INDEX

Accessory viral proteins
intrinsic disorder, 17–19
structure and function, 8–9
N-Acetyl-tryptophan-4-nitrophenyl ester,
Semliki forest virus protein
C-terminally truncated variants, structural
studies, 359–367
enzymatic activity and steady-state kinetics,
352–354
pre-steady-state kinetics, 354–358
Acidic activator domains (AADs),
phosphoprotein N-terminal domain
(PNT) comparisons, 57–58
Acidic repeats (AR1/AR2), NusA–λN protein
interaction, 435–440
Adaptation, intrinsically disordered proteins,
9–11
α-helicity
HIV-1 Tat, 244
partly disordered phosphoprotein C-terminal
domain (PCT), 58
phosphoprotein N-terminal domain (PNT),
58
Sendai virus, nucleoprotein structural
characterization, 104–109
viral protein genome (VPg), molecular
recognition, 298–301

Alphaviruses:
capsid protein structure, nucleic acid
recognition and binding, 39
cryo-electron microscopic analysis,
350–351
genome regulation, RNA synthesis,
348–349
replication and processing, 347–348
Alternative splicing, viral genomes, 19–21
Amide chemical shift values
hepatitis C virus core protein, NS5A D2
domain, NMR analysis, 418–419
Semliki forest virus protein
C-terminally truncated variants, enzymatic
activity and steady-state kinetics,
352–354
substrate search and inhibition studies,
358–359
substrate search and inhibition studies,
358–359
Amino acid composition profiling
intrinsically disordered proteins, 10–11
Tat (transactivator of transcription), 234–236
Amino acid sequencing, capsid proteins,
stabilization and nucleic acid release,
42–43
Analytical ultracentrifugation (AUC), Potyviral
viral protein genome (VPg)
hydrodynamics, 284–285

Edited by Vladimir N. Uversky and Sonia Longhi.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
INDEX

1-Anilinonaphthalene-8-sulfonate (ANS),
Semliki forest virus protein, C-terminally
terminally truncated variants, structural studies,
363–367
Antisense transcriptions, viral genomes, 19–21
Antitermination complex, Phage λ, 427–428
λN protein, 428–430
Apoptosis, Tat (transactivator of transcription),
232–234
Arginine-rich motif (ARM):
peptide–RNA binding, λN protein–RNA
interaction, 430–431
Sobemovirus assembly, coat protein control,
271–273
Arrhenius plots, Semliki forest virus protein,
C-terminally truncated variants,
pre-steady-state kinetics, 356–358
Aspartic acids, Sendai virus, nucleoprotein
structural characterization, 108–109
Assembler proteins, intrinsically disordered
proteins, 228–229
Assembly control, capsid protein structure,
39–41
Asymmetric flow field-flow fractionation
(AF4), viral protein genome (VPg),
oligomerization, 282–284
Atomic force microscopy (AFM), NTD, ID and
N63K domain analysis, 457–462
Autonomous folding units, phosphoprotein
modular organization, rhabdoviruses,
126–128
Average proton density ratio, viral protein
genome (VPg) structural analysis,
289–291
Avian influenza viruses:
pandemics, 177–178
predicted intrinsic disorder, 189
swine influenza vs., 190–191
Bacteriophage, see Phage λ
Barley stripe mosaic virus (BSMV), triple gene
block, 446–447
β-annulus, Sobemovirus assembly, coat protein
control, 271–273
B-factor plots, HIV-related viruses, matrix
proteins:
PONDR® disorder predictors vs., 153–155
predicted intrinsic disorder correlation, 157
Binding affinity:
intrinsically disordered proteins, 228–229
NusA–λN protein interaction, acidic repeats
(AR1/AR2), 439–440
Bioinformatic analysis, Sobemoviruses,
intrinsically disordered proteins,
260–261
Blood-brain barrier (BBB), Tat (transactivator
of transcription) and, 234
Bovine immunodeficiency virus (BIV):
BIV matrix protein p16, 150
epidemiology, 146
predicted intrinsic disorder, 151–153
Bromoviridae family, capsid viral proteins,
assembly control, 40–41
Burst kinetics, Semliki forest virus protein,
C-terminally truncated variants, 354–358
N-tert-Butoxycarbonyl-tyrosine-4-nitrophenyl
ester, Semliki forest virus protein:
C-terminally truncated variants, structural
studies, 359–367
enzymatic activity and steady-state kinetics,
352–354
pre-steady-state kinetics, 354–358
Calciviruses, viral protein genome (VPg),
α-helix and molecular recognition, 298
Cancer cells:
human papillomavirus, E7 protein, 315–316
immune evasion and oncolysis, 160
Caprine arthiritis-encephalitis virus (CAEV):
epidemiology, 147
matrix protein, 150
predicted intrinsic disorder, 151–153
Capsid proteins:
amyloid control, 39–41
capsid-encoding organisms, classification
of, 3
extended arm structure, 36–39
intrinsically disordered structure, 2
nucleic acid recognition and binding, 36–39
Semliki forest virus:
C-terminally truncated variants, structural
studies, 359–367
structural characterization, 348–351
Sobemovirus assembly, coat protein control,
271–273
stabilization, nucleic acid release and, 41–43
structural properties, 35–36
viral structural proteins, 5–7
intrinsic disorder, 13–14
Capsomers, viral structural proteins, 5–7
Casein kinase II (CKII), E7 oncoprotein,
human papillomavirus, phosphorylation,
318
CD4+ T lymphocytes:
HIV-1 life cycle, 226–227
latent HIV infection and, 223
Cell culture grown HCV (HCVcc), hepatitis C virus core protein, virion structure, 389–390
Cellular origin hypothesis, viral evolution, 3
Cellular targeting, E7 oncoprotein, human papillomavirus, 318–319
Chaperones:
- hepatitis C virus core protein, RNA binding and chaperoning, 384–386
- HPV16 E7 protein, intrinsic disorder, chaperone-holdase activity, 328–329
- intrinsically disordered proteins, 228–229
Charge-hydrophobicity (CH):
- Flavivirus core proteins, 393–395
- λN protein, antitermination complex, 429–430
- viral protein genome (VPg) analysis, 303
Chemical shift experiments:
- hepatitis C virus core protein, NS5A D2 domain, 418–420
- λN protein–RNA interaction, λN–nut BoxB interaction, 432–434
- Tat (transactivator of transcription) dynamics, 237–240
Chemokine receptors, HIV-1 life cycle, 227
Chorismate mutase, Semliki forest virus protein, C-terminally truncated variants, structural studies, 367
Circular dichroism (CD):
- E7 oncoprotein, human papillomavirus: noncanonical secondary structure, 324–326
- secondary and tertiary structure, 320–321
- internal ordered domain, order-prone segments, 454–457
- NS5A D2 domain, hepatitis C virus core protein, 414–416
- NTD and N63K intrinsically disordered polypeptides, 453–454
- recombinant proteins, 451
- Semliki forest virus protein, C-terminally truncated variants, structural studies, 361–367
- viral protein genome (VPg) structural analysis, 286–289
Cis-acting RNA elements (CREs), hepatitis C virus core protein, encoding mechanism, 381–384
cMyc transcription activator, intrinsically disordered proteins, drug development and, 245
Coat proteins (CPs):
- Sobemoviruses: capsid assembly control, 271–273
- intrinsically disordered proteins, 257–258 structural properties, 35–36
Coevolution hypothesis, viral evolution, 3
Complex capsid proteins, structure, 7
Conformational equilibria, E7 oncoprotein, human papillomavirus, 321–322
in vivo diversity, 322–324
Consensus predictions, Rhabdovirus structure, phosphoprotein modular organization, 124–128
Contact points, HIV-related viruses, matrix proteins, POND® disorder predictors vs., 153–155
Core protein:
- Flaviviruses, structure and disorder in, 393–395
- hepatitis C virus (HCV), 376–393
- flexibility, viral infection network and, 391–393
- intrinsically disordered protein properties: biophysical characterization, 378–380
- RNA chaperoning, 386–387
- membrane binding, 380
- particle assembly:
 - cell culture grown HCV (HCVcc), 389–390
 - nucleocapsid structure, 388
 - serum HCV, 389
 - virion structure, 388–389
- RNA binding and chaperoning, 384–386
- “RNA structural code,” 381–384
- genome protein-coding region, 383–384
- untranslated regions, 382–383
- structural properties, 377–378
- virion structure comparison, other Flaviviridae, 390–391
Creighton electrophoresis, intrinsically disordered polypeptides, 453–454
Critical micellar concentration (CMC), E7 oncoprotein, human papillomavirus, noncanonical secondary structure, 326
Cryo-electron microscopy:
- capsid protein structure, 35–36
- nucleoprotein and phosphoprotein structural disorder, transcription and replication, 73–76
C-terminal domain:
- hepatitis C virus core protein, membrane binding, 380
- NS1 protein, influenza virus, 175
- Semliki forest virus protein:
 - capsid protein structural studies, 359–367
C-terminal domain: (continued)
 enzymatic activity and steady-state kinetics, 352–354
 pre-steady-state kinetics, 354–358
 reactivation, Trp267 deletion, 351
 structure and folding properties, 351
 Semliki forest virus protein variants, substrate search and inhibition studies, 358–359
C-terminal phosphoprotein (PCT):
 Rhabdovirus structure, terminal folded domain, 128
 structural organization:
 measles, NIPAH and Hendra viruses, 58–59
 Sendai viruses, 103–104
C-terminal segments:
 capsid viral proteins, assembly control, 40–41
 phosphoprotein:
 partly disordered domain, 58–59
 structural organization, 52
Cumulative distribution function (CDF), viral protein genome (VPg) analysis, 303
CyPA/CypB proteins, hepatitis C virus core protein, NS5A D2 domain, NMR analysis, 418–419
Degeneracy hypothesis, viral evolution, 3
Degradation mechanisms, E7 oncoprotein, human papillomavirus, intrinsic disorder, 318
Density parameters, intrinsically disordered proteins, 10–11
Detergent-insoluble glycosphingolipid-enriched domains, influenza virus predicted intrinsic disorder, lipid raft requirement, 183–184
D-functional domains, hepatitis C virus core protein, 377
 intrinsically disordered characterization, 378–380
Dimer linkage sequence (DLS), hepatitis C virus core protein, RNA binding and chaperoning, 386
Dipolar coupling probes, Sendai virus disordered protein, NMR analysis, 98–99
Disease gene network, intrinsically disordered proteins in, 2
Disorder/disorder pairing, HA and NA, influenza virus evolution and, 184
Disordered residues:
 influenza virus:
 polarity around hemagglutinin, 190
 predicted intrinsic disorder and, 178–181
 Lentivirinae matrix proteins:
 HIV-1 vs. HIV-2 and SIVmac, missing disorder residues, 155
 predicted disorder, 151–153
 predicted intrinsic disorder rates, vaccine development difficulties, 155
 measles, Nipah, and Hendra viruses, NTAIL terminal domain, 63–65
 Sobemoviruses, viral protein genome (VPg) modulation, 264–267
 Tat (transactivator of transcription), amino acid sequencing, 234–236
Disorder prediction. See Predicted intrinsic disorder (PID)
Disorder propensity calculations, intrinsically disordered proteins, 10–11
Disorder-to-order transition:
 intrinsically disordered proteins, 228–229
 predicted disorder, 229–231
 LMV viral protein genome, eIF4E binding, 293–296
 Display sites, intrinsically disordered proteins, 228–229
 Disulfide bonds, viral protein genome (VPg) oligomerization, 284
DNA:
 human papillomavirus, E7 protein, transcription, 315
 intrinsically disordered protein structure, 2
DNA viruses:
 human papillomavirus, E7 protein, interaction with tumor viruses, 316
 origins, 3
 DOPS vesicles, Potyviral viral protein genome (VPg) interaction, 292–293
 Double-stranded RNA, capsid protein structure, nucleic acid recognition and binding, 37–39
 Double wavelength plots, internal ordered domain, order-prone segments, 457
Drug therapy, HIV-1 Tat and, 244–245
Dynamic light scattering (DLS) studies:
 NTD, ID and N63K domain analysis, 457–462
 phosphoprotein N-terminal domain (PNT), 56–58
 Tat (transactivator of transcription) analysis, 240
 viral protein genome (VPg), temperature effects, 281
E2 master regulator, HPV16 E7 protein interaction, 329–330
E6 oncoprotein:
 classification and functions, 4–5
INDEX

477

intrinsic disorder, 16–19
origin and diversification, 331–332
E7 oncoprotein:
classification and functions, 4–5
intrinsic disorder, 16–19
E7 oncoprotein, human papillomavirus,
intrinsic disorder:
CKII phosphorylation, 318
degradation, 318
DNA transcription, 315–316
domains and structure, 317–318
evolutionary role of, 334–335
future research issues, 336
genomic organization, 313–314
HPV16 conformational equilibria and
structure, 319–322
dimer transitions, 321–322
hydrodynamic properties, 319–320
oligomerization, 322
secondary and tertiary structure, 320–321
three-dimensional structure, 321
HPV16 interaction mechanisms, 327–331
chaperone-holdase activity, 328–329
E2 master regulator interaction, 329–330
retinoblastoma tumor suppressor
interaction, 330–331
noncanonical secondary structure, 324–326
oligomerization, 326–327
origin and diversification, E6 and E7 genes,
331–332
papillomavirus structure and replication,
313–315
polyproline II structure, phosphorylation
modulation, 327
sequence conservation, 332–334
ECT conservation, 332–333
E7N conservation, 334
sequence similarity, other viral proteins,
335–336
targets, 318–319
viral replication, 314–315
in vivo conformational diversity, 322–324
Effector proteins, intrinsically disordered
proteins, 227–229
Ellipticity values, phosphoprotein N-terminal
domain (PNT), 56–58
Endothelial cell proliferation, Tat
(transactivator of transcription), 232–234
Entropic chains, intrinsically disordered
proteins, 228–229
Entropy exchange model, RNA chaperones,
hepatitis C virus core protein, 387
Enzymatic activity, Semliki forest virus protein,
C-terminally truncated variants, 352–354
Equilibrium dissociation constant, measles
N_TAIL terminal domain, molecular
folding mechanisms, 67–68
Equilibrium sedimentation analysis, Semliki
forest virus proteins, 359–367
Equine infectious anemia virus (EIAV):
epidemiology, 146
matrix disorder and viral variations,
159–160
matrix protein, 150
relatively ordered structure, 157
PONDR® VLXT analysis, B-factor plots
and contact points vs., 153–155
predicted intrinsic disorder, 151–153
HIV comparisons, 157
pattern comparisons, 158
Tat (transactivator of transcription), x-ray
diffraction studies, 240–242
X-ray diffraction studies, 240, 242
Ester derivatives, Semliki forest virus,
C-terminally truncated variants,
enzymatic activity and steady-state
kinetics, 352–354
Eukaryotic translation initiation factor eIF4E:
LMV viral protein genome binding,
disorder-to-order transition, 293–296
Potyvirus viral protein genome (VPgs),
279–280
Evolution, viral role in, 3
Extended arm structure, capsid proteins:
assembly control, 40–41
nucleic acid recognition and binding, 36–39
stabilization and nucleic acid release, 41–43
Extracellular environment, structural disorder
and molecular partnership, 79–80
Far-ultraviolet (far-UV) circular dichroism:
hepatitis C virus core protein, 378–380
recombinant proteins, 451
Semliki forest virus protein, C-terminally
terminated variants, structural studies,
361–367
Fatty acid deprivation, influenza virus predicted
intrinsic disorder, infectivity loss and,
182–183
Feline immunodeficiency virus (FIV):
epidemiology, 146
FIV matrix protein p17, 149–150
PONDR® VLXT analysis, 151
predicted intrinsic disorder, 151–153
Filamentous viruses:
capsid structure, 5–7
NTD, ID and N63K domain analysis,
461–462
Flaviviruses:
classification of, 375–376
core proteins, structure and disorder in, 393–395
replicative cycle, 376–377
virion structure, hepatitis C virus core protein comparisons, 390–391
Flexible loop binding, Rhabdoviridae
phosphoprotein, 128–130
Flexible-Meccano algorithm, Sendai virus disordered protein, phosphoprotein structural characterization, 101–104
Fluorescence spectroscopy, viral protein genome (VPg) structural analysis, 286–289
Fly-casting effect, Sendai virus, nucleoprotein structural characterization, 108–109
FoldIndex disordered prediction system:
PSLV TGBP1, secondary structure prediction, 447–449
triple gene block1 protein (TGBP1) organization, 462–463
Folding processes:
hepatitis C virus core protein, 380
intrinsically disordered proteins, 227
measles, Nipah, and Hendra viruses, N TAIL terminal domain, 64–65
phosphoprotein N-terminal domain (PNT), 56–58
Sendai virus, nucleoprotein structural characterization, 108–109
Sendai virus disordered protein, phosphoprotein domains, 100–104
Fourier transform infrared spectroscopy, recombinant proteins, 451
Functional module organization, rhabdovirus phosphoprotein, 122–125
“Fuzzy complexes,” hepatitis C virus core protein, intrinsically disordered characterization, 380
Gag polyprotein:
HIV-1 matrix protein p17, 147–148
HIV-1 virion structure, 225–226
HIV-2 matrix protein p17, 148–149
viral genomes, 19–21
GB virus B (GBV-B), classification, 375
Gel filtration analysis, NS5A D2 domain, hepatitis C virus core protein, 411–414
Gene transactivation, viral nonstructural proteins, 8
Genome organization:
E7 protein, human papillomavirus, 313–314
hepatitis C virus core protein, protein-coding regions, 383–384
rhabdoviridae, 116–118
Genome-scale ordered RNA structure (GORS), hepatitis C virus core protein, protein coding regions, 384
Genomic RNA (gRNA), Sobemoviruses, intrinsically disordered proteins, 258–260
Glycoproteins:
HIV-1 virion structure, 225–226
HIV matrix protein disorder, 159
GNRA folding, αN protein–RNA interaction, αN–nutBoxB interaction, 432–434
H1N1 influenza virus:
evolution of, 178
initial nonvirulent strain, 190
intrinsically disordered regions, virulence and, 187–190
ordered region increase and virulence decrease, 187–189
predicted intrinsic disorder and infectivity, 185–190
HA-mediated fusion, 184
at hemagglutinin region, 1918 strain, 185–187
polarity of disordered residues around HA, 190
virulence of, 178
H5N1 influenza virus:
evolution of, 178
intrinsically disordered regions, virulence and, 187–190
pandemics, 177–178
predicted intrinsic disorder and infectivity, 185–190
H7N7 influenza virus, pandemics, 177–178
H9N2 influenza virus:
intrinsically disordered regions, virulence and, 187–190
pandemics, 177–178
virulence modulation in, 189–190
H77 genotype, hepatitis C virus core protein, NSSA D2 domain, 411–414
macroscopic analysis, 414–416
NMR analysis, 416–419
Heat shock proteins, structural disorder and molecular partnership, 77–80
Helical conformation, NusA–αN protein interaction, acidic repeats (AR1/AR2), 440–441
Helical viruses, capsid structure, 5–7
Helix-hairpin-helix motif, NusA structure, 436
Hemagglutinin (HA):
 influenza virus structure, 172
disorder/disorder or order/order pairing, 184
H1N1 1918 disorder in region of, 185–187
lipid raft requirement, 183–184
polarity of disordered residues, 190
predicted intrinsic disorder and infectivity, 182–183
transmembrane proteins, ordered structure, 181–182
viral envelope proteins:
 intrinsic disorder, 15
 structure, 7
Hendra virus:
 future research issues, 80–81
nucleoprotein structural organization, 60–72
 intrinsically disordered N TAIL domains, 63–65
 XD-induced folding, molecular mechanisms, 65–72
phosphoprotein structural organization, 51–59
 intrinsically disordered PNT domains, 52–58
 partly disordered PCT domain, 58–59
 replicative complex, 47–51
 structural disorder, nucleoprotein and phosphoprotein:
 molecular partnership, 77–80
 transcription and replication, 72–76
Hepatitis B viruses, capsid protein structure, nucleic acid recognition and binding, 39
Hepatitis C virus (HCV):
 classification, 375–376
 core protein, 376–393
 flexibility, viral infection network and, 391–393
 intrinsically disordered protein properties: biophysical characterization, 378–380
 RNA chaperoning, 386–387
 membrane binding, 380
 particle assembly:
 cell culture grown HCV (HCVcc), 389–390
 nucleocapsid structure, 388
 serum HCV, 389
 virion structure, 388–389
 RNA binding and chaperoning, 384–386
 “RNA structural code,” 381–384
 genome protein-coding region, 383–384
 untranslated regions, 382–383
 structural properties, 377–378
 virion structure comparison, other Flaviviridae, 390–391
 epidemiology, 375–376
 life cycle, 410–411
HIV-related viruses:
 epidemiology, 145–146
 matrix proteins, intrinsic disorder
 BIV matrix protein p16, 150
 equine infectious anemia virus, 150
 FIV matrix protein p17, 149–150
 HIV-1 p17 matrix protein, 147–148
 HIV-2 p17 matrix protein, 148–149
 immune response, 158
 cancer cell evasion and oncolysis, 160
 glycoprotein role, 159
 HIV invisibility puzzle, 160
 HIV vaccine development, 158–159
 immune evasion, 158
 Lentivirinae proteins, 145–147, 151–158
 EIA V disorder patterns, influenza/HIV/SIV comparisons, 158
 EIA V ordered matrix, 157
 PID rate correlation, vaccine development, 155–156
 PONDR® VLXT analysis, 151
 PONDR® VLXT vs. B-factor plots and contact points, 153–154
 predicted disorder-B-factor correlations, 157
 predicted disordered residues, percentage, 151–153
Hidden Markov models, intrinsically disordered proteins, 12–13
His145, Asp165, and Ser219 catalytic triad, Semliki forest virus protein, C-terminally truncated variants:
 enzymatic activity and steady-state kinetics, 354
 pre-steady-state kinetics, 354–358
HIV-1 p17 matrix protein, 147–148
 immune response, 158
 cancer cell evasion and oncolysis, 160
 glycoprotein role, 159
 HIV invisibility puzzle, 160
 HIV vaccine development, 158–159
 immune evasion, 158
 Lentiivirinae proteins, 145–147, 151–158
 EIAV disorder patterns, influenza/HIV/SIV comparisons, 158
 EIAV ordered matrix, 157
 PID rate correlation, vaccine development, 155–156
 PONDR® VLXT analysis, 151
 PONDR® VLXT vs. B-factor plots and contact points, 153–154
 predicted disorder-B-factor correlations, 157
 predicted disordered residues, percentage, 151–153
HIV-related viruses: (continued)
predicted disorder vs.
protein–protein interactions,
156–157
SIV\textsubscript{mac}–HIV-2 similarities, 155
three-dimensional structure
enhancement, predicted
disorder, 155–156
MVV and CAEV proteins, 150
research background, 143–144
retroviral variation, 159–160
SIV matrix protein p17, 149
virion structure, 145–147
HK022 Nun–nut\textit{BoxB} interaction, \textit{\lambda}N
protein–RNA interaction, 434
Hordeivirus:
movement proteins (MPs), classification
and structure, 445–447
triple gene block1 protein (TGBP1) viral
transport and, 462–466
Host cell adaption, hepatitis C virus core
protein flexibility, 391–393
HPV16 E7 protein, intrinsic disorder:
conformational equilibria and structure,
319–322
dimer transitions, 321–322
hydrodynamic properties, 319–320
oligomerization, 322
secondary and tertiary structure, 320–321
three-dimensional structure, 321
interaction mechanisms, 327–331
chaperone-holdase activity, 328–329
E2 master regulator interaction, 329–330
retinoblastoma tumor suppressor
interaction, 330–331
HTLV-1 regulatory proteins:
intrinsic disorder, 20–21
viral genome expression, 19–21
Hub proteins, hepatitis C virus core protein,
flexibility and viral infection network,
319–393
Human disease network, intrinsically
disordered proteins in, 2
Human diseasome, intrinsically disordered
proteins in, 2
Human immunodeficiency virus (HIV):
epidemiology, 144–145, 223
HIV-1:
HIV-1 matrix protein p17, 147–148
HIV-1 vs. HIV-2 and SIV\textsubscript{mac}, missing
intrinsic disorder residues, 155
life cycle, 225–227
Tat (transactivator of transcription),
231–240
amino acid sequence and
properties, 234–236
biological functions, 232–234
multinuclear NMR analysis,
236–240
reduced Tat preparation, 236
structural biology, 236–240
transcription activation, 231–232
x-ray diffraction studies, 242–244
HIV-2, HIV-2 matrix protein p17, 148–149
immune system invisibility puzzle, 160
intrinsically disordered proteins, 227–231
disorder prediction, 229–231
functional role, 227–229
therapeutic implications, 244–245
matrix disorder and viral variations,
159–160
PONDR\textregistered VLXT analysis, 151
B-factor plots and contact points vs.,
153–155
predicted intrinsic disorder, 151–153
EAIV comparisons, 157–158
immune response:
glycoprotein and matrix disorder
joint mechanisms, 159
immune evasion and, 158
vaccine development, 158–159
missing disorder residues, 155–157
pattern comparisons, 158
virion structure, 224–225
Human papillomavirus (HPV):
DNA tumor viruses, 317
E7 protein, intrinsic disorder:
CKII phosphorylation, 318
degradation, 318
DNA transcription, 315–316
domains and structure, 317–318
evolutionary role of, 334–335
future research issues, 336
genomic organization, 313–314
HPV16 conformational equilibria and
structure, 319–322
dimer transitions, 321–322
hydrodynamic properties, 319–320
oligomerization, 322
secondary and tertiary structure,
320–321
three-dimensional structure, 321
HPV16 interaction mechanisms, 327–331
chaperone-holdase activity,
328–329
E2 master regulator interaction,
329–330
INDEX

retinoblastoma tumor suppressor interaction, 330–331
noncanonical secondary structure, 324–326
oligomerization, 326–327
origin and diversification, E6 and E7 genes, 331–332
papillomavirus structure and replication, 313–315
polyproline II structure, phosphorylation modulation, 327
sequence conservation, 332–334
E7C conservation, 332–333
E7N conservation, 334
sequence similarity, other viral proteins, 335–336
targets, 318–319
viral replication, 314–315
in vivo conformational diversity, 322–324
human cancer, 316–317
intrinsic disorder, 16–19
Hydrodynamic properties:
E7 oncoprotein, human papillomavirus, 319–320
measles, Nipah, and Hendra viruses, NTa
terminal domain, 63–65
NTD, ID and N63K domain analysis, 458–462
Potyviral viral protein genome (VPg), 284–286
analytical ultracentrifugation, 284–285
size exclusion chromatography, 285–286
Icosahedral structure:
capsid viral proteins, 6–7
assembly control, 39–41
intrinsic disorder, 13–14
sobemoviruses, intrinsically disordered proteins, 257–258
Immune response:
immune evasion, influenza virus predicted intrinsic disorder, 189
matrix proteins, predicted intrinsic disorder, 158
cancer cell evasion and oncolysis, 160
glycoprotein role, 159
HIV invisibility puzzle, 160
HIV vaccine development, 158–159
immune evasion, 158
Immunomodulation, viral nonstructural proteins, 8
Infectivity, influenza virus predicted intrinsic disorder, 182–184
H9N2 immune evasion vs., 189
Influenza virus:
evolutionary puzzles, 178
hemagglutinin, 172
intrinsic disordered proteins in, research background, 169–170
matrix proteins M1 and M2, 173–174
predicted intrinsic disorder, 151–153
neuraminidase, 172–173
nonstructural proteins, 174–175
neucleoprotein, 175–176
pandemics, 177–178
PB-F2 protein, 177
predicted intrinsic disorder:
average PID residues, viral protein disorder analysis, 178–179
core-based disorder, 182
future research issues, 191–192
H1N1 1918 viral strain:
hemagglutinin region, 185–187, 190
initial nonvirulent strain, 190
H5N1 and H9N2 strains, 187
H9N2 virulence modulation puzzle, 189–190
infectivity vs. immune evasion, 189
hemagglutinin and neuraminidase disorder/disorder or order/order pairing, 184
hemagglutinin disorder-infectivity correlation, 182–183
less virulent strains, increased ordered regions in, 187–189
lipid raft requirement, 183–184
low-pathogenic avian influenza H7N3 strain, absence of disorder in, 189
oligosaccharide secondary virulence switch H9N2 and H5N1, 189–190
swine vs. avian influenza viruses, pattern predictions, 190–191
transmembrane proteins, 181–182
virion, protein location in, 179–182
RNA polymerase complex, 176–177
virion structure, 170–171
virulence, causes of, 178
Influenza virus NS protein 2, intrinsic disorder, 17–19
Inhibition studies, Semliki forest virus protein, 358–359
In silico comparative analysis, viral protein genome (VPg), 296–303
α-helix and molecular recognition, 298–301
Calciviral disorder prediction, 301
cumulative distribution function and charge hydropathy analysis, 303
In silico comparative analysis, viral protein genome (VPg), (continued)

Potyviral predicted intrinsic disorder,
297–298
soybean viral predicted intrinsic disorder, 298

Interferon response pathway, rhabdovirus replication complex, 120–122
Interferon sensitivity-determining region (ISDR), hepatitis C virus (HCV), NS5A D2 domain, 410–411

Internal ordered domain (ID):
dynamic light scattering and atomic force microscopy analysis, 457–462
order-prone segments, 454–457
PSLV TGBP1, secondary structure prediction, 447–449
recombinant proteins, CD and FTIR spectra, 451
recombinant PSLV TGBP1 in E. coli, spontaneous limited proteolysis, 449–450

Internal ribosome entry site (IRES):
hepatitis C virus core protein: NS5A D2 domain, 411
RNA binding and chaperoning, 384–386 untranslated regions, 382–383
Potyvirus viral protein genome (VPgs), 279–280

Intrinsically disordered domains (IDDs):
E7 oncoprotein, human papillomavirus, 322–324
evolutionary mechanisms, 334–335
Flaviviridae core proteins, 375–378
HPV16 E7 protein, retinoblastoma tumor suppressor interaction with, 330–331

Intrinsically disordered proteins (IDPs):
abundance and distribution, 1–2
alternative splicing and overlapping reading frames, viral genomes, 19–21
E7 protein, human papillomavirus:
CKII phosphorylation, 318
degradation, 318
DNA transcription, 315–316
domains and structure, 317–318
evolutionary role of, 334–335
future research issues, 336
genomic organization, 313–314
HPV16 conformational equilibria and structure, 319–322
dimer transitions, 321–322
hydrodynamic properties, 319–320
oligomerization, 322

secondary and tertiary structure, 320–321
three-dimensional structure, 321
HPV16 interaction mechanisms, 327–331
chaperone-holdase activity, 328–329
E2 master regulator interaction, 329–330
retinoblastoma tumor suppressor interaction, 330–331
noncanonical secondary structure, 324–326
oligomerization, 326–327
origin and diversification, E6 and E7 genes, 331–332
papillomavirus structure and replication, 313–315
polyproline II structure, phosphorylation modulation, 327
sequence conservation, 332–334
E7C conservation, 332–333
E7N conservation, 334
sequence similarity, other viral proteins, 335–336
targets, 318–319
viral replication, 314–315
in vivo conformational diversity, 322–324
Flavivirus core proteins, 393–395
functionality, 12–16
nonstructural proteins, 16–17
regulatory and accessory proteins, 17–19
viral Pfam domain seeds, 12–13
viral structural proteins, 13–16
future research issues, 21–22
hepatitis C virus core protein, 378–380
flexibility and viral infection network, 391–393
RNA chaperoning and, 386–387
HIV-1 proteins, 227–231
disorder prediction, 229–231
functional role, 227–229
molecular structure, 223
therapeutic implications, 244–245
virus structures, 224–225
HIV-related matrix proteins
BIV matrix protein p16, 150
equine infectious anemia virus, 150
FIV matrix protein p17, 149–150
HIV-1 p17 matrix protein, 147–148
HIV-2 p17 matrix protein, 148–149
immune response, 158
cancer cell evasion and oncolysis, 160
glycoprotein role, 159
Intrinsically disordered regions (IDRs): (continued)
Molecular Recognition Elements (MoREs), N-terminal region, 127
transcription/replication role of, 130–133
Intrinsic protein fluorescence measurements, Semliki forest virus protein, C-terminally truncated variants, structural studies, 363–367
Japanese fulminant hepatitis (JFH)-1 sequence, hepatitis C virus core protein, NS5A D2 domain, 411–414
macroscopic analysis, 414–416
NMR analysis, 416–419
Jelly-roll motif, Sobemoviruses, intrinsically disordered proteins, 258
Kaposi’s sarcoma, Tat (transactivator of transcription), 232–234
Lentivirinae proteins:
classification, 143–144
intrinsic disorder, 145–147, 151–158
EIA V disorder patterns, influenza/HIV/SIV comparisons, 158
EIA V ordered matrix, 157
PID rate correlation, vaccine development, 155–156
PONDR® VLXT analysis, 151
Lipoproteins, hepatitis C virus core protein, low-density particles, 389–390
λN protein:
Phage λ, antitermination complex, 428–430
RNA interaction, 430–435
ARM peptide-RNA binding, 430–431
HK022 Nun-nutBoxB interaction, 434
λN-nutBoxB interaction, 431–434
N-BoxB complexes, 434–435
Long control region, E7 protein, human papillomavirus, genomic organization, 313–314
Low-pathogenic avian influenza (LPAI), predicted intrinsic disorder, 189
L protein:
Rhabdovirus, replication complex, 119–122
Sendai virus, structural characterization, 96–97
Lysogenic pathway, Phage λ life cycle, 426
Lytic pathway, Phage λ life cycle, 426
M1 protein, influenza virus, 173–174
M2 protein, influenza virus, 174
Macroscopic analysis, NS5A D2 domain, hepatitis C virus core protein, 414–416
Maedi-visna virus (MVV):
epidemiology, 146
matrix protein, 150
predicted intrinsic disorder, 151–153
Matrix viral proteins:
HIV-related viruses, intrinsic disorder, 143–150
BIV matrix protein p16, 150
equine infectious anemia virus, 150
FIV matrix protein p17, 149–150
HIV-1 p17 matrix protein, 147–148
HIV-2 p17 matrix protein, 148–149
immune response, 158
cancer cell evasion and oncolysis, 160
glycoprotein role, 159
HIV invisibility puzzle, 160
HIV vaccine development, 158–159
immune evasion, 158
Lentivirinae proteins, 145–147, 151–158
EIAV disorder patterns, influenza/HIV/SIV comparisons, 158
EIAV ordered matrix, 157
PID rate correlation, vaccine development, 155–156
PONDR® VLXT analysis, 151
INDEX

PONDR® VLXT vs. B-factor plots and contact points, 153–154
predicted disorder-B-factor correlations, 157
predicted disordered residues, percentage, 151–153
predicted disorder vs. protein-protein interactions, 156–157
SIV_{mac}-HIV-2 similarities, 155
three-dimensional structure enhancement, predicted disorder, 155–156
MVV and CAEV proteins, 150
research background, 143–144
retroviral variation, 159–160
SIV matrix protein p17, 149
influenza virus, 173–174
core-localized disorder, 182
intrinsic disorder, 16
structure, 7
Measles virus:
future research issues, 80–81
nucleoprotein and phosphoprotein structural disorder:
molecular partnership, 77–80
transcription and replication, 72–76
nucleoprotein structural organization, 60–72
intrinsically disordered N_{TAIL} domains, 63–65
XD-induced folding, molecular mechanisms, 65–72
phosphoprotein structural organization, 51–59
intrinsically disordered P<sub>N</sub<TAIL> domains, 52–58
partly disordered P_CT domain, 58–59
replicative complex, 47–51
Membrane binding, hepatitis C virus core protein, 380
Membranous web, endoplasmic reticulum, hepatitis C virus replication, 411
Messenger RNA (mRNA), HIV-1 lifecycle, 227
MetaPrDOS meta server, hepatitis C virus core protein, NS5A D2 domain sequencing, 414
Meta-predictions:
hepatitis C virus core protein, NS5A D2 domain sequencing, 414
Rhabdovirus disordered regions, 122–123
Michaels-Menten enzymes, Semliki forest virus, C-terminally truncated variants, structural studies, 359–367
Minimal ensemble approach, Sendai virus, nucleoprotein structural characterization, 107–109
Modular organization, rhabdovirus phosphoprotein, 122–128
functional and structural modules, 122–125
Molecular recognition elements (MoREs):
intrinsically disordered proteins, 228–229
measles, Nipah, and Hendra viruses, N_{TAIL} terminal domain, 63–65
nucleoprotein structural organization, 60–61
phosphoprotein N-terminal domain, 56–58
Rhabdovirus, 127
Sendai virus, nucleoprotein structural characterization, 104–109
structural disorder and partnership with, 77–80
X domain-induced folding, measles N_{TAIL} terminal domain, 65–72
Molecular recognition features (MoRFs):
intrinsically disordered proteins, predicted disorder, 229–231
intrinsically disordered proteins, drug development and, 245
viral protein genome (VPg), α-helicity, 298–301
Moonlighting interactions, intrinsically disordered proteins, 229
Movement proteins (MPs), plant viruses, 445–447
Multimerization phosphoprotein domain (PMD):
modular organization, 58–59
Sendai virus, structural characterization, 99–104
Multiple reading frames, hepatitis C virus core protein, encoding mechanism, 381–384
Multiple sequence alignments, intrinsically disordered proteins, 12–13
Multiple sequence alignments, intrinsically disordered proteins, 12–13
Multinuclear NMR, Tat (transactivator of transcription) dynamics, 236–240
Mutual induced folding, RNA chaperones, hepatitis C virus core protein, 387
Myristoylation signal, HIV-1 matrix protein p17, 148
N_{CORE} domain:
dynamic light scattering and atomic force microscopy analysis, 457–462
intrinsically disordered polypeptides, 451–454
recombinant proteins, CD and FTIR spectra, 451
Mononegavirales viral genome, 49–51
Ncere terminal domain: (continued)
nucleoprotein and phosphoprotein structural
disorder, transcription and replication,
73–76
nucleoprotein structural organization, 61–72
Sendai virus, structural characterization, 97
Nef accessory protein, intrinsic disorder, 18–19
Negri bodies, Rhabdovirus replication cycle,
119
Neuraminidase (NA), influenza virus structure,
172–173
disorder/disorder or order/order pairing, 184
lipid raft requirement, 183–184
transmembrane proteins, ordered structure,
181–182
N-HN residual dipolar couplings, Sendai virus,
nucleoprotein structural characterization,
104–109
NIPAH virus:
future research issues, 80–81
nucleoprotein structural organization, 60–72
intrinsically disordered N_tail domains,
63–65
XD-induced folding, molecular
mechanisms, 65–72
phosphoprotein structural organization, 51–59
intrinsically disordered PNT domains,
52–58
partly disordered PCT domain, 58–59
structural disorder, nucleoprotein and
phosphoprotein:
molecular partnership, 77–80
transcription and replication, 72–76
Nodaviridae viruses, capsid protein structure,
nucleic acid recognition and binding,
37–39
Noncanonical secondary structure, E7
oncoprotein, human papillomavirus,
324–326
Nonstructural proteins:
classification and function, 8
influenza virus, 174–175
viruses and, 2
N-RNA template, intrinsically disordered
protein structure, transcription/replication
and, 131–133
NS1 protein, influenza virus, 174–175
NS5A D2 RNA polymerase, hepatitis C virus
domain:
disorder predictions, genotype variation,
412–414
future research issues, 419–421
macroscopic evaluation, 414–416
NMR spectroscopy, 416–419
primary sequence information, genotype
variation, 411–412
replicative cycle, 409–411
N_tail terminal domain:
intrinsic disorder, measles, Nipah, and
Hendra viruses, 63–65
Mononegavirales viral genome, 49–51
nucleoprotein and phosphoprotein structural
disorder, transcription and replication,
72–76
nucleoprotein structural organization, 61–72
Sendai virus:
disordered structure, 97
nucleoprotein structural characterization,
104–109
structural disorder and molecular
partnership, 77–80
N-terminal domain (NTD):
capsid proteins, stabilization and nucleic acid
release, 41–43
capsid protein structure, nucleic acid
recognition and binding, 36–39
capsid viral proteins, assembly control,
40–41
dynamic light scattering and atomic force
microscopy analysis, 457–462
hepatitis C virus core protein, intrinsically
disordered characterization, 378–380
intrinsically disordered polypeptides,
451–454
NS1 protein, influenza virus, 175
phosphoprotein (PNT):
flexible loop binding, Rhabdovirus,
128–130
intrinsically ordered domains, 52–58
modular organization, rhabdoviruses, 127
nucleoprotein and phosphoprotein
structural disorder, transcription and replication,
73–76
structural organization, 51–52
PSLV TGBP1, secondary structure
prediction, 447–449
recombinant proteins, CD and FTIR spectra,
451
recombinant PSLV TGBP1 in
E. coli, spontaneous limited
proteolysis, 449–450
Semliki forest virus, 348–351
triple gene block1 protein (TGBP1) viral
transport and, 465–466
N-terminal extension region:
Hordeivirus triple gene block1 protein, basic
properties, 446–447
recombinant proteins, CD and FTIR spectra, 451
triple gene block 1 protein (TGBP1) viral transport and, 464–466
NTPase/helicase domain (HELD): Hordeivirus triple gene block 1 protein, 446–447
N-terminal extension regions, non-Hordei-like viruses, 462
PSLV TGBP1, secondary structure prediction, 447–449
recombinant PSLV TGBP1 in E. coli, spontaneous limited proteolysis, 449–450
Nuclear export protein (NEP), influenza virus, 175
Nuclear export signal (NES): Mononegavirales viral genome, 50–51
Rhabdovirus replication complex, 120–122
Nuclear localization signal (NLS): HIV-1 matrix protein p17, 148
Mononegavirales viral genome, 49–51
Potyvirus viral protein genome (VPg), 278–280
Nuclear magnetic resonance (NMR): E7 oncoprotein, human papillomavirus: secondary and tertiary structure, 320–321
three-dimensional structure, 321
hepatitis C virus core protein, NS5A D2 domain, 416–419
Semliki forest virus, C-terminally truncated variants, structural studies, 359–367
Sendai virus disordered proteins, 97–99
Tat (transactivator of transcription): limitations, 240
multinuclear studies, 236–240
reduced Tat preparation, 236
viral protein genome (VPg) structural analysis, 289–291
Nuclear Overhauser effects, Tat (transactivator of transcription) dynamics, 239–240
Nucleic acid: capsid protein structure: recognition and binding, 36–39
stabilization and release, 41–43
Sobemoviruses, intrinsically disordered proteins, P8 domain, P10 activation, 267–271
Nucleocapsid formation: hepatitis C virus core protein: particle assembly, 388
RNA binding and chaperoning, 385–386
nucleoprotein and phosphoprotein structural disorder, transcription and replication, 72–76
nucleoprotein structural organization, 61–72
Nucleoprotein (N): influenza virus, 175–176
intrinsic disorder, transcription and replication, 72–76
Mononegavirales viral genome, 47–51
Rhabdovirus intrinsic disorder: replication complex, 119–122
replication cycle, 119
Sendai virus, structural disorder within: nuclear magnetic resonance spectroscopy, 97–99
reserach background, 95–97
structural characterization of, 104–109
structural organization, 60–72
intrinsically disordered N\textsubscript{TAIL} domains, 63–65
XD-induced folding, molecular mechanisms, 65–72
Nucleoprotein–phosphoprotein (N–P) complex, encapsidation initiation, 63
Nun factor, \(\lambda N\) protein–RNA interaction, HK022 Nun–\text{nutBoxB} interaction, 434
NusA factor, \(\lambda N\) protein interaction, 435–440
binding specificity, NusA acidic repeats to \(\lambda N\), 439
helical conformation to AR1 binding, 439–440
NusA structure, 435–436
peptide complex, 436–439
Nus factor, Phage \(\lambda\): antitermination complex, 427–428
lytic pathway, 426
nut factor:
\(\lambda N\) protein–RNA interaction:
HK022 Nun–\text{nutBoxB} interaction, 434
\(\lambda N–\text{nutBoxB}\) interaction, 431–434
\text{N–BoxB} complexes, 434–435
Phage \(\lambda\): antitermination complex, 427–428
lytic pathway, 426
Oligomerization:
E7 oncoprotein, human papillomavirus: conformational equilibria, 322
intrinsic disordered domains, 326–327
viral protein genome (VPg), 281–284
Oligosaccharide secondary switch, H9N2 virulence modulation, 189–190
Open reading frames:
E7 protein, human papillomavirus, 313–314
Open reading frames: (continued)
hepatitis C virus core protein, untranslated regions, 382–383
HIV-1 virion structure, 225–226
Potyvirus viral protein genome (VPgs), 277–280
Semliki forest virus, 347–351
Sobemoviruses, intrinsically disordered proteins, 260
Order–disorder switching:
capsid proteins, assembly control, 40–41
intrinsically disordered protein structure, transcription/replication and, 131–133
Order/order pairing, HA and NA, influenza virus evolution and, 184
Order-promoting residues:
internal ordered domain, 454–457
measles, Nipah, and Hendra viruses, NTAIL terminal domain, 63–65
Overlapping reading frames:
partly disordered phosphoprotein C-terminal domain (PCT), 59
viral genome intrinsic disorder, 19–21
P8 protein, Sobemoviruses, P10 activation, 267–271
P10 protein, Sobemoviruses, P8 protein activation, 267–271
Palmitoylation, hepatitis C virus core protein, membrane binding, 380
Pandemics, influenza virus, 177–178
Paramyxoviridae, nucleoprotein structural organization, 61–72
parasitic protozoa, intrinsically disordered proteins in, 2
Pariacoto virus, capsid protein structure, nucleic acid recognition and binding, 37–39
Particle assembly, hepatitis C virus core protein:
viral nucleocapsid structure, 388
virion structure, 388–390
flavivirus structural comparisons, 390–391
PB-F2 protein, influenza virus, 177
Pegylated interferon-α, hepatitis C virus therapy, NS5A D2 replicative cycle, 409–411
Peptide complex, NusA–λN protein interaction, 436–439
Peptide mapping, hepatitis C virus core protein, NS5A D2 domain, 416–419
Pestiviruses, core proteins, structure and disorder in, 393–395
Pfam database, intrinsically disordered proteins, 12–13
Phage λ:
antitermination complex, 427–428
protein N, 428–430
future research issues, 440
life cycle, 425–426
lysogenic pathway, 426
lytic pathway, 426
NusA–λN interaction, 435–440
binding specificity, NusA acidic repeats to λN, 439
helical conformation to AR1 binding, 439–440
NusA structure, 435–436
peptide complex, 436–439
protein λN–RNA interaction, 430–435
ARM peptide–RNA binding, 430–431
HK022 Nun–nutBoxB interaction, 434
λN–nutBoxB interaction, 431–434
N–BoxB complexes, 434–435
Phosphoprotein (P):
intrinsic disorder, transcription and replication, 72–76
Mononegavirales viral genome, 50–51
Rhabdovirus:
flexible loop binding, 128–130
meta-predictions, protein disordered regions, 122–128
modular organization, 122–128
autonomous folding units, 126–127
dimeric dimensions, 127–128
functional and structural modules, 122–125
molecular recognition elements, N-terminal region, 127
overall structure, 127–128
replication complex, 119–122
replication cycle, 119
Sendai virus, structural characterization, 99–104
Sendai virus, structural disorder within, structural characterization of, 99–104
Phosphoprotein (P), structural organization, 51–59
intrinsically disordered PNT domains, 52–58
partly disordered PCT domain, 58–59
Picornaviruses, capsid proteins, stabilization and nucleic acid release, 41–43
Plant viruses, disease mechanisms, 445–447
Plasma membrane (PM):
HIV-1 matrix protein p17, 148
HIV-2 matrix protein p17, 148–149
Poa semilatent virus (PSLV):
dynamic light scattering and atomic force microscopy properties, NTD, ID, and N63K, 457–462
intrinsically disordered proteins, order-prone segments, 454–457
NTD N63K intrinsically disordered peptides, 451–454
N-terminal extension region recombinant proteins, 451
triple gene block 1 protein, 446–447
secondary structure predictions, 447–449
spontaneous limited proteolysis, recombinant E. coli, 449–450
Polioviruses, capsid proteins, stabilization and nucleic acid release, 42–43
Pol polyprotein, viral genomes, 19–21
Polyomaviruses, capsid viral proteins, assembly control, 40–41
Polyproline type II conformation, E7 oncoprotein, human papillomavirus: noncanonical secondary structure, 324–326
phosphorylation modulation, 327
Polyprotein formation, Semliki forest virus, 349–351
PONDR® disorder predictors:
hepatitis C virus core protein, NS5A D2 domain sequencing, 412–414
HIV-related viruses, matrix proteins:
B-factor plots and contact points vs., 153–155
research background, 144
influenza virus, 178–181
intrinsically disordered proteins, HIV-1 proteins, 229–231
Sobemoviruses, viral protein genome (VPg) modulation, 261–264
PONDR® VLXT analysis, Lentivirinae matrix proteins, intrinsic disorder, 151
Positive transcription elongation factor b (P-TEFB), Tat (transactivator of transcription), transcription activation, 232
Potex-like triple gene block 1 proteins, 462
Potyviruses, viral protein genome (VPgs) and intrinsic disorder in:
α-helix molecular recognition feature predictions, 301–302
circular dichroism and fluorescence spectroscopy, 286–289
cumulative distribution function and charge hydrophathy plot analysis, 303
disorder-to-order transition, eIF4E binding, 293–296
experimental probing, 280–281
hydrodynamic properties, 284–286
lipid interaction, 291–293
NMR spectroscopy, 289–291
oligomerization, 281–284
proteolytic analysis, 291
research background, 277–280
in silico comparative analysis, 296–303
predicted intrinsic disorder, 297–298
temperature effects, 281
Potyvirus VPg-interacting protein (PVIP), VPg N-terminus, 280
Predicted intrinsic disorder (PID):
HIV-related viruses, matrix proteins:
high B-factor correlation, 157
HIV-1, 229–231
protein–protein interactions and, 156–157
research background, 144
vaccine development and PID rates, 155–156
influenza virus:
average PID residues, viral protein disorder analysis, 178–179
core-based disorder, 182
future research issues, 191–192
H1N1 1918 viral strain:
hemagglutinin region, 185–187, 190
initial nonvirulent strain, 190
H5N1 and H9N2 strains, 187
H9N2 virulence modulation puzzle, 189–190
infectivity vs. immune evasion, 189
hemagglutinin and neuraminidase disorder/disorder or order/order pairing, 184
hemagglutinin disorder-infectivity correlation, 182–183
less virulent strains, increased ordered regions in, 187–189
lipid raft requirement, 183–184
low-pathogenic avian influenza H7N3 strain, absence of disorder in, 189
oligosaccharide secondary virulence switch H9N2 and H5N1, 189–190
swine vs. avian influenza viruses, pattern predictions, 190–191
transmembrane proteins, 181–182
virion, protein location in, 179–182
Lentivirinae matrix proteins, 151–153
missing disorder residues, 155–157
three-dimensional structure enhancement, 155–156
PSLV TGBP1, secondary structure prediction, 447–449
Predicted intrinsic disorder (PID): (continued)

viral protein genome (VPg):
Calciviral VPgs, 301
Potyviral VPgs, 297–298
sobemoviral VPgs, 298

Premolten globule (PMG) formation:
measles, Nipah, and Hendra viruses, NTRL terminal domain, 64–65
phosphoprotein N-terminal domain (PNT), 56–58

Semliki forest virus protein, C-terminally truncated variants, structural studies, 367

Pre-steady-state kinetics, Semliki forest virus protein, C-terminally truncated variants, 354–358

Primary sequence formation, hepatitis C virus core protein, NS5A D2 domain, 411–414

Pro polyprotein, viral genomes, 19–21
Protease function, Sobemoviruses, viral protein genome (VPg) modulation, 261–267

Proteolytic analysis:
recombinant PSLV TGBP1 in E. coli, spontaneous limited proteolysis, 449–450
Semliki forest virus, 349–351
viral protein genome (VPg) structural analysis, 291

Quasi-equivalence hypothesis, capsid viral proteins, assembly control, 39–41

Rabies virus:
genome organization and virion structure, 116–118
intrinsically disordered protein structure, 116 transcription/replication role of, 130–133
meta-predictions, protein disordered regions, 122–123
phosphoprotein flexible loop binding, 128–130
phosphoprotein modular organization, 122–128

autonomous folding units, 126–127
functional and structural modules, 122–125

Molecular Recognition Elements (MoREs), N-terminal region, 127

Random coil (RC) conformation:
phosphoprotein N-terminal domain (PNT), 56–58

Sendai virus disordered protein, NMR analysis, 98–99

Recombinant proteins, CD and FTIR spectra, N63K, NTD, and ID predictions, 451

Regressive hypothesis, viral evolution, 3

Regulatory viral proteins:
hepatitis C virus core protein, NS5A D2 domain, 411
intrinsic disorder, 17–19
structure and function, 8–9

Replication:
hepatitis C virus (HCV), 376
NS5A D2 domain, 409–411
human papillomavirus, E7 protein, 314–315
nucleoprotein and phosphoprotein structural disorder, 72–76
plasmodesmata, plant viruses, 445–447
Rhabdovirus complex, 119–122
Sobemoviruses, viral protein genome (VPg) modulation, 267

Replicon formation, viral nonstructural proteins, 8
Residual dipolar couplings (RDCs), Sendai virus disordered protein:
NMR analysis, 98–99
nucleoprotein structural characterization, 104–109
phosphoprotein domains, 100–104

Retinoblastoma tumor suppressor, HPV16 E7 protein interaction with, 330–331

Retroviruses, matrix disorder in, viral variation, 159–160

Reverse transcriptase (RT), HIV-1 virus:
life cycle, 226–227
structure, 225

Rev protein, HIV-1, 225–226
life cycle, 226–227

Rev-response element (RRE), regulatory and accessory viral proteins, intrinsic disorder, 17–19

Rex regulatory protein, viral genome expression, 19–21
Rhabdoviruses:
intrinsically disordered proteins:
genome organization and virion structure, 116–118
meta-prediction, protein disordered regions, 121–122
modular phosphoprotein domains:
autonomous folding units, 126–127
N-terminal molecular recognition elements, 127
structural properties, 127–128
modular phosphoprotein organization, 122–128
functional and structural modules, 122–125
nucleoprotein flexible loops, phosphoprotein binding, 128–130
replication complex, 119–121
research background, 115–116
transcription/replication complex, 130–133
viral replication cycle, 118–119
nucleoprotein structural organization, 62–63
Ribosome-encoding organisms, classification of, 3
RNA:
intrinsically disordered protein structure, 2
Mononegavirales viral genome, 50–51
Rhabdovirus replication complex, nucleoprotein affinity, 120–122
RNA-binding proteins:
influenza virus predicted intrinsic disorder, 180–181
λN protein–RNA interaction, 430–435
ARM peptide–RNA binding, 430–431
HK022 Nun–nutBoxB interaction, 434
λN–nutBoxB interaction, 431–434
N–BoxB complexes, 434–435
RNA chaperones, hepatitis C virus core protein, 385–386
intrinsically disordered proteins, 386–387
RNA-dependent RNA polymerase (RdRP), LMV viral protein genome binding, disorder-to-order transition, 293–296
RNA polymerase complex;
influenza virus, 176–177
Phage λ, antitermination complex, 427–428
Tat (transactivator of transcription), transcription activation, 231–232
“RNA structural code,” hepatitis C virus core protein, 381–384
RNA binding and chaperoning, 385–386
RNA viruses:
“error catastrophe” for, 381–384
Flaviviridae family, 375–376
origins, 3
Satellite RNA (satRNA), Sobemoviruses, intrinsically disordered proteins, 258
Scavengers, intrinsically disordered proteins, 228–229
SCRATCH disordered prediction system, PSLV TGBP1, secondary structure prediction, 447–449
Secondary chemical shift (SCS):
Sendai virus disordered protein, NMR analysis, 98–99
Tat (transactivator of transcription) dynamics, 237–240
Secondary structure propensity (SSP):
PSLV TGBP1, 447–449
Sendai virus, nucleoprotein structural characterization, 104–109
Tat (transactivator of transcription) dynamics, 238–240
Semliki forest virus:
C-terminally truncated variants:
capsid protein structural studies, 359–367
enzymatic activity and steady-state kinetics, 352–354
pre-steady-state kinetics, 354–358
genome characteristics, 347–351
life cycle, 350–351
substrate search and inhibition studies, 358–359
Sendai virus, structural disorder within:
nuclear magnetic resonance spectroscopy, 97–99
nucleoprotein characterization, 104–109
phosphoprotein characterization, 99–104
research background, 95–97
Sense transcriptions, viral genomes, 19–21
Sequence conservation:
E7N protein, 334–335
E7 papillomavirus protein, 332–333
Serine protease inhibitors, Semliki forest virus protein, substrate search and inhibition studies, 358–359
Serines, Sendai virus, nucleoprotein structural characterization, 108–109
Serum HCV, hepatitis C virus core protein, 389
Sesbania mosaic virus. See Sobemoviruses
Signal peptidase (SP), hepatitis C virus core protein, 377
Signal peptide peptidase (SPP), hepatitis C virus core protein, 377
INDEX

Simian immunodeficiency virus (SIV):
classification, 143
epidemiology, 146
HIV-2 and SIVmac similarities, 155
immune response and, 158–159
matrix disorder and viral variations, 159–160
PONDR® VLXT analysis, 151
predicted intrinsic disorder, 151–153
pattern comparisons, 158
SIV matrix protein p17, 149

Single-stranded RNA:
capsid protein structure, nucleic acid recognition and binding, 36–39
Semliki forest virus, 347–348
Site-directed spin-labeling (SDSL), measles N$_{\text{TR}}$, terminal domain, molecular folding mechanisms, 68–69
Size exclusion chromatography (SEC), Potyviral viral protein genome (VPg) hydrodynamics, 285–286
Small-angle x-ray scattering (SAXS):
phosphoprotein flexible loop binding, 130
Sendai virus disordered protein, phosphoprotein structural characterization, 101–104
Tat (transactivator of transcription) analysis, 240
Small molecule antiviral compounds, hepatitis C virus (HCV), 375–376
Sobemoviruses:
capsid protein structure, 257–258
nucleic acid recognition and binding, 36–39
intrinsically disordered proteins, 257–258
nucleic acid recognition and binding, 36–39
intrinsically disordered proteins, 257–258
bioinformatic analysis, 260–261
capsid assembly, CP domain control, 271–273
gRNA organization, 258–260
nucleic-acid-binding P8 domain: functional role, 269–271
P10 activation, 267–269
research background, 257–258
VPg protein:
functional role, 264–267
protease modulation, 261–264
Potyviral viral protein genome (VPg) interaction, 292–293
viral protein genome (VPg), predicted intrinsic disorder, 298
Spectral density mapping, Tat (transactivator of transcription) dynamics, 239–240
Spontaneous limited proteolysis, recombinant PSLV TGBP1 in E. coli, 449–450
Staphylococcal nuclease, Semliki forest virus protein, C-terminally truncated variants, structural studies, 367
Steady-state kinetics, Semliki forest virus protein, C-terminally truncated variants, 352–354
Stem loop structures, hepatitis C virus core protein:
protein coding regions, 383–384
RNA binding and chaperoning, 384–386
untranslated regions, 382–383
Sterile alpha motif, NusA structure, 436
Stokes radius:
nucleoprotein and phosphoprotein structural disorder, transcription and replication, 74–76
Potyviral viral protein genome (VPg) hydrodynamics, 285–286
Structural module organization, rhabdovirus phosphoprotein, 122–125
Substrate analysis, Semliki forest virus protein, 358–359
Swine influenza viruses, predicted intrinsic disorder, 190–191
Tat (transactivator of transcription):
amino acid sequence, 17–19
HIV-1, 231–240
amino acid sequence and properties, 234–236
biological functions, 232–234
life cycle, 226–227
multinuclear NMR analysis, 236–240
reduced Tat preparation, 236
structural biology, 236–240
transcription activation, 231–232
virion structure, 225–226
x-ray diffraction studies, 242–244
Tax regulatory protein, viral genome expression, 19–21
Temperature effects:
Semliki forest virus protein, C-terminally truncated variants, pre-steady-state kinetics, 356–358
viral protein genome (VPg), 281
Three-dimensional structure:
E7 oncoprotein, human papillomavirus, 321
Lentivirinae matrix proteins, predicted intrinsic disorder enhancement, 155–156
INDEX

Semliki forest virus protein, C-terminally truncated variants, structural studies, 363–367
Togaviruses, structure and classification, 347–348
Topographic imaging, NTD, ID and N63K domain analysis, 458–462
Transactivation responsive region (TAR): equine infectious anemia virus, 242
HIV-1 Tat, drug development and, 244–245 regulatory and accessory viral proteins, intrinsic disorder, 17–19
Transcription:
Mononegavirales viral genome, 48–51 nucleoprotein and phosphoprotein structural disorder, 72–76
rhabdovirus, replication complex, 121–122 Rhabdovirus disorder and, 130–133
Tat (transactivator of transcription), activation role, 231–232
Transcription activation response (TAR) element, Tat (transactivator of transcription), 232
Transcription elongation complex, Tat (transactivator of transcription), 232
Translation of RNA, hepatitis C virus (HCV), 376
Transmembrane complex:
HIV-1 virion structure, 225–226 Semliki forest virus, 349–351
Transmembrane proteins, influenza virus, ordered structure, 181–182
2,2,2-Trifluoroethanol (TFE):
E7 oncoprotein, human papillomavirus, noncanonical secondary structure, 325–326 internal ordered domain, order-prone segments, 456–457 phosphoprotein N-terminal domain (PNT), 58 viral protein genome (VPg) structural analysis, 288–291
Triple gene block1 protein (TGBP1):
Tymoviridae virus family:
capsid protein structure, nucleic acid recognition and binding, 38–39 capsid viral proteins, assembly control, 40–41
Umbravirus motion protein, triple gene block1 protein (TGBP1) viral transport and, 466 Untranslated regions (UTRs), hepatitis C virus core protein, 382–383 RNA binding and chaperoning, 384–386
Vaccine development:
HIV-related viruses, matrix proteins: immune response and, 158–159 predicted intrinsic disorder rates and difficulties with, 155–156 influenza virus disorder and, 191–192 Vagrancy hypothesis, viral evolution, 3
Vesicular stomatitis virus (VSV):
Viral envelope proteins:
hepatitis C virus (HCV), 376 intrinsic disorder, 15–16 measles virus, 47–51 structure, 7
Viral genomes:
alternative splicing, 19–21
Viral genomes: (continued)
intrinsic disorder, 19–21
measles virus, 47–51
overlapping reading frames, 19–21
Viral nonstructural proteins:
classification and functions, 8
intrinsic disorder, 16–19
regulatory and accessory proteins, 8–9
replicon formation, 8
Viral origin hypotheses, 3
Viral protein genome (VPg):
Calciviral domains, Sobemoviruses, in silico comparative analysis, 301
Potyviruses, intrinsic disorder in:
α-helix molecular recognition feature predictions, 301–302
circular dichroism and fluorescence spectroscopy, 286–289
cumulative distribution function and charge hydropathy plot analysis, 303
disorder-to-order transition, eIF4E binding, 293–296
experimental probing, 280–281
lipid interaction, 291–293
NMR spectroscopy, 289–291
oligomerization, 281–284
proteolytic analysis, 291
research background, 277–280
in silico comparative analysis, 296–303
predicted intrinsic disorder, 297–298
temperature effects, 281
Sobemoviruses:
functional role, 264–267
intrinsically disordered proteins, gRNA organization, 258–260
protease function modulation, 261–264
in silico comparative analysis, predicted intrinsic disorder, 298–301
Viral replication cycle, rhabdoviridae, 118–119
Viral RNP, influenza virus, M1 protein, 174
Viral structural proteins:
classification and function, 4–9
capsid structural proteins, 5–7
gene transactivation, 8
immunomodulation, 8
matrix proteins, 7
viral envelope proteins, 7
intrinsic disorder, 13–16
capsids, 13–14
matrix proteins, 16
viral envelope protein, 15–16
Viral transport, triple gene block1 protein (TGBP1) and, 462–466
Virion structure:
hepatitis C virus core protein, 388–391
cell culture grown HCV, 389–390
flavivirus structural comparisons, 390–391
serum HCV, 389
HIV-1, 225–226
HIV-related viruses, 145–147
influenza virus, 170–171
predicted intrinsic disorder and protein location in, 179–182
rhabdoviridae, 116–118
Semliki forest virus, 349–351
Virulence:
H9N2 modulation of, 189–190
influenza viruses:
causes of, 178
intrinsically disordered regions, 187–190
Viruses, evolutionary history of, 3
Virus first hypothesis, viral evolution, 3
Viruses, evolutionary history of, 3
Viruslike particles (VLPs), Sobemovirus assembly, coat protein control, 271–273
Vpr accessory protein, intrinsic disorder, 18–19
Vpu accessory protein, intrinsic disorder, 18–19
Wild-type Semliki forest virus (SFVPwt), C-terminally truncated variants, structural studies, 359–367
X domain (XD):
measles NTAIL terminal domain, molecular folding mechanisms, 65–72
nucleoprotein and phosphoprotein structural disorder, transcription and replication, 72–76
partly disordered phosphoprotein C-terminal domain (PCT), 58–59
phosphoprotein, Sendai virus, structural characterization, 99–104
structural disorder and molecular partnership, 78–80
X-ray diffraction (XRD):
equine infectious anemia virus, 240, 242
HIV-1 Tat, 242–244
X RNA, hepatitis C virus core protein, untranslated regions, 382–383
YB-1 protein, NTD, ID and N63K domain analysis, 461–462