Contents

List of contributors xi

Preface xvii

1 What does ‘sustainable construction’ mean? An overview 1
 1.1 Introduction 1
 1.1.1 The influence of the building sector 3
 1.1.2 Can we afford sustainability? 6
 1.1.3 How can we achieve sustainability in the building sector? 6
 1.2 Aims of sustainable construction 7
 1.2.1 Ecological aims 8
 1.2.2 Social aims 10
 1.2.3 Economic aims 11
 References 12

2 Legal background and codes in Europe 13
 2.1 Normative background 14
 2.2 Comments on EN 15804 and EN 15978 14
 2.2.1 Modular life-cycle stages 14
 2.2.2 Comparability of EPDs for construction products 16
 2.2.3 Functional equivalent 17
 2.2.4 Scenarios at product or building level 17
 2.2.5 Reuse and recycling in module D 18
 2.2.6 Aggregation of the information modules 19
 2.3 Legal framework 19
 2.3.1 EU waste framework directive and waste management acts in European countries: product responsibility 19
 2.3.2 EU construction products regulation 22
 2.3.3 EU building directive and energy saving ordinance 23
 2.3.4 Focus increasingly on construction products 26
 2.3.5 EU industrial emissions directive 26
 References 27
3 Basic principles of sustainability assessment
 3.1 The life-cycle concept
 3.1.1 What is the meaning of the life-cycle concept?
 3.1.2 Life-cycle phases of a building
 3.2 Life-cycle planning
 3.2.1 Building Information Modeling in steel construction
 3.2.2 Integrated and life-cycle-oriented planning
 3.3 Life-cycle assessment and functional unit
 3.3.1 Environmental impact categories
 3.4 Life-cycle costing
 3.4.1 Life-cycle costing – cost application including cost planning
 3.4.2 Net present value method
 3.4.3 Life-cycle cost analysis
 3.5 Energy efficiency
 3.6 Environmental product declarations
 3.6.1 Institute Construction and Environment (IBU) – Program Operator for EPDs in Germany
 3.6.2 The ECO Platform
 3.7 Background databases
 3.8 European open LCA data network
 3.8.1 ÖKOBAUDAT
 3.8.2 eLCA, an LCA tool for buildings
 3.8.3 LCA – a European approach
 3.9 Environmental data for steel construction products
 3.9.1 The recycling potential concept
 3.9.2 EPD for structural steel
 3.9.3 EPD for hot-dip galvanized structural steel
 3.9.4 EPDs for profiled sheets and sandwich panels
 3.10 KBOB-recommendation – LCA database from Switzerland
 3.10.1 KBOB-recommendation as a basis for planning tools
 3.10.2 Environmental impact assessment within the KBOB-recommendation
 3.10.3 Environmental impacts of hot-rolled steel products
 3.10.4 Example using data from the KBOB-recommendation

References

4 Sustainable steel construction
 4.1 Environmental aspects of steel production
 4.2 Planning and constructing
 4.2.1 Sustainability aspects of tender and contracting
 4.3 Sustainable building quality
 4.3.1 Space efficiency
 4.3.2 Flexibility and building conversion
 4.3.3 Design for deconstruction, reuse and recycling
 4.4 Multistorey buildings
 4.4.1 Introduction

References
4.4.2 Building forms 120
4.4.3 Floor plan design 122
4.4.4 Building height and height between floors 124
4.4.5 Flexibility and variability 124
4.4.6 Demands placed on the structural system 126
4.4.7 Floor systems 128
4.4.8 Columns 132
4.4.9 Innovative joint systems 133
4.5 High strength steel 134
4.5.1 Metallurgical background 136
4.5.2 Designing in accordance with Eurocodes 141
4.6 Batch hot-dip galvanizing 141
4.6.1 Introduction 141
4.6.2 The galvanizing process 144
4.6.3 Batch galvanized coatings 144
4.6.4 Sustainability 146
4.6.5 Example: 72 years young – the Lydlinch Bridge 150
4.7 UPE channels 152
4.8 Optimisation of material consumption in steel columns 155
4.9 Composite beams 157
4.9.1 Composite beams with moderate high strength materials 159
4.9.2 Examples for high strength composite beams 160
4.9.3 Economic application of composite beams 161
4.10 Fire-protective coatings in steel construction 166
4.10.1 Possible ways of designing the fire protection system 166
4.10.2 Fire protection of steel using intumescent coatings 166
4.10.3 The structure of fire-protective coating systems 167
4.10.4 Sustainability of fire-protection systems 168
4.11 Building envelopes in steel 171
4.11.1 Energy-efficient building envelope design 171
4.11.2 Thermal performance and air-tightness of sandwich constructions 173
4.11.3 Effective thermal insulation by application of steel cassette profiles 182
4.12 Floor systems 190
4.12.1 Steel as key component for multifunctional flooring systems 190
4.12.2 Slimline floor system 197
4.12.3 Profiled composite decks for thermal inertia 203
4.12.4 Thermal activation of steel floor systems 208
4.12.5 Steel decks supporting zero energy concepts 210
4.12.6 Optimisation of multistorey buildings with beam-slab systems 213
4.13 Sustainability analyses and assessments of steel bridges 219
4.13.1 State of the art 219
4.13.2 Methods for bridge analyses 224
4.13.3 External effects and external costs 225
4.13.4 Life-cycle assessment 226
4.13.5 Uncertainty 227
Contents

4.14 Steel construction for renewable energy
4.14.1 Sustainability assessment concept
4.14.2 Sustainability characteristics
References

5 Sustainability certification labels for buildings
5.1 Major certification schemes
5.1.1 DGNB and BNB
5.1.2 LEED
5.1.3 BREEAM
5.2 Effect of structural design in the certification schemes
5.2.1 Life-cycle assessments and environmental product declarations
5.2.2 Risks to the environment and humans
5.2.3 Costs during the life cycle
5.2.4 Flexibility of the building
5.2.5 Recycling of construction materials, dismantling and demolition capability
5.2.6 Execution of construction work and building site
References

6 Case studies and life-cycle assessment comparisons
6.1 LCA comparison of single-storey buildings
6.1.1 Structural systems
6.1.2 LCA information
6.1.3 Frame and foundations – structural system
6.1.4 Column without foundation – single structural member
6.1.5 Girder – single structural member
6.1.6 Building envelope
6.1.7 Comparison in the operational phase
6.1.8 Conclusions for single-storey buildings
6.2 LCA comparison of low rise office buildings
6.2.1 The low rise model building
6.2.2 LCA comparison of the structural system
6.3 LCA comparison of office buildings
6.3.1 LCA information
6.3.2 Results of the LCA for the building systems
6.3.3 Results of the LCA for a reference building
6.4 Material efficiency
6.4.1 Effective application of high strength steels
6.5 Sustainable office designer
6.5.1 Database
6.5.2 Example using sustainable office designer
6.6 Sustainability comparison of highway bridges
6.6.1 Calculation of LCC for highway bridges
6.6.2 Calculation of external cost for highway bridges
6.6.3 Calculation of LCA for highway bridges
6.6.4 Additional indicators

References
6.7 Sustainability of steel construction for renewable energy 344
 6.7.1 Offshore wind energy 344
 6.7.2 Digester for biogas power plants 348
6.8 Consideration of transport and construction 352
 6.8.1 Environmental impacts according to the origin of structural steel products 352
 6.8.2 Comparison of expenses for transport and hoisting of large girders 354
References 357

Index 361