INDEX

A
AASHTO, 4, 7
AASHTO model, 45
creep calculation, 47
shrinkage calculation, 46
ACI Code, 3, 4
design concept, 4
system of units, 5
ACI 209 model, 27
creep calculation, 29
shrinkage calculation, 27
Active soil pressure, 493
Admixtures, 25
Aggregates, 15, 69, 70
maximum size, 69
Alignment charts, 422
ANSI, 6
Areas of reinforcing bars, 73, 75
ASTM, 4, 16, 73, 74
Axial compression, 194, 358
Axial tension, 195, 402

Bar cutoff, 281
Bar dimensions and weights, 75
Bar grades, 73, 74
Bars, areas, 1001, 1010
 English units, 10
 metric units, 10
Bars, bundles, 113, 157, 266, 276
Beams, 83, 152
 analysis, 84
 balanced, 88
 compression reinforcement, 116
 compressive stress distribution, 84
 control of cracking, 226
 cracking moment, 228
curved, 858
doubly reinforced, 116, 119, 162
I-section, 127
irregular shapes, 137
maximum steel ratio, 101, 114, 157
minimum overall depth, 157
minimum steel ratio, 109, 112
neutral axis, 84, 87, 94, 105, 119,
 163
shallow, 199
shear and diagonal tension, 188
singly reinforced, 99, 114
spandrel, 137
special shapes, 137

B
Balanced section, 88
B3 model, 30
creep calculation, 33
shrinkage calculation, 30
Balanced strain condition, 88, 99

Balanced strain condition, 88, 99

1033
Beams (continued)
 stress distribution, 84, 94, 127
 T-section, 127
Bearing capacity, 310, 445, 456
Bearing strength, 291, 456, 459
Biaxial bending, 397
 Bresler equation, 402
Bond, 257
 anchorage, 199, 201, 259
 critical sections, 198, 268
 development length, 261
Bresler equation, 402
Bridge design, 887
 design philosophy, 891
 load factors and combination, 892
 vehicular loads, 896
 design for flexure, 905
 shear design, 906
 loss of prestress, 913
 deflection, 915
Buckling, 343, 429
Building code, 4

C
CEB 90 model, 36
 creep calculation, 37
 shrinkage calculation, 36
CEB 90–99 model, 39
 creep calculation, 41
 shrinkage calculation, 39
Cement, 15
Circular beam, 858
Circular columns, 347
 balanced, 381
 compression controls, 370
 tension controls, 367
 Whitney equation, 96, 375
Codes, 4
 ACI, 4
 others, 4
Columns, 9, 342
 axially loaded, 342
 balanced condition, 359
 biaxial bending, 397
 braced, 344, 422, 429
 capital, 610
 circular, 347
 composite, 344
 compression failure, 358, 370
 design charts, 387
 eccentricity, 357, 363
 effective length factor, 421
 Euler buckling load, 429
 interaction curves, 387, 398
 lateral ties, 343
 long, 349
 minimum eccentricity, 358, 376, 392, 428
 pedestal in footings, 456, 459
 plastic centroid, 357, 363
 radius of gyration, 349, 421
 slenderness ratio, 343, 349, 421, 427
 spacing of ties, 278, 345, 347
 spiral columns, 347, 349
 strength, 370
 tied columns, 278, 343, 349
 trial solution, 370
 unbraced, 344, 422, 430
Coefficient of expansion, 25
Combined footings, 445
Combined shear and torsion, 529
 beams, 188
Compressive stress, 17, 19
 in cubes, 17
 in cylinders, 17, 19
Compressive stress distribution, 88
Concrete, 15
 admixtures, 16, 25
 bond strength, 257
 coefficient of expansion, 25
 compressive strength, 17
 constituents, 16
 cover, 155
 creep, 25
 cube strength, 17
 curing, 16
 cylinder strength, 17
 fibrous, 72
 high-performance, 70
 High strength, 70
 lightweight, 70, 71
 maximum strain, 18, 19, 84, 99
 modular ratio, 24
Index

modulus of elasticity, 22
modulus of rupture, 21
plain, 21, 69
Poisson’s ratio, 23
shear modulus, 24
shrinkage, 24
stress-strain diagram, 18
tensile strength, 19
water content, 24
Continuous beams, 555
Continuous one-way slabs, 329
Coulomb’s theory, 493, 496
Cracks, 192
code equations, 245
control of, 245
main, secondary, shrinkage, 244
maximum width, 245
Creep, 25
coefficient, 29, 35, 37, 41, 43, 47
definition, 25
factors affecting, 26
magnitude, 26
strain, 26
Crushing strain, 19
Cube strength, 17
Curvature, 427, 432
double, 427
single, 427
Cylinder strength, 17

D
Dead load factor, 91
Deep beams, 290
ACI design procedure, 293
AASHTO LRFD, 301
B-and D-regions, 290
critical section, 329
Reinforcement, 299
Shear strength, 294
shear reinforcement, 309
strut-and-tie model, 290
Deflection, 226
compression steel, 233
cracked section for, 233
effective moment of inertia, 230
instantaneous, 237

E
Earthquake, 786
Earth pressure, 92
active soil pressure, 493
passive soil pressure, 493
theories, 492
Effective depth, 91, 101, 116, 157
Effective flange width, 127
L-sections, 137
T-sections, 128
Effective surcharge, 497
Effective length of columns, 422
Effective moment of inertia, 230
End anchorage, 295, 734, 777
Equilibrium conditions, 91, 362
Equivalent frame method, 681
Equivalent stress block, 94, 129
Euler buckling load, 429
Expansion, 24

I
limitations, 234
long-time, 233
Design loads, 6
Detailing, 329
Development length, 257
anchorage length, 259, 261, 273
bundled bars, 266
compression bars, 264
critical sections, 268
tension bars, 261
top bars, 259, 284
Diagonal tension, 188
Differential settlement, 443, 458
Distribution of soil pressure, 448
Doubly reinforced concrete sections, 116, 162
Dowels in footings, 458
Drainage, 502
Drop panel, 610, 614, 621, 668
Ductility index, 588

E
Earthquake, 786
Earth pressure, 92
active soil pressure, 493
passive soil pressure, 493
theories, 492
Effective depth, 91, 101, 116, 157
Effective flange width, 127
L-sections, 137
T-sections, 128
Effective surcharge, 497
Effective length of columns, 422
Effective moment of inertia, 230
End anchorage, 295, 734, 777
Equilibrium conditions, 91, 362
Equivalent frame method, 681
Equivalent stress block, 94, 129
Euler buckling load, 429
Expansion, 24
F
Factored loads, 91
Failure, 86, 88
 balanced section, 88, 99
 bending, 99
 diagonal tension, 320
 punching shear, 452
 torsion, 523
Fib-mc 2010 model 43
 creep calculating 43
 shrinkage calculating 43
Flat plate, 326, 427, 611, 621
Flat slab, 610, 625
Flexural bond, 254
Flexural Failure, 88
Floor system, 324, 335, 614
 concrete joist, 336
 flat plate, 611, 614
 flat slab, 610, 614, 621
 one-way joist, 324, 335
 one-way slab, 227, 324, 339
 ribbed slab, 324, 336
 slab-beam, 558, 681
 two-way slab, 610
Footings, 443
 allowable soil pressure, 450
 bearing stress, 456
 one-way shear, 451
 on piles, 483
 punching shear, 452
 soil pressure, 448
Footings, types, 446
 combined, 472
 exterior column, 474
 interior column, 475
 isolated, 445
 pile, 483
 plain, 459
 rectangular, 445
 trapezoidal, 445
 wall, 443, 445, 460
Frames, 555, 561
 braced, 422, 428
 unbraced, 423, 429
Friction coefficient, 741
Friction losses in prestressing force, 740

G
GL 2000 model, 33
 creep calculation, 34
 shrinkage calculation, 34
Gravity retaining wall, 490
Gross moment of inertia, 230

H
High-performance concrete, 70
Hooks, 272
Hoop, 344, 533

I
Impact, 6
Inertia, moment of, 230
Inflection points, 268
Initial modulus, 22
Interaction diagram, 358, 376, 387
Interaction surface, 399

J
Joints, 26, 179, 290, 562, 820

L
Lateral ties, 257, 578
Limit analysis, 582
Load factors, 8, 91
 dead load, 8, 91
 live load, 8, 91
 wind load, 6, 92
Longitudinal reinforcement(torsion), 534
LRFD, 9
L-shaped sections, 137, 343

M
Magnification factor, 428
Middle strip, 619
Modes of failure, 18, 65
Modular ratio, 24, 228
Modulus of elasticity, 22
 in direct compression, 22
 normal-weight concrete, 23
 steel, 75
Modulus of rupture, 21
Index

Moment of inertia, 230
 Compression member, 426
effective, 230
gross, 228
 polar, 528, 661
Moment magnification factor, 429, 430
Moment redistribution, 539, 596

N
Neutral axis, 84, 87, 105
Nominal moment capacity, 100, 161, 400, 757
Nominal strength, 8
 column strength, 391
 flexural strength, 90, 94
 shear strength, 543, 626, 629

O
One-way slabs, 227, 324
Overreinforced, 99, 579, 732
Overturning moment, 810

P
Passive soil pressure, 493
Pattern loading, 636
Pile caps, 446
Plastic centroid, 356
Plastic design, 556, 579
Plastic hinges, 560, 579
Polar moment of inertia, 528, 662, 867
Posttensioning, 724
Prestress, 724, 736
 design approach, 756
 losses, 737
 partial, 760
 strands, 737
Pretensioning, 726

R
Radius of gyration, 349, 421
Rectangular sections, 110, 114, 116, 123, 152, 162
 balanced, 99
 compression control, 88
 tension control case, 88
Redistribution of moments, 539, 556, 596
Reinforcing steel, 72
 anchorage, 201
 areas, 72, 75
 balanced section, 88
 bar sizes, 72
 deformed bars, 72
 development length, 257
 flexural bond, 258
 grades, 72, 74
 hooks, 272
 maximum percentage, 101
 modulus of elasticity, 228
 sizes, 72
 spacing, 114, 128, 155
 spiral, 278, 344
 splices, 263, 276
 stirrups, 76, 195, 198, 200
 strands, 74, 736
 tie spacings, 279, 350
 wire fabric, 74
 yield strength, 74
Retaining walls, 490
 cantilever, 490
 gravity, 490
Rotation capacity, 196, 579

S
Safety provisions, 8
 capacity reduction factors, 8, 91
 load factors, 91
Secant modulus, 22
Seismic design, 786
 acceleration, 786
 base shear, 804
 boundary elements, 841
 category, 786
 coupling beam, 841, 847
 design category, 786
 design response spectrum, 787
 flexural design, 820
 fundamental period, 789
 intermediate moment frame, 805, 820, 855
International Building Code (IBC), 786
 longitudinal reinforcement, 821
 redundancy coefficient, 819
Seismic design (continued)
 seismic response coefficient, 799
 shear walls, 805, 811, 815, 842
 simplified analysis, 812, 815
 special moment frames, 805, 813
 strong column-weak girder, 820, 832
Semicircular beam, 865
Shear, 188
 failure, 88, 191
 footings, 449
 punching, 449, 452
 stirrups, 192, 195, 198
 stress, 188
 thickness, footings, 455, 459, 483
 wall footing, 443, 445, 461
Shear head, 626
Shear modulus, 24
Shear reinforcement, 188
 in beams, 188
 design procedure, 198
 inclined stirrups, 195
 minimum reinforcement area, 198
 torsion, 191, 201
Shear strength of beams, 193
 critical section, 198
 diagonal tension, 188, 191
 stress distribution, 188
Shrinkage, 24
 in concrete, 24
 and creep, 25
Sideway, 825
Slabs, 324, 610
 bending moments, 326
 concrete cover, 337
 continuous, 328, 333
 design, 328, 426, 610, 614
 flat, 621
 hollow, 335
 minimum steel ratio, 329
 minimum thickness, 227, 328, 620
 one-way, 324
 reinforcement, 328
 ribbed slab, 324, 328, 611
 solid, 326
two-way, 610
 waffle, 611, 614, 634, 672
Slenderness ratio, 343, 420
Spirals, 93, 195, 278, 345
Splices, 263, 276
Split cylinder, 18, 20
Square footings, 454
 depth, 451, 452
 design consideration, 449
 moments, 455
 reinforcement, 455
Stirrups, 192, 198
 ACI Code, minimum, 198
 closed, 201, 274
 design, vertical, 201
 maximum spacing, 200, 262
 minimum area, 198
 vertical, 201
Stress–strain curve, 18, 23
 concrete, 19, 23
 steel, 72
Strut-and-tie method, 290
 design procedure, 305
 design requirements, 295

T
Tables:
 Appendix A, 994
 Appendix B, 1004
 Appendix C, 1012
T-beams, 127
 analysis, 127
 effective width, 127
 strength, 129
Temperature and shrinkage reinforcement, 328
Tension-controlled, 90
Ties (columns), 345
Time-dependent deflection, 233
Time-dependent losses, 740
Top bar (development length), 262
Torsion, 523
 analysis, elastic, 529
 analysis, ultimate, 529
 in circular sections, 528
 combined shear and torsion, 529
Index

<table>
<thead>
<tr>
<th>Category</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equations</td>
<td>534</td>
</tr>
<tr>
<td>Longitudinal reinforcement</td>
<td>534, 540</td>
</tr>
<tr>
<td>Reinforcement</td>
<td>534, 540</td>
</tr>
<tr>
<td>Spandrel beam</td>
<td>539</td>
</tr>
<tr>
<td>Stirrup design</td>
<td>541</td>
</tr>
<tr>
<td>Strength</td>
<td>534</td>
</tr>
<tr>
<td>Strength reduction factor</td>
<td>93</td>
</tr>
<tr>
<td>Stresses</td>
<td>525</td>
</tr>
<tr>
<td>Tranverse reinforcement</td>
<td>823</td>
</tr>
<tr>
<td>T-section</td>
<td>109, 127</td>
</tr>
<tr>
<td>Two-way action (shear)</td>
<td>452, 629</td>
</tr>
<tr>
<td>Two-way slabs</td>
<td>610</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbraced frames</td>
<td>344</td>
</tr>
<tr>
<td>Units</td>
<td>5</td>
</tr>
<tr>
<td>Metric</td>
<td>5, 1004</td>
</tr>
<tr>
<td>U.S. customary</td>
<td>5, 994</td>
</tr>
<tr>
<td>Unit weight</td>
<td>69, 1001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual work method</td>
<td>582</td>
</tr>
<tr>
<td>V-shape beam</td>
<td>878</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waffle slab</td>
<td>611, 614, 634, 672</td>
</tr>
<tr>
<td>Wall footings</td>
<td>445, 459</td>
</tr>
<tr>
<td>Walls</td>
<td>490</td>
</tr>
<tr>
<td>Basement walls</td>
<td>491, 513</td>
</tr>
<tr>
<td>Retaining walls</td>
<td>490</td>
</tr>
<tr>
<td>Water–cement ratio</td>
<td>15</td>
</tr>
<tr>
<td>Welded wire fabric</td>
<td>74, 76</td>
</tr>
<tr>
<td>Wind load factor</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield line method</td>
<td>618</td>
</tr>
<tr>
<td>Yield point</td>
<td>77</td>
</tr>
<tr>
<td>Yield strength</td>
<td>72, 74, 75</td>
</tr>
</tbody>
</table>