenotypic Consequences 453
16.4.1.3 Terms Based on DNA Sequence Changes 454
16.4.2 Origin of Mutagenesis 455
16.4.3 Biological Significance of Mutagenesis 455
16.5 Mechanisms of DNA Damage-Induced Mutagenesis 456
16.5.1 Chromosomal Aberrations 456
16.5.2 Mutagenesis Induced by DNA Double-Strand Breaks 458
16.5.3 Mutagenesis Induced by DNA Base Damage 459
16.5.3.1 The Major Mechanism of Base Damage-Induced Mutagenesis Is Error-Prone Translesion Synthesis 459
16.5.3.2 Mechanistic Models of Translesion Synthesis 461
16.5.3.3 The Y Family of DNA Polymerases 461
16.5.3.4 Properties of the Y-Family DNA Polymerases 465
16.5.3.5 Polɛ Is a Major Extension Polymerase for Translesion Synthesis 466
16.5.3.6 Translesion Synthesis Is Part of the DNA Damage Tolerance System 467
16.5.3.7 Control of Translesion Synthesis and Mutagenesis 469
16.5.3.8 The Y-Family DNA Polymerases Contain Sequence Motifs for Protein–Protein Interactions 472
16.5.3.9 Translesion Synthesis Is a Complex Pathway 473
16.5.3.10 Translesion Synthesis: Determining Error-Free Versus Error-Prone 475
16.5.4 Mutagenic Signatures of Selected DNA Lesions 476
16.5.4.1 AP Sites 476
16.5.4.2 UV Photoproducts 477
16.5.4.3 BPDE-\(N^2\)-dG Adducts 479
16.5.4.4 The 1,\(N^6\)-Ethenoadenine Adducts 479
16.5.4.5 Cisplatin 480
16.5.5 Damage-Induced Mutagenesis in Immunology: Somatic Hypermutation 480
Suggested Reading 482

17 DNA Repair 485
Isabel Mellon
17.1 Introduction 485
17.2 Direct Reversal of Base Damage 487
17.2.1 UV Radiation 488
17.2.2 Alkylation Damage 491
17.3 Base Excision Repair 495
17.3.1 Glycosylases 497
17.3.1.1 Uracil 498
17.3.1.2 Alkylated Bases 499
17.3.1.3 Oxidized and Fragmented Bases 500
17.3.1.4 Pyrimidine Dimers 502
17.3.2 AP Endonucleases 502
17.3.3 Repair Synthesis and Ligation 503
17.3.4 Base Excision Repair and DNA Methylation 505
17.4 Nucleotide Excision Repair 505
17.4.1 DNA Damage Recognition 506
17.4.2 \textit{E. coli} 507
17.4.3 Mammalian Cells 509
17.4.4 Nucleotide Excision Repair and Transcription 512
17.4.5 Human Diseases 514
17.5 Mismatch Repair 516
17.5.1 \textit{E. coli} 518
17.5.2 Mammalian Cells 518
17.5.3 Cancer 520
17.6 Recombinational Repair 522
17.6.1 Double-Strand Break Repair in \textit{E. coli} 522
17.6.2 Double-Strand Break Repair in Eukaryotic Cells 524
17.6.3 Interstrand Cross-Link Repair 526
17.7 DNA Repair and Chromatin Structure 528
17.7.1 Chromatin Structure 529
17.7.2 Chromatin Remodeling in DNA Repair 529
17.8 DNA Repair in Mitochondria 531
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.9</td>
<td>DNA Repair and Cancer</td>
<td>532</td>
</tr>
<tr>
<td>17.10</td>
<td>Summary</td>
<td>533</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
<td>533</td>
</tr>
<tr>
<td></td>
<td>Suggested Reading</td>
<td>533</td>
</tr>
<tr>
<td>18</td>
<td>Carcinogenesis</td>
<td>535</td>
</tr>
<tr>
<td></td>
<td>Robert C. Smart and Jonathan R. Hall</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>535</td>
</tr>
<tr>
<td>18.2</td>
<td>Human Cancer</td>
<td>537</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Hallmarks of Cancer</td>
<td>540</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Cancer Nomenclature</td>
<td>540</td>
</tr>
<tr>
<td>18.2.3</td>
<td>Causes, Incidence, and Mortality Rates</td>
<td>541</td>
</tr>
<tr>
<td>18.2.4</td>
<td>Classification of Carcinogens</td>
<td>545</td>
</tr>
<tr>
<td>18.3</td>
<td>Categorization of Agents Associated with Carcinogenesis</td>
<td>551</td>
</tr>
<tr>
<td>18.3.1</td>
<td>DNA-Damaging Agents</td>
<td>551</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Nongenotoxic Agents</td>
<td>553</td>
</tr>
<tr>
<td>18.4</td>
<td>Somatic Mutation Theory</td>
<td>553</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Electrophilic Theory, Metabolic Activation, and DNA Adducts</td>
<td>554</td>
</tr>
<tr>
<td>18.4.2</td>
<td>DNA Damage</td>
<td>558</td>
</tr>
<tr>
<td>18.4.3</td>
<td>Complete Carcinogenesis Model</td>
<td>559</td>
</tr>
<tr>
<td>18.5</td>
<td>Epigenetic Mechanism of Tumorigenesis</td>
<td>559</td>
</tr>
<tr>
<td>18.6</td>
<td>Multistage Tumorigenesis</td>
<td>560</td>
</tr>
<tr>
<td>18.6.1</td>
<td>Initiation–Promotion Model</td>
<td>561</td>
</tr>
<tr>
<td>18.6.2</td>
<td>Mechanisms of Tumor Promotion</td>
<td>563</td>
</tr>
<tr>
<td>18.7</td>
<td>Oncogenes</td>
<td>565</td>
</tr>
<tr>
<td>18.7.1</td>
<td>Cell Transformation: Role of Carcinogens and Oncogenes</td>
<td>566</td>
</tr>
<tr>
<td>18.7.2</td>
<td>Activation of Proto-Oncogenes to Oncogenes</td>
<td>567</td>
</tr>
<tr>
<td>18.7.3</td>
<td>Oncogenes and Signal Transduction</td>
<td>569</td>
</tr>
<tr>
<td>18.7.4</td>
<td>Oncogene Classification</td>
<td>570</td>
</tr>
<tr>
<td>18.7.4.1</td>
<td>Growth Factors as Oncogenes</td>
<td>570</td>
</tr>
<tr>
<td>18.7.4.2</td>
<td>Receptor Tyrosine Kinases as Oncogenes</td>
<td>571</td>
</tr>
<tr>
<td>18.7.4.3</td>
<td>Non-Receptor Tyrosine Kinases as Oncogenes</td>
<td>572</td>
</tr>
<tr>
<td>18.7.4.4</td>
<td>Small Guanosine Triphosphatases as Oncogenes</td>
<td>573</td>
</tr>
<tr>
<td>18.7.4.5</td>
<td>Serine/Threonine Kinases as Oncogenes</td>
<td>576</td>
</tr>
<tr>
<td>18.7.4.6</td>
<td>Transcription Factors as Oncogenes</td>
<td>576</td>
</tr>
<tr>
<td>18.7.4.7</td>
<td>Oncogenic Proteins Involved in Cell Survival</td>
<td>577</td>
</tr>
<tr>
<td>18.7.5</td>
<td>Oncogene Cooperation</td>
<td>577</td>
</tr>
<tr>
<td>18.8</td>
<td>Tumor Suppressor Genes</td>
<td>578</td>
</tr>
<tr>
<td>18.8.1</td>
<td>Retinoblastoma Gene and the Cell Cycle</td>
<td>580</td>
</tr>
<tr>
<td>18.8.2</td>
<td>Cyclin-Dependent Kinase Inhibitors and the pRB Circuit</td>
<td>582</td>
</tr>
<tr>
<td>18.8.3</td>
<td>pRB Is Inactivated in Tumorigenesis by Multiple Mechanisms</td>
<td>583</td>
</tr>
</tbody>
</table>
Section 4 Molecular and Biochemical Aspects of Organ Toxicology 589

19 Molecular Mechanisms of Respiratory Toxicity 591
 James C. Bonner
19.1 Introduction 591
19.2 Anatomy and Function of the Respiratory Tract 591
19.2.1 Upper Respiratory Tract as a Site of Toxicity 594
19.2.2 Lower Respiratory Tract as a Site of Toxicity 596
19.2.3 Airways of the Lower Respiratory Tract 597
19.2.4 Parenchyma of the Lower Respiratory Tract 599
19.2.5 Circulatory, Lymphatic, and Nervous System of the Lung 601
19.3 Toxicant-Induced Lung Injury, Remodeling, and Repair 603
19.3.1 Oxidative Stress and Lung Injury 605
19.3.2 Antioxidant Mechanisms in the Lung 608
19.3.3 Oxidants and Cell Signaling in the Lung 610
19.3.4 Respiratory Tract Injury from Inhaled Particles and Fibers 611
19.3.5 Particle and Fiber Deposition and Clearance 613
19.3.6 Respiratory Tract Injury from Gases and Vapors 616
19.4 Occupational and Environmental Lung Diseases 617
19.4.1 Pulmonary Fibrosis 617
19.4.2 Asthma 619
19.4.3 Hypersensitivity Pneumonitis 622
19.4.4 COPD 624
19.4.5 Lung Cancer 626
Suggested Reading 627

20 Molecular Mechanisms of Hepatotoxicity 629
 Supriya R. Kulkarni, Andrew D. Wallace, Sharon A. Meyer, and Angela L. Slitt
20.1 Introduction 629
20.2 Liver Organization and Cellular Components 630
20.2.1 Liver Cellular Composition 631
20.2.1.1 Hepatocytes 631
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.1.2</td>
<td>Liver Stem Cells</td>
<td>632</td>
</tr>
<tr>
<td>20.2.1.3</td>
<td>Nonparenchymal Liver Cells</td>
<td>632</td>
</tr>
<tr>
<td>20.2.2</td>
<td>Liver Lobule and Zonal Variations</td>
<td>633</td>
</tr>
<tr>
<td>20.3</td>
<td>Acute and Chronic Hepatotoxicity</td>
<td>635</td>
</tr>
<tr>
<td>20.3.1</td>
<td>Acute Liver Injury</td>
<td>635</td>
</tr>
<tr>
<td>20.3.2</td>
<td>Chronic Liver Injury</td>
<td>636</td>
</tr>
<tr>
<td>20.3.3</td>
<td>Vascular Lesions</td>
<td>636</td>
</tr>
<tr>
<td>20.3.4</td>
<td>Neoplasia</td>
<td>636</td>
</tr>
<tr>
<td>20.3.5</td>
<td>Clinical Markers of Hepatotoxicity</td>
<td>637</td>
</tr>
<tr>
<td>20.4</td>
<td>Types of Hepatotoxicity</td>
<td>637</td>
</tr>
<tr>
<td>20.4.1</td>
<td>Fatty Liver</td>
<td>637</td>
</tr>
<tr>
<td>20.4.2</td>
<td>Fibrosis</td>
<td>640</td>
</tr>
<tr>
<td>20.4.3</td>
<td>Cholestasis</td>
<td>640</td>
</tr>
<tr>
<td>20.5</td>
<td>Mechanisms of Hepatotoxicity</td>
<td>643</td>
</tr>
<tr>
<td>20.5.1</td>
<td>Cell Type-Dependent Hepatotoxicity</td>
<td>643</td>
</tr>
<tr>
<td>20.5.1.1</td>
<td>Hepatocyte Mediated</td>
<td>643</td>
</tr>
<tr>
<td>20.5.1.2</td>
<td>Nonparenchymal Cell Population Mediated</td>
<td>643</td>
</tr>
<tr>
<td>20.5.1.3</td>
<td>Immune Cell Mediated</td>
<td>643</td>
</tr>
<tr>
<td>20.5.1.4</td>
<td>Hepatic Stellate Cell Mediated</td>
<td>644</td>
</tr>
<tr>
<td>20.5.1.5</td>
<td>Cholangiocyte Mediated</td>
<td>644</td>
</tr>
<tr>
<td>20.5.2</td>
<td>Pathways Involved in Hepatotoxicity</td>
<td>644</td>
</tr>
<tr>
<td>20.5.2.1</td>
<td>Metabolism Dependent</td>
<td>644</td>
</tr>
<tr>
<td>20.5.2.2</td>
<td>Oxidative Stress</td>
<td>645</td>
</tr>
<tr>
<td>20.5.2.3</td>
<td>Contribution of Ca<sup>2+</sup></td>
<td>650</td>
</tr>
<tr>
<td>20.5.2.4</td>
<td>Nuclear Hormone Receptor and Transcription Factors</td>
<td>651</td>
</tr>
<tr>
<td>20.5.2.5</td>
<td>Extrahepatic Inflammation-Mediated Mechanisms</td>
<td>653</td>
</tr>
<tr>
<td>20.5.2.6</td>
<td>Epigenetic Changes</td>
<td>654</td>
</tr>
<tr>
<td>20.5.2.7</td>
<td>Developmental Origins of Liver Disease</td>
<td>654</td>
</tr>
<tr>
<td>20.6</td>
<td>Autoprotection and Protective Priming</td>
<td>654</td>
</tr>
<tr>
<td>20.7</td>
<td>Experimental Prediction of Hepatotoxicity</td>
<td>655</td>
</tr>
<tr>
<td>20.7.1</td>
<td>In Vitro Cell-Based Models</td>
<td>655</td>
</tr>
<tr>
<td>20.7.2</td>
<td>Animal Models</td>
<td>657</td>
</tr>
<tr>
<td>20.7.3</td>
<td>In Silico Models</td>
<td>657</td>
</tr>
<tr>
<td>20.8</td>
<td>Compounds Causing Liver Injury</td>
<td>657</td>
</tr>
<tr>
<td>20.8.1</td>
<td>Drugs</td>
<td>657</td>
</tr>
<tr>
<td>20.8.2</td>
<td>Ethanol</td>
<td>658</td>
</tr>
<tr>
<td>20.8.3</td>
<td>Halogenated Aliphatic Hydrocarbons</td>
<td>659</td>
</tr>
<tr>
<td>20.8.4</td>
<td>Nitrogenous Compounds</td>
<td>659</td>
</tr>
<tr>
<td>20.8.5</td>
<td>Pesticides</td>
<td>659</td>
</tr>
<tr>
<td>20.8.6</td>
<td>Natural Toxins</td>
<td>660</td>
</tr>
<tr>
<td>20.8.7</td>
<td>Toxic Metals</td>
<td>660</td>
</tr>
<tr>
<td>20.9</td>
<td>Conclusions</td>
<td>661</td>
</tr>
<tr>
<td></td>
<td>Suggested Reading</td>
<td>661</td>
</tr>
</tbody>
</table>
21 Molecular Mechanisms of Renal Toxicology 665
 Lawrence H. Lash
21.1 Introduction 665
21.2 Influence of Renal Structure and Function on Susceptibility to Nephrotoxicity and Renal Damage 667
 21.2.1 Renal Structure and Nephrotoxicity 667
 21.2.1.1 Proximal Tubules 670
 21.2.1.2 Thin Descending and Thin Ascending Limbs 671
 21.2.1.3 Thick Ascending Limb 671
 21.2.1.4 Distal Tubule 671
 21.2.1.5 Cortical Collecting Duct 672
 21.2.2 Renal Physiology and Nephrotoxicity 672
 21.2.3 Cellular Energetics and In Vivo Tissue Oxygenation 675
 21.2.4 Membrane Transport and Nephrotoxicity 676
 21.2.5 Bioactivation Mechanisms and Nephrotoxicity 680
21.3 Classification of Renal Injury 682
 21.3.1 Acute Kidney Injury 682
 21.3.1.1 Hypoperfusion or Hypofiltration 683
 21.3.1.2 Direct Tubular Injury 683
 21.3.1.3 Obstruction 683
 21.3.1.4 Tubulointerstitial Fibrosis 683
 21.3.2 Chronic Kidney Injury 683
21.4 Assessment of Renal Function in the Clinic and in Animal Models 684
 21.4.1 Measurement of GFR 684
 21.4.2 Urinalysis 686
 21.4.2.1 Standard Urinalysis 686
 21.4.2.2 Enzymuria 686
21.5 General Considerations for Choosing an Experimental Model to Study Nephrotoxicity 686
21.6 In Vitro Models to Study Mechanisms of Renal Injury 689
 21.6.1 Isolated Perfused Kidney, Renal Slices, and Isolated Tubules and Tubule Fragments 690
 21.6.2 Freshly Isolated Renal Epithelial Cells and Primary Cell Culture 690
 21.6.3 Immortalized Renal Cell Lines 693
 21.6.4 Human-Induced Pluripotent Stem Cells 694
21.7 General Considerations Regarding Responses to Toxicants at the Cellular Level 695
21.8 Mechanisms of Toxicant Action in the Kidneys 697
 21.8.1 Pathways of Cell Death Caused by Nephrotoxicants: Necrosis, Apoptosis, and Autophagy 697
21.8.2 Molecular Markers of Renal Cellular Repair, Regeneration, and Proliferation 699
21.8.3 Use of Genomics, Proteomics, and Metabolomics in Renal Toxicology 700
21.8.4 Redox Status and Oxidative Stress in Renal Toxicology 701
21.8.5 Signaling Pathways in Renal Toxicology 701
21.9 Human Disease and Risk Assessment in Renal Toxicology 702
21.9.1 Experimental Models of Renal Disease 702
21.9.2 Extrapolation of Animal Data to Humans 702
21.10 Summary 703
References 704

22 Molecular Mechanisms of Neurotoxicity 709
Kimberly P. Keil, Marianna Stamou, and Pamela J. Lein
22.1 Introduction 709
22.1.1 Overview of Molecular and Cellular Neurobiology 710
22.1.2 Overview of Mechanisms of Neurotoxicity 713
22.2 Neurotransmission 715
22.2.1 Overview of Transmission Toxicity 715
22.2.2 Molecular Mechanisms of Neurotoxicity Targeting Electrical Neurotransmission 716
22.2.3 Molecular Mechanisms of Neurotoxicity Targeting Chemical Neurotransmission 720
22.3 Inter- and Intracellular Signaling 724
22.3.1 Overview of Inter- and Intracellular Signaling in the Nervous System 724
22.3.2 Modulation of Intracellular and Autocrine Signaling by Polychlorinated Biphenyls (PCBs) 725
22.3.3 Modulation of Intracellular and Paracrine Signaling by Lead (Pb) 732
22.4 Excitotoxicity 736
22.4.1 Overview of Excitotoxicity 736
22.4.2 Chemical-Induced Excitotoxicity 739
22.5 Protein Modifications 742
22.5.1 Overview of Protein Modifications 742
22.5.2 Chemical-Induced Protein Modifications 742
22.5.3 Chemical-Induced Protein Aggregation 744
22.6 Neuroinflammation 747
22.6.1 Overview of Neuroinflammation 747
22.6.2 Cellular Mediators of Neuroinflammatory Signaling 748
22.6.3 Air Pollution Triggers Neuroinflammation 751
22.6.4 Lipopolysaccharide-Induced Neuroinflammation 756
22.6.5 Neuroinflammatory Effects of MPTP 757
22.6.6 Challenges in Understanding Neuroinflammatory Mechanisms of Neurotoxicity 757
22.7 Epigenetics 758
22.7.1 Overview of Epigenetic Mechanisms 758
22.7.2 Epigenetic Mechanisms of PCB Neurotoxicity 762
22.7.3 Modulation of the Epigenome by Bisphenol A (BPA) 764
22.7.4 The Epigenetics of Lead (Pb) Neurotoxicity 765
22.7.5 Critical Gaps in Understanding Epigenetic Mechanisms of Neurotoxicity 766
22.8 Concluding Remarks 767
Suggested Reading 769

23 Molecular Mechanisms of Immunotoxicity 773
Tai L. Guo, Joella Xu, Yingjia Chen, Daniel E. Lefever, Guannan Huang, and David A. Lawrence
23.1 Introduction and Overview of the Immune System 773
23.1.1 Immune Cells and Their Development (Hematopoiesis) 774
23.1.2 Innate and Adaptive Immune Cells and Their Activities 778
23.2 Immune Hypersensitivities and Autoimmune Disease 788
23.3 Mucosal Immunity, the Microbiome, and Food Allergies 791
23.3.1 Mucosal Immunity 791
23.3.2 The Microbiota 793
23.3.3 The Microbiota’s Role in Immunotoxicology 795
23.3.4 Food Allergies 796
23.4 Molecular Immunotoxicology of Environmental Stressors 801
23.4.1 Physical Stressors 801
23.4.2 Chemical Stressors 804
23.4.2.1 Metals 804
23.4.2.2 Cigarette Smoke 805
23.4.2.3 Pesticides and Other Organic Compounds 807
23.4.2.4 Endocrine-Disrupting Chemicals 809
23.4.3 Psychological Stressors 814
23.5 Methods for Assessing Immunotoxicology 815
23.6 Summary 817
References 817

24 Molecular Mechanisms of Reproductive Toxicity 823
Ayelet Ziv-Gal, Catheryne Chiang, and Jodi Anne Flaws
24.1 Introduction 823
24.2 Organization of the Reproductive System: Sexual Differentiation 825
24.3 Neuroendocrine Regulation of Reproduction 826
24.4 Female Reproductive System 829
24.4.1 The Ovary 829
24.4.1.1 Female Germ Cells and Establishment of the Ovarian Reserve 829
24.4.1.2 Folliculogenesis in the Cycling Ovary 830
24.4.1.3 Steroidogenesis in the Adult Cycling Ovary 833
24.4.2 Ovulation and Luteinization 835
24.4.3 Fertilization 836
24.4.4 Uterus and Implantation 837
24.4.5 The Placenta 837
24.4.6 Parturition 838
24.4.7 Lactation 839
24.5 Toxicity in the Male Reproductive System 840
24.5.1 The Testes: Spermatogenesis and Steroidogenesis 840
24.5.2 Efferent Ducts and Epididymis 844
24.5.3 Accessory Sex Glands 845
24.6 Transgenerational Effects on Reproduction 845
24.7 Summary 846
References 847

25 Molecular Mechanisms of Developmental Toxicity 851
Antonio Planchart
25.1 Introduction 851
25.2 Overview of Development and General Principles 852
25.2.1 Model and Non-Model Organisms in Developmental Biology 853
25.2.2 Early Development: Cleavage, Gastrulation, and Axis Formation 853
25.2.3 Neurodevelopment 855
25.2.4 Neural Crest 856
25.2.5 Segmentation and Organ Development 857
25.2.6 Limb Development 857
25.2.7 Fetal Period 858
25.3 Wilson’s Principles of Teratology 859
25.3.1 Genetic Influences on Teratogen Susceptibility: Gene–Gene and Gene-by Environment Interactions 860
25.3.1.1 Interspecies Differences in Susceptibility 861
25.3.1.2 Intraspecies Differences in Susceptibility: Alleles and Epigenetics 861
25.3.2 Susceptibility Windows 861
25.3.3 Teratogenic Agents Act through Specific Mechanisms 863
25.3.4 Manifestations of Abnormal Development 864
25.3.5 Physicochemical Properties of Teratogens and Their Role in Determining Developmental Toxicity 866
25.3.6 Dosage and Severity 867
25.4 Selected Examples of Developmental Toxicants 868
25.4.1 Anticonvulsants 868
25.4.2 Alcohol 869
25.4.3 Cyclophosphamide 869
25.4.4 Diethylstilbestrol 870
25.4.5 Retinoids 871
25.4.6 Thalidomide 872
25.5 Advances in Developmental Toxicology Methods 873
25.5.1 High-Throughput Screens 873
25.5.2 Computational Developmental Toxicology 874
25.6 Summary 875
References 875

Section 5 Emerging Areas in Molecular and Biochemical Toxicology 877

26 Computational and Molecular Approaches to Risk Assessment 879
Richard S. Judson, John Wambaugh, Kristin Isaacs, and Russell S. Thomas
26.1 Introduction 879
26.1.1 Hazard Identification/HTS 880
26.1.2 Potency Quantification/HTTK 880
26.1.3 Exposure Estimation/HTE 881
26.1.4 Estimation of Uncertainty and Variability 881
26.1.5 Estimation of Margins of Exposure 882
26.2 High-Throughput Bioactivity 883
26.3 High-Throughput Toxicokinetics 889
26.3.1 Overview of the HTTK Approach 891
26.3.2 Estimating Population Variability in HTTK 895
26.3.3 Estimating Uncertainty in HTTK 895
26.4 High-Throughput Exposure 897
26.4.1 Basic Approach to HTE 898
26.4.2 Estimating Uncertainty in HTE 904
26.5 Summary 905
References 906

27 Nanotoxicology 909
James C. Bonner
27.1 Introduction 909
27.2 Naturally Occurring and Unintentional Nanoparticles 913
27.3 Engineered Nanomaterials 913
27.3.1 Carbon Nanomaterials 913
27.3.2 Metal and Metal Oxide Nanoparticles 914
27.3.3 Organic Biodegradable Nanoparticles 914
27.3.4 Functionalization of Nanoparticles 914
27.4 Exposure to Nanoparticles 915
27.4.1 Dermal Exposure 915
27.4.2 Inhalation 916
27.4.3 Oral Exposure 918
27.5 Protein Corona Formation on Nanoparticles 918
27.6 Nanoparticle Interactions with Biological Barriers 920
27.6.1 Epithelial–Endothelial Barriers in the Lung and GI Tract 920
27.6.2 Blood–Brain Barrier 920
27.6.3 Placental Barrier 921
27.7 Degradation and Clearance 921
27.8 Adverse Effects of Nanoparticles 923
27.8.1 Molecular Mechanisms of Nanoparticle Toxicity 924
27.8.2 Immunotoxicity 926
27.8.3 Pulmonary Fibrosis 926
27.8.4 Exacerbation of Asthma 927
27.8.5 Lung Cancer 927
27.8.6 Cardiovascular Toxicity 928
27.8.7 Hepatotoxicity 928
27.8.8 Neurotoxicity 928
27.9 Nanomedicine 929
27.9.1 Nanotherapy 929
27.9.2 Nanoparticles in Biomedical Imaging 930
27.9.3 Nanotherapy-Associated Toxicity 931
27.10 Life Cycle of Nanoparticles in the Environment 931
Suggested Reading 931

28 Developmental Origins of Health and Disease 933
Michael Cowley
28.1 Introduction 933
28.2 Historical Perspective: Birth Weight and Early Life Nutrition in Adult Health 934
28.3 The Effects of Environmental Chemicals on the Programming of Adult Health 935
28.3.1 Obesity 935
28.3.2 Fertility 936
28.3.3 Brain Development, Behavior, and Neurodegeneration 937
28.4 Biological Mechanisms 938
28.4.1 Hormones and Endocrine-Disrupting Compounds in Development 938
28.4.2 Epigenetics 939
Contents

28.4.3 Multigenerational and Transgenerational Effects 941
28.5 Conclusions 943
Suggested Reading 943

29 Exposome 945
Stephen M. Rappaport
29.1 Introduction 945
29.1.1 Genes Versus the Environment 945
29.1.2 Characterizing Genes and Exposures 946
29.1.3 Exposures of Regulatory Importance 946
29.1.4 Introducing the Exposome 948
29.2 The Exposome and Disease Pathways 949
29.2.1 Choosing the Best Omes 949
29.3 The Blood Exposome 951
29.3.1 Blood Concentrations 951
29.3.2 The Chemical Space 953
29.3.3 Connections to Health Effects 953
29.3.4 Connections to Metabolic Pathways 956
29.3.5 Implications for Epidemiology and Systems Biology 956
29.4 The Exposome and Social Factors 957
29.4.1 Relationships with Exogenous Exposures 957
29.4.2 Relationships with Endogenous Exposures 958
29.4.3 Finding Causal Pathways 958
29.5 Discovering Causes of Disease 958
29.5.1 Performing EWAS 958
29.5.2 Using Biospecimens from Prospective Cohorts 960
29.5.3 Untargeted and Semi-Targeted Designs 960
29.6 The Future of the Exposome 961
29.6.1 Advances in Technology 961
29.6.2 Moving Beyond 300 Environmental Chemicals 961
29.6.3 Future Research and Training 962
Acknowledgments 962
References 963

Index 969