Index

References to tables are given in bold type. References to figures are given in italic type.

aberration coefficients, 61–2, 63, 63, 64
aberration correction, 3, 243
aberrations introduced by, 71–4
chromatic, 74
conventional TEM
advantages, 259
image postprocessing, 258–9
negative spherical aberration, 254–6
fifth-order, 85–6
parasitic aberrations, 71–4
spherical, 49–51, 66–74
aberration measurement and diagnosis, 74–84, 256–8
image-based, 77–9
Ronchigram-based, 79–84
see also wave aberration function
absorptive potential, 106–7
acquisition time, 169
Airy disc, 23, 24, 60, 147
alumina, 216
analysed volume, 168
annular dark field detector (ADF), 41, 45–6, 89
collection angle, 90–1
imaging, 96–101
simulation methods, 106–8
see also high-angle annular dark-field detector; Z-contrast imaging
aperture, 118–19
cohere and, 147
effect of small errors, 119–20
role of condenser system, 124
spectrometer entrance, 175
aperture function, 60
array detectors, 139
astigmatism, 28, 65, 73
aberration coefficients, 63
parasitic, 73
atomic imaging, 90–3, 123, 213–14
Auger electrons, 164
background, 11–12, 112–13, 138
band transitions, 189–90
K-shell ionization, 164, 165
beam blanking, 136–7, 171, 180–1
beam characteristics see probe
beam damage, 16, 48–9, 129, 158
biological analysis, 184
biomedical imaging, 226
Bloch waves, 102
bonding analysis, 200
boron nitride, 217–18, 219
Bremsstrahlung, 9–10, 182, 185
bright-field imaging, 152
detector, 45
bulk plasmon energy, 187
calcium carbonate, 5, 6
calibration, EELS, 198
camera length, 135
cameras, 142–3
carbon, 188
carbon nanotubes (CNT), 230
catalysts, 214–15
cathode ray tube (CRT), 33
cathodoluminescence, 48
CCD see charge-coupled device
charge-coupled devices (CCD), 142–5, 178
chemical analysis, 195–9
chromatic aberration, 117–18, 244
conditions for, 57
treatment, 74
Cliff-Lorimer method, 183
cobalt nanoparticles, 216–17
cohesive diffraction, 147–52
partial coherence envelope, 250, 251, 252–3
coherent imaging, 98
coherent interactions, 5
diffraction patterns, 147–52
cold field emitter, 116
cromatic aberation, 28, 29, 65
aberration coefficients, 63
parasitic, 73
condenser system, 34, 124–6
confocal microscopy, 18
contrast enhancement, 153–4
conventional transmission electron microscopy (CTEM), 1–2
compared to STEM, 43
electron energy loss (EELS) spectra, 177–8
image resolution, 2–3, 44
image types, 10
imaging, 241–2
contrast, 245
principles, 244–5
instrumentation, 243–4
operating principle, 34–5, 35
partial coherence, 250, 251, 252–3
convergent beam electron diffraction (CBED), 46
coordination analysis, 197–8
core-shell particles, 228–9
Crewe, Albert Victor, 41
cross-section, 4, 169, 191
crystals, 93–101
dark current, 138, 140
CCD, 144–5
see also noise
data processing, 40, 182–3
see also image processing
data publishing, 13
dead, 173
deadtime, 138
defocus, 50, 63, 248
density functional theory (DFT), 195, 202
depth of field, 122–4
descanning, 126
detection limits, 180
detective quantum efficiency (DQE), 138, 169
detectors
basic properties, 137–9
bright-field, 45
CCD, 142–5
configured, 153–4, 154
dark-field, 45–6
see also high-angle annular dark field detector
deadtime, 138
dynamic range, 138
ergy-dispersive X-ray spectroscopy (EDX), 172–3
linearity, 138–9
nanodiffraction, 46
noise, 137–8
scintillator/photomultiplier, 139–41
semiconductor, 141–2, 172–3, 234–5
Shack-Hartmann, 76
single and array, 139
stacking, 155–7, 155, 156
diamond, 190
dielectric function, 190
diffraction, 58
diffraction coupling, 177
diffraction patterns, 145–7
cohesive effects, 147–52
EELS spectra and, 158
high angular range, 153
medium angular range, 152–3
small angular range, 152
Digital Micrograph, 12
dipole lenses, 67
INDEX

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dipole selection rules</td>
<td>200</td>
</tr>
<tr>
<td>discrete tomography</td>
<td>228</td>
</tr>
<tr>
<td>dislocations</td>
<td>221</td>
</tr>
<tr>
<td>dose</td>
<td>16</td>
</tr>
<tr>
<td>double deflection</td>
<td>127</td>
</tr>
<tr>
<td>drift correction</td>
<td>131–3</td>
</tr>
<tr>
<td>dynamic range</td>
<td>138</td>
</tr>
<tr>
<td>EBIC</td>
<td>48</td>
</tr>
<tr>
<td>EDX see energy-dispersive X-ray spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EELS see electron energy loss spectra</td>
<td></td>
</tr>
<tr>
<td>EELS Atlas</td>
<td>47</td>
</tr>
<tr>
<td>Einstein dispersion approximation</td>
<td>104</td>
</tr>
<tr>
<td>elastic scattering</td>
<td>4, 7–8</td>
</tr>
<tr>
<td>beam broadening</td>
<td>168</td>
</tr>
<tr>
<td>kinematical and dynamic regimes</td>
<td>7–8</td>
</tr>
<tr>
<td>electron beam see probe</td>
<td></td>
</tr>
<tr>
<td>electron beam-induced current (EBIC)</td>
<td>48</td>
</tr>
<tr>
<td>electron channelling</td>
<td>8, 102–3</td>
</tr>
<tr>
<td>electron Compton profile</td>
<td>200</td>
</tr>
<tr>
<td>electron energy loss (EELS) spectra</td>
<td>39–40, 47–8</td>
</tr>
<tr>
<td>aberration correction</td>
<td>136</td>
</tr>
<tr>
<td>advantages</td>
<td>11</td>
</tr>
<tr>
<td>basic principles</td>
<td>166–8</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>5, 6</td>
</tr>
<tr>
<td>core loss region</td>
<td>191–200</td>
</tr>
<tr>
<td>diffraction patterns and</td>
<td>158</td>
</tr>
<tr>
<td>disadvantages</td>
<td>48</td>
</tr>
<tr>
<td>elemental quantification</td>
<td>191–5</td>
</tr>
<tr>
<td>extended-edge fine structure</td>
<td>200</td>
</tr>
<tr>
<td>high loss region</td>
<td>167</td>
</tr>
<tr>
<td>instrumentation</td>
<td>174–8</td>
</tr>
<tr>
<td>low loss region</td>
<td>167, 187–91, 201–2, 230–1</td>
</tr>
<tr>
<td>near-edge fine structure</td>
<td>195–9</td>
</tr>
<tr>
<td>spatial resolution</td>
<td>206–7</td>
</tr>
<tr>
<td>spectral modelling</td>
<td>201–2</td>
</tr>
<tr>
<td>zero loss peak</td>
<td>167</td>
</tr>
<tr>
<td>electron energy loss near-edge fine structure (ELNES)</td>
<td>195–9, 196</td>
</tr>
<tr>
<td>coordination analysis</td>
<td>197–8</td>
</tr>
<tr>
<td>spectral modelling</td>
<td>201</td>
</tr>
<tr>
<td>valency determination</td>
<td>198</td>
</tr>
<tr>
<td>electron lenses see lenses</td>
<td></td>
</tr>
<tr>
<td>electron optics</td>
<td>42–5</td>
</tr>
<tr>
<td>see also lenses</td>
<td></td>
</tr>
<tr>
<td>electron scattering see scattering</td>
<td></td>
</tr>
<tr>
<td>electron sources</td>
<td>30–2, 32</td>
</tr>
<tr>
<td>field emission guns</td>
<td>40–1</td>
</tr>
<tr>
<td>elemental analysis</td>
<td>182–7</td>
</tr>
<tr>
<td>elemental quantification</td>
<td></td>
</tr>
<tr>
<td>electron energy loss (EELS) spectra</td>
<td>191–5</td>
</tr>
<tr>
<td>sensitivity</td>
<td>194–5</td>
</tr>
<tr>
<td>ELNES see electron energy loss near-edge fine structure</td>
<td></td>
</tr>
<tr>
<td>emitted signal</td>
<td>169</td>
</tr>
<tr>
<td>energy levels see band transitions</td>
<td></td>
</tr>
<tr>
<td>energy-dispersive X-ray spectroscopy</td>
<td></td>
</tr>
<tr>
<td>(EDX), 11, 47–8, 142, 164–6 applications, 234–6</td>
<td></td>
</tr>
<tr>
<td>detectors</td>
<td>172–3</td>
</tr>
<tr>
<td>elemental analysis</td>
<td>182–7</td>
</tr>
<tr>
<td>escape peaks</td>
<td>182</td>
</tr>
<tr>
<td>instrumentation</td>
<td>170–3</td>
</tr>
<tr>
<td>sum peaks</td>
<td>182</td>
</tr>
<tr>
<td>energy-filtering microscopy (EFTEM), 11, 74, 205</td>
<td></td>
</tr>
<tr>
<td>escape peaks</td>
<td>182</td>
</tr>
<tr>
<td>exit wave restoration</td>
<td>258–9</td>
</tr>
<tr>
<td>extended energy loss fine structure (EXELFS)</td>
<td>200</td>
</tr>
<tr>
<td>ferritin</td>
<td>226</td>
</tr>
<tr>
<td>field effect transistor (FET), 172–3</td>
<td></td>
</tr>
<tr>
<td>Fischer-Tropf catalysts</td>
<td>214–15</td>
</tr>
<tr>
<td>fluorescence</td>
<td>185–6</td>
</tr>
<tr>
<td>Fourier transform</td>
<td>12</td>
</tr>
<tr>
<td>Fraunhofer diffraction</td>
<td>23</td>
</tr>
<tr>
<td>Fresnel diffraction</td>
<td>22–3</td>
</tr>
<tr>
<td>full width at half maximum (FWHM), 167</td>
<td></td>
</tr>
<tr>
<td>gallium arsenide</td>
<td>141</td>
</tr>
<tr>
<td>imaging</td>
<td>224, 225</td>
</tr>
<tr>
<td>Gatan GIF</td>
<td>76</td>
</tr>
<tr>
<td>geometric aberrations</td>
<td>58, 59–66, 113–17</td>
</tr>
<tr>
<td>see also spherical aberration</td>
<td></td>
</tr>
<tr>
<td>germanium detectors</td>
<td>173</td>
</tr>
<tr>
<td>gold, 123, 214, 227–8</td>
<td></td>
</tr>
<tr>
<td>graphene</td>
<td>230–1, 232</td>
</tr>
<tr>
<td>Gray (unit)</td>
<td>48</td>
</tr>
<tr>
<td>haematite</td>
<td>199</td>
</tr>
<tr>
<td>hexapole lenses</td>
<td>68, 71, 243</td>
</tr>
<tr>
<td>high-angle annular dark field (HAADF) imaging, 10–11, 45–6, 153 applications, 211–12</td>
<td></td>
</tr>
<tr>
<td>see also lenses</td>
<td></td>
</tr>
<tr>
<td>electron energy loss near-edge fine structure (ELNES)</td>
<td>195–9, 196</td>
</tr>
<tr>
<td>coordination analysis</td>
<td>197–8</td>
</tr>
<tr>
<td>spectral modelling</td>
<td>201</td>
</tr>
<tr>
<td>valency determination</td>
<td>198</td>
</tr>
<tr>
<td>electron lenses see lenses</td>
<td></td>
</tr>
<tr>
<td>electron optics</td>
<td>42–5</td>
</tr>
<tr>
<td>see also lenses</td>
<td></td>
</tr>
<tr>
<td>electron scattering see scattering</td>
<td></td>
</tr>
</tbody>
</table>
high-angle annular dark field (HAADF) imaging (continued)
isolated atoms, 213–19
high-resolution imaging see phase-contrast imaging

image points, 127
image processing, 12–13
aberration correction, 258–9
elemental analysis, 183
image resolution
light microscopy, 23–4
scanning transmission electron microscopy (STEM), 2–3, 44
image simulation, 13–14, 106–8
imaging
atomic, 90–3
by dynamical scattering, 101–6
particle structures, 226–30
semiconductors, 220–5
three-dimensional see tomography
see also high-angle annular dark field imaging; spectrum imaging; tomography
impact parameter, 47
incoherent aberrations, 58
see also chromatic aberration
incoherent imaging, 96, 98
with dynamical scattering, 101–3
incoherent interaction, 5
inelastic scattering, 8, 103
inner shell ionisation, 9–10
plasmon scattering, 8–9
inner shell excitation see K-shell excitation
instrumentation
conventional transmission electron microscopy (CTEM), 243–4
detectors see detectors
electron energy loss (EELS) spectroscopy, 174–8
electron sources, 30–2, 32, 40–1
energy-dispersive X-ray spectroscopy (EDX), 170–3
lenses see lenses
scanning transmission electron microscopy (STEM), 35, 36, 37
interband transitions, 189–90
interface defects, 220–5
JEOL 2200MCO, 242
joint density of states (JDOS), 189–90
k-factor, 183
K-shell transitions, 9–10, 164
de-excitation, 165
Kikuchi bands, 7, 146
lanthanum boride (LaB6) cathodes, 31
Laue zones, 146
lenses, 25–30, 49–50, 57
focal length, 26–7
multipole, 66–71
trajectories, 26–7
see also wave optics
light microscopy, 21–2
diffraction, 22–3
line defect, 219–20
live time, 173
Lorentz force, 56
low angle elastic scattering, 7
magnetic field detection, 154
magnetic scalar potential, 57
magnetic sector spectrometer, 174–5, 174
mean free path, 4
measured signal, 169
medical imaging, 226
medium angle dark-field detector (MAADF), 152–3, 211–12
microcalorimetry, 173
mini-lens, 26
minimum detectable mass (MDM), 170
minimum mass fraction, 169
multiple scattering resonances (MSR), 200
multipole lenses, 66
quadrupole, 66–8, 67
quadrupole-octupole, 69–71
sextupole, 67
multivariate statistical analysis, 205
nanodiffraction detectors, 46
nickel, 166
nickel silicate, 227
noise, 11–12, 44, 112–13, 178
CCD, 144, 145
detector, 137–8, 138–40
objective lens, 34
octupole lenses, 67
ω filter, 205
optical microscopy see light microscopy
optical transfer function (OTF), 99
orthoclase, 199

parallel signal acquisition, 154–9
parasitic aberrations, 71–4
partial coherence envelope, 250, 251, 252–3
PCFW function, 258
phase contrast imaging, 50, 253–4
phase contrast transfer function, 94
phase difference, 59–60
phonons, 8
 scattering, 103, 104–6
photodiode arrays, 177–8
photomultipliers, 140–1, 141
pixel size, 130–1
plasmon resonance, 187–9
plasmon scattering, 8–9
platinum, 214
Poisson noise, 112
polishing, 212–13
primary electron, 3–4
 current, 115–17, 169
 diameter, 113–15, 168
 optics forming, 32–3
 scanning vs conventional TEM, 2
scattering, 3–6
 elastic, 4, 7–8
 from crystals, 93–4
 inelastic, 4
 multiple, 4
 phonon, 104–6
 plural, 4
 thermal diffuse, 8, 103–6
Scherzer defocus, 50, 85–6
Schottkey emitters, 32, 116
scintillator/photomultiplier detectors, 139–40
secondary electron, 4
sector magnet spectrometer, 174–5
semiconductor detectors, 141–2, 172–3
semiconductor imaging, 220–5
sevenfold R, 222
Shack-Hartmann detector, 76
shift tableau, 77
signal acquisition, 154–5
signal-to-noise (S/N) ratio, 44, 112–13, 169

sample see specimen
scanning electron microscopy (SEM), 33
 probe properties, 113–17
 schematic, 33
scanning system
 drift correction, 131–3
 non-ideality, 128–9
 principle of operation, 126–8
 scan pattern, 128
scanning transmission electron microscopy (STEM)
 advantages, 3, 17, 178–9
 beam blanking, 136–7
 condenser system, 124–6
 detectors, 137–45
 nanodiffraction, 46
 electron optics, 42–5
 image resolution, 2–3, 44
 image types, 10
 instrumentation, 37
 post-specimen optics, 135–6
 principle of operation, 2, 35–6, 35
 resolution, 130–1
 sample condition, 212–13
 scanning system, 126–33
 operating principles, 126–8
 schematic, 35, 36
 signals observable, 45–8
 specimen stage, 133–5
scattering, 3–6
 elastic, 4, 7–8
 from crystals, 93–4
 inelastic, 4
 multiple, 4
 phonon, 104–6
 plural, 4
 thermal diffuse, 8, 103–6
Scherzer defocus, 50, 85–6
Schottkey emitters, 32, 116
scintillator/photomultiplier detectors, 139–40
secondary electron, 4
sector magnet spectrometer, 174–5
semiconductor detectors, 141–2, 172–3
semiconductor imaging, 220–5
sevenfold R, 222
Shack-Hartmann detector, 76
shift tableau, 77
signal acquisition, 154–5
signal-to-noise (S/N) ratio, 44, 112–13, 169

quadrupole lenses, 66–8
quadrupole-octupole corrector, 69–71

raster scan, 42
raw data, 13
ray aberration, 60
Rayleigh criterion, 24–5
reciprocity theorem, 35, 126, 147, 244
resolution, EELS spectra, 206–7
rhodizite, 196
rocking points, 126–8
Ronchi, Vasco, 80
Ronchigram, 79–84, 81, 118, 142–3
 sweet spot, 80–2
Rutherford scattering, 7
silicon, 130, 141
nanowires, 217
silicon drift detector (SDD), 173, 234–5
silicon-doped lithium (Si(Li)), 173
single detectors, 139
single particle analysis, 18
smart acquisition, 132, 178, 205
spatial resolution, 168, 180
EELS, 206–7
probe size and pixel size, 130–1
specimen, 14–17
beam damage, 16, 48–9, 129, 158
preparation, 212–13
stability, 112–13
temperature, 133–4
thickness, 15, 187–8, 194
weak phase objects, 15
see also specimen stage
specimen stage, 133–5
spectrum imaging, 11, 157, 178, 202–6
spectrum modelling, 201–2, 203
spectrum range, 168
spherical aberration, 28, 29, 36, 64–6, 248
conditions for, 57
correction, 49–51, 66–71
multipole lenses, 66–74
negative, 254–6
see also geometrical aberration
stacked detectors, 154–7, 155, 156
stacking faults, 190
stray fields, 129, 130
sub-pixel scanning, 131
SuperSTEM2, 155
surface interactions, 51
sweet spot, 118–19
take-off angle, 170
thermal diffuse scattering (TDS), 8, 103–6
thermionic emitters, 30–1, 40
three-dimensional imaging, 17–18
tilt angle, 170
tilt tomography, 18
time-dependent reactions, 51
tomography, 17–18
transmission electron microscopy (TEM)
conventional see conventional transmission electron microscopy
scanning see scanning transmission electron microscopy
STEM vs CTEM, 17
tungsten field emitter, 30, 32
Vacuum Generators microscope, 37
valency determination, 198
Van Cittert-Zernicke theorem, 99
virtual standards pack, 184
vonsenite, 196
wave aberration function, 59, 60, 246, 248–51
object approximation, 246–8
partial coherence envelope, 251
see also aberration measurement
wave optics, 55
see also lenses
wave vector, 5
wavefront detectors, 76
weak phase objects, 15
X-rays
Bremsstrahlung, 9–10, 182
elemental analysis, 184–5
emission, 164–6
from inelastic scattering, 9–10
see also energy-dispersive X-ray analysis
Young fringes, 148–9
yttrium aluminium garnet (YAG), 139–40
Z-contrast, 41, 90–2
Zemlin tableau, 79, 257
zero loss peak, 167
ζ-factor, 186