Index

A
Apache Orchestration Director Engine (ODE), 252
Apache Software Foundation, 252
Apache Tomcat, 252
application service providers (ASP), 16, 240
application support sublayer (APS), 31
AR. See augmented reality (AR)
AR animation, technical approaches for, 58–60
construction operations, 82
created in ARVISCOPE language, 60, 78, 80, 81
relationships between DES, CAD and GPS data, and, 59
simulated operation, assumptions, 78
structural steel erection process, 81
trace file from a DES model, creation, 63–6
main processing loop, 65
portion of sample, 66
ArchiCAD, 176
ARVISCOPE animation language, 60
control statements, 62
dynamic statements, 61–2
scene construction statements, 60–1
STROBOSCOPE format, 63
ACD, for earthmoving operation, 63
DES Tool (stroboscope), 64
Hauler1, 66
ReturnRoad, 64, 66
SIMTIME statement, 64
ARVISCOPE design issues, 66–7
challenges, 66–7
on-site positional measurement problems, 67–72
defining route using relative coordinate values, 72
global point coordinates in ARVISCOPE, calculations, 70
POSITION and ROUTE statements, 72
reference, dummy, and target points in planar view, 71
virtual construction meta-object, disassembling, 73–6
calculating position of newly disassembled child node, 75
child node, movement inside, 73
designed transformation chain algorithm, 76
relationship between coordinate frames of different CAD objects, 74
level of hierarchy, 73
transformation chain, 75
ASP.NET 2.0, 121
asynchronous methods of communication, 13
augmented reality (AR), 8, 9, 37, 38, 152, 173, 258
visualization, 54–5
vs. virtual reality, 55–6
Augmented Reality Mobile OperAtion platform (ARMOR), 59
automated construction activity monitoring system, 145
components, 145
goal of, 145
Index

B
BACnet, 34
bandwidth, 2, 6, 23, 101, 173, 215, 228, 229, 250
battery-powered wireless sensor
nodes, 219
BIM. See Building Information
Modeling (BIM)
Bluetooth, 30, 31, 177
positioning technology, 30
Building Information Modeling
(BIM), 5–6, 145, 149, 151, 176, 251
formats, 180
servers, 181
building information on site
challenges, 149
2D drawings, 150
drawbacks of, 150
information display, 152
augmented reality (AR), 152
virtual reality (VR), 152
information integration, 150
Building Information Modeling
(BIM) (See Building
Information Modeling
(BIM))
4D modeling and nD
modeling, 150–1
wearable and mobile devices, 152–3
objectives, 153
Business Process Execution Language
(BPEL), 252

C
CAD software, 173, 176, 243
CAD visualization, 4D, 57
case studies, 21
construction education setting, 22–3
construction site environment, 21–2
context-aware access to project
data/information, 22
for DyCE
evaluation, 143–4
new hotel complex, 141–2
sewage system, 142–3
inventory logistics support, 21
profile-based task allocation, 21
train station, 23–4
Cave Automated Virtual Environment
(CAVE), 174
cell phone/smart phone, 26
functions, 27
clear channel assessment (CCA), 31
client–server (CS) model, 3
cloud computing, 239–42
categories of interoperability in, 249
challenges, 247
data security and governance, 247
interoperability issues, 247–9
searching for right
services, 249–50
service reliability, performance and
availability, 250
trust issues, 250
as construction collaboration
enabling technology, 243–4
benefits of SaaS perceived
by, 244–5
perceived benefits, according
to IT Cloud Services
Survey, 245
reduction of cost of IT system, 246
system flexibility, and
elasticity, 246–7
system maintenance and software
updating, 247
thin client support, for system
mobility, 246
CoAP – Constrained Application
Protocol, 33
collaboration framework, 250
cloud-based framework, 251
standards, for
implementation, 251–2
collaborative technologies
in design, analytical
frameworks, 170–2
eyear design technologies,
characterization, 172–7
categories, 173–7
communication protocols, 31–3
open protocols, 33
compatibility, 180
for laptop computer, to collect bridge response data, 180
computer-supported collaborative work (CSCW) framework, 170–2
for communication category, 171–2
content, 171
type, 171
conditional texture anisotropy (CTA), 199
construction equipment, 193–6
in construction sites, 194
3D models for vehicle recognition, 194–5
genetic algorithms, for selecting optimal components, 195
principal component analysis (PCA), 195
Semantic Texton Forests (STFs) method, 195
wheel loader recognition, 196
context-aware access to online resources, 22
classroom response, 22–3
information delivery, 86
learning content, delivery of, 22
CORBA technologies, 239
CTA. See conditional texture anisotropy (CTA)

D
damage and defects recognition, 196
air pockets, 197
concrete surface cracks, 196–7
concrete surface discoloration, 198
global building damage, 199
pavement surface, 199
Rebar exposure, 198
steel surface, 198
design-for-safety-process (DFSP) tool, 152
designing
AR application, algorithm used in, 64
from collaborative design to collective design, 184
in construction and civil engineering, 55, 56
of construction operations, 58
in immersive environments, 183–4
DesignWorld, 175
benefits, 176
Device Profile Web Services (DPWS) protocol, 33
components, 33–4
Dexia Tower, 180
digital measurement tools, and synchronization, 130
Digital Project, 176
Discrete Event Simulation (DES) model, 54, 57–60, 63, 76, 77, 82
4D model of building, 145
document sharing systems, 14
DOF input, 88
dynamic communication environment (DyCE), 134–6
based on E-site project, 134–5
database management system, accessible through, 138
deployment architecture, 137–9
features describing, 135
functional schema, 138
infrastructure, 139
on-site evaluation, 139
case studies, 141–3
collecting data, 139–41
overall architecture, 136–7

E
EDM-2 project, 176
Ekahau tracking system, 95
components, 96
Ekahau ApplicationSuite (EAS), 96
Ekahau Client, 96, 97
Ekahau Manager, 96–9
Ekahau Positioning Engine (EPE), 96, 97
deployment and calibration, 97
operation, 97–8
C++ application, 99
Ekahau Java SDK using TCP sockets, 98
pseudo code, of client application, 99
embedded devices, 26
 partially autonomous systems of, 27
energy detection (ED), 31
engineering communication in construction process (es), 128–9
enterprise resource planning (ERP) systems, 139
E-site project, 132–3
 informal communication to, 132

F
fingerprinting technique. See Ekahau tracking system
Fisher information matrix (FIM), 230

G
3G/4G technologies, 13
Global Positioning System (GPS), 13, 87
 based tracking mechanism, 58
 georeferencing-based algorithm, 93
 indoor, 87, 89, 91, 92, 104, 105
 for indoor applications, 94
 integration, and inertial navigation, 116
 measure user’s position, 94
 navigation signal, 91
Google App Engine, 252
Google Earth API, 121
Google Earth Plug-In, 121
GPS. See Global Positioning System (GPS)
 graphical user interfaces (GUI), 172

H
Haar transform, 197
HCl. See human–computer interaction (HCI)
Head Mounted Display (HMD), 59
 human-computer interaction (HCI), 13, 169, 170, 173, 178, 182
 developing VDS, 172
technology, in collaborative design, 171
human–computer interfaces, 8, 88
hybrid computing environment, 174

I
ICTs. See information and communication technologies (ICTs)
IEEE 802.14.1 (WPAN), 30
IEEE 802.15.4 (Low Rate WPAN), 30–1
IEEE LAN/MAN Standards Committee, 31
iHelmet, 149, 153
design and implementation of, 153
 development environment, 154
 implementation method, 155–6
 system architecture, 153–4
 limitations, 164
 overcome, 164
 major advantages, 163–4
 programming languages, for improvement of environment, 154
i-LAND project, 174
iModule implementations, 157
display module, 162–3
distance value, 159–60
information integration module, 157
positioning module, 157–8
projection range, 160
manipulation module, 160–2
Industry Foundation Classes, 176, 248
 schema, 177
Inertial Measurement Unit (IMU) sensor, 117
information and communication technologies (ICTs), 11, 12, 128–9, 174, 237, 239
 information searching, 13
infrared (IR) transmission technologies, 90
inspection-oriented applications, 130
integrated service delivery architecture, 15–17
 access tier, 16
 client tier, 16
 contents, and applications tier, 16
 semantic tier, 16
service discovery, and resource integration tier, 16
integrated tracking system (ITS), 88, 118
algorithm, flowchart for, 120
arrangement, 119
average jumps in ITS coordinates for different walks, 123
validation of, 121–3
longer walks, 122
short and complex walks, 122
short and simple walks, 121–2
sustainability walk, 122–3
International Alliance for Interoperability (IAI), 176
internet gaming environments, 181
internet technologies, 239
interstory drift ratio, 199
intranet/internet-based store of information, 14–15
intranet portals, and management systems, 176
iPADs, 27, 179
iPhone OS, 154
iPhone SDK3.0, 154
iPod Touch, 149, 154
ITS. See integrated tracking system (ITS)
ITS mobile user, 118
K
Keyhole Markup Language (KML), 121
L
LAN (Local Area Network), 17, 31, 95, 135, 174, 179
laptop, 1, 26, 27, 59, 105, 118, 216
link quality indication (LQI), 31
Linux operating system, 117
LiveBoard, 174
location-aware techniques, 88
LonWorks, 34
M
Mac OS X, 154
metaDESK, 174
Meter-Bus, 34
M2M applications, 30
mobile computing
characteristics of, 1, 3
adaptability, 3, 5
information dissemination and management, 5–6
mobility management, 5
security, 6–7
sensor networks, 6
in construction process(es)
considerations in effective deployment of, 257
potentials of, 129–32
to construction sector organizations
benefits of, 256–7
extended system, 135
facts, 130
purposes, in context of design collaboration, 178
rationale of applying mobile devices, 179–80
reliable data collection, in construction project, 144
technological infrastructures, for connectivity, 177
mobile computing technology. See mobile computing; pervasive computing
mobile devices, limitations of, 12–14
mobile document management system, 132
mobile sensing, 130
mobile workers’ effectiveness to perform task, 13
N
network databases, 181
network layer (NWK), 31
O
Objective-C, language, 154
OntoWise, 18–20
automated notification, 20
Drawing_1, 19
ontological structure, 20
personalized information, 20
RDF(S) database, 19
OntoWise (Continued)
searching and accessing information, 20
Uniform Resource Identifier (URI), 19
OPC-UA – OPC-Unified Architecture, 33
Optoma LED projector, 149
Optoma PK101 projector, 154
Organization for the Advancement of Structured Information Standards (OASIS), 252
OSI (open systems interconnection), 27 communication stack, 28, 32
Ovjet, 182

P
PDAs. See personal digital assistants (PDAs)
Personal Dead Reckoning (PDR) system, 87–8, 116–18
based PDR system, 118
drawback, 119
features, 117–18
linear displacement, 117
position estimation, 117–18
small nIMU strapped onto mobile user’s shoe, 117
personal digital assistants (PDAs), 1, 3, 22, 132, 153, 169, 177, 179, 180
Personal Odometry System (POS), 117
personnel recognition, 193–6. See also construction equipment component-based human recognition system, 194
in construction sites, 195
histogram of oriented gradient (HOG), 193, 194
probabilistic framework, of assembling human body components, 194
RANSAC model, 194
pervasive computing, 7–8
context awareness in, 8–9
environment involving people with different work roles, 28
privacy and security issues in, 8
technologies suitable for, 29
pervasive devices, 26, 33, 34
pervasive outdoor AR visualization, 76–7
earthmoving operation, 79–81
aerial view, 79
assumptions, 79
with change in user’s head orientation, 81
with continuous change in user’s global position, 80
timeline, 80
offshore concrete delivery operation, 77–8
structural steel erection operation, 81, 82
in ARVISCOPE, 82
P3 project, 176
principal component analysis (PCA) based algorithm, 196
profile factor descriptions, 4
project database/repository, 18. See also OntoWise project, organizational structures, 133
multilevel, transformation of, 134
proprietary buses, and protocols, 34–5
prototype system implementation, 17–18
push-based services, 14

R
radio-based technology, 89
Radio Frequency Identification (RFID), 7, 89, 90, 100
active RFID tags, 90
passive RFID system, 90
radio frequency (RF) transmission technologies, 90
based WLAN, 90
radio standards, 27
characteristics, 29
raw transceivers, for serial point-to-point communication, 30
real time kinematic corrections, 118
real-time train information, 23
Revit, 176
RTK-GPS system, 118, 120
security alerts, 23
semantics-based mapping, 17
SEPIA, 176
service-oriented architecture (SOA) protocols, 33
CoAP – Constrained Application Protocol, 33
Device Profile Web Services, 33
OPC-UA – OPC-Unified Architecture, 33
in real-time applications, 34
use of XML, 34
Simple Object Access Protocol (SOAP), 33, 251, 252
Skype, 181
social network analysis, 139
3D spatial user tracking, validation of accuracy, 106
indoor GPS-based indoor experiments, 113–15
indoor positioning technologies, comparative summary, 115–16
objective, 106–7
UWB-based indoor experiments, 111–13
deployment of UWB receivers, 114
plan view of UWB receiver setup, 112
reference tag setup at, 114
response robot evaluation exercise, 113
steel structure, 113
UWB tracked user inside maze, 112
WLAN-based indoor experiments, 107–11
Ekahau calibration reference points, 111
Ekahau test bed within, 110
experiment performed at NIST, 109
floor plan, 110
simulated structural engineering laboratory inspection, 111
virtual representation, 108–9
STEP model, 177
structural element recognition, 189–93
color/texture-based methods, 189
concrete column detection, 192
geometry-based methods, 190
maximum cluster dimension, 190
morphology-based 3D CAD model filtering techniques, 190
scale/affine-invariant feature-based methods, 192
structural health monitoring (SHM) system, 210
algorithms, 210, 214, 215
collaborative, 226–8
node-level, 224–6
properties, 215
appropriate sampling frequency and time strategy, 210
common services required by SHM applications, 231
designing, 210
drawbacks of, 212
generation of data, to realize delivery, 228–9
locations of sensors, 210
structural phenomena, 210
wire-based SHM systems (See wire-based SHM systems)
Structure Query Language (SQL), 138
support vector machine (SVM), 193, 194, 196

tabletop system, 179, 180
tangible user interfaces (TUIs), 173
task profile factors, 4
task–technology mapping, 1
TCM5 magnetic orientation tracker, 92, 93
telematic digital workbench, 181
“Touch” project, 180
training skills. See also virtual training system (VTS)
relating virtual technologies to, 47–9
complex sensorimotor skills, 50
hybrid approach, 51
training skills (Continued)
memory and procedure learning, 50
reasoning and planning, 49
simple sensorimotor skills, 50–1
spatial skills, 49–50

U
Ultra-Wide Band (UWB) network, 87, 92, 99–102
user tracking, in construction environments, 92–5
define orientation of aircraft in flight, 93
indoor GPS-based, 102–6
pseudo code, 106
retrieving positioning and orientation, 106
tracking system, 105
triangulation approach, 105
to track a user’s dynamic viewpoint, 94
UWB-based, 99–102
Data Header, 101, 102
identification (RFID) tags and operation, 100–101
multilateration approach, 102
output results from Sapphire HUB, 103
pseudo code to extract UWB position coordinates, 103
retrieving positioning and orientation, 104
Sapphire UWB tracking system, 101, 102
Timestamp, 101
WLAN-based, 95–9
fingerprinting approach, 96
user localization with WLAN technology, 95

V
videogrammetric surveying, 199–203
arrangement of cameras, 202
benefits, 201
for construction site surveying, 202
calculation of 3D spatial data, 202
limitations, 202
video sequence, captured from monumental fountain, 202, 203
visual triangulation, 200
VideoWindow, 175
virtual environments (VEs), 37
Virtual Organizations (VOs), 238
Virtual Reality Markup Language (VRML), 153
virtual technologies, 37
assessment, 38
categories of technologies, 37, 38
effectiveness of, 38
virtual training system (VTS), 38, 50
advantages, over real training, 38
computer-supported, 45
controllable components for equipment, 42
degree of realism of feedback, 43
degree of realism of input device, 43
equipment, 43
stimulus, 42
tools, 43
distinguishing properties, of training environments, 46
extent of training scenarios, 44–5
Hybrid VTS, 51
properties of training task scenario, 45–7
reality-virtuality continuum, 39
taxonomy for defining, 39–42
virtual training technologies, 39. See also virtual training system (VTS)
advantages and disadvantages, 40–1
components, 44
model of continuum for suitability of, 49
taxonomy, for modeling training scenario knowledge, 44
VR-based collaborative environment, 177
VTS. See virtual training system (VTS)
W
Web browser technology, 12
Web Service Description Language (WSDL), 251
Wellner’s DigitalDesk, 174
Widely Integrated Simulation Environment (WISE), 121
Wi-Fi, 7, 13, 154
WIMAX, 30
Windows Azure, 252
wire-based SHM systems, 211
Bill Emerson Memorial Bridge, 211
challenges for, 218
Geumdang Bridge, 216
Golden Gate Bridge, 216, 217
Humber Bridge, 211
Jindo Bridge, 217
National Aquatic Center, 211
Torre Aquila Tower, 217, 218
Tsing Ma Bridge, 212
wireless communication, 181
Wireless LAN (WLAN), 31, 87, 90–2
based position system (See Ekahau tracking system)
wireless networks, 6, 13, 90, 132, 173, 213. See also wireless sensor networks; Zigbee
wireless sensor networks, 213–15
advantages, 213
battery-powered wireless sensor nodes for monitoring, 219
energy harvesting, 223–4
event-based wakeup, 220–1
in-network processing, 222–3
schedule-based wakeup, 220
sleep and wakeup, 219–20
hybrid approach, 221–2
challenges, 215
to deploy sensor nodes, 229–30
to maximize FIM, 230
use of p-SPEM, 230
to develop middleware framework for, 230–2
to realize automatic SHM, 232
services required by, 231–2
environmental monitoring, sensing, 214
monitoring civil structure, 214
off-the-shelf smart sensor nodes, 213
to realize long-term monitoring with, 219
synchronization error, 214
TinyOS, significance of, 215
vs. SHM applications, 214
vs. wire-based, 216
WiSeCon, 11
WLAN network, 22
WLAN tags, 21
workflow management system (WFMS), 137
World Wide Web (WWW), 173, 238, 239, 251
X
XeroxPARC, 174
XML schema, 21
XML/XSLT technologies, 139
Z
Zigbee
characteristics of, 29
ZigBee device objects (ZDO), 31
ZigBee device profile (ZDP), 31
Zigbee protocol, 90
ZigBee security services, 31