Advanced ceramic fibers, 865
 carbon fibers, 866
 other ceramic fibers, 875
 oxide fibers, 866
 SiC Fibers, 868
Advanced ceramics for gas turbine and automobile engines, 563
Advanced microsystems, 293
 integration and process strategies for ceramics in, 293
Alternatives to heavy metals, 655
Alumina support, 589
American Ceramic Component Manufacturers (AACCMM), 77
American Ceramic Society (ACerS), 11, 77
Australia, 445
 Centre for Materials Research in Energy Conversion (CMREC), 446
 ceramics in energy and environmental applications in, 445
 photoelectrodes for solar hydrogen, 446
 segregation, 447
University of New South Wales (UNSW), 446
Automobile components, 582
Automotive catalysts, 588
Availability of property and performance data, 10
AWG, 327
BAS, 326
Bioactive glass tissue scaffolds, 249
 materials processing, 250
 optimizing in vitro growth conditions, 256
 scaffold characterization, 251
Bioceramics, 189
 challenges, 189
 control of infection, 193
 healing of chronic wounds, 193
 optimizing in vitro growth conditions, 192
 stem cell engineering, 192
 third-generation biomaterials that regenerate tissues, 190
 tissue engineering, 190
 of soft tissues, 191
 tissue regeneration, 190
Biology and medicine, 181
 avoiding simplistic paradigms, 186
 ceramics in, 183
 critical issues, 185
 diagnostics, 185
 doing ceramic science at the nanometer level, 186
 hard- and soft-tissue generation, 184
 lessons from ceramic processing, 186
 technical challenges, 186
 therapies, 185
 timelines, 187
 understanding interaction of material and biology, 186
Biomedical applications, 10
Biomimetic materials, 231
Biomimicking, 232
Biomineralization, 237
Bio-prosthesis, 231
Brake materials, 580
Brittleness of glass, 811
 challenges for overcoming, 811
 current technology, 813
 definition of, 813
Brittleness of glass (continued)
effect of composition and structure on, 813
future technology on, 818
history, 811
molecular dynamics simulation, 816
practical meaning of, 815
Bulk silicon, 463
Buried contact solar cells, 465
Ceramic catalysts for NOX reduction, 588
Ceramic floor and wall tiles, 683
best available techniques, 683
main environmental impacts, 683
Ceramic gas turbine engine development programs, 564
Ceramic materials and systems for the commercialization of solid oxide fuel cells, 509
Ceramic matrix composites for gas turbine applications, 566
Ceramic membrane technologies, 458
Ceramic revolution, 475
Ceramics in the semiconductor process industry, 339
CGZ, 326
Chemical mechanical planarization (CMP), 419
China, 49
ceramic materials in, 52
ceramic research in Tsinghua University, 54
ceramic research organizations, 52
ceramics industry in, 54
Chinese society, 49
controlled growth of second-branch crystals and nanowires at the nanoscale, 55
defect control of polycrystalline spinel ceramic for transparency, 57
energy saving, 50
financial programs of R&D supported by the state ministries, 52
high reliance on state funding, 51
job expansion, 50
low power of manufacturing firms, 51
low utilizing efficiency of natural resources, 49
particle size and domain controls of dielectric ceramics, 59
patents in, 172
programs and progress of advanced ceramic materials research and development in, 49
progress in precise controls of structures of ceramic materials the nanoscale, 55
rapid economic development, 49
research, 51
research facilities in, 52
rural urbanization, 50
shape control of nano-flake spinel for electrolysis, 57
state key laboratories for ceramic research, 53
state policy on R&D, 51
Civil infrastructure, 110
measurement needs and solutions for, 110
CMCs for the automotive gas turbines, 567
Complexities of integration, 135
Consumer products, 261
future of ceramics for, 267
Cutting tools, 109
Densification with FAST, 787
Dental caries, 199
fluorescence, 200
light scattering, 200
optical coherence tomography (OCT), 202
photonic applications to, 199
Raman spectroscopy, 202
Detectors and absorbers, 204
Diamond model, 268, 269
Diesel emission control applications, 584
Diesel engines, 583, 931
ceramic research and successes in, 931
Diesel particulate filter (DPF), 586
Electric-field-enhanced effects and processing, 779
coatings, 781
compacts, 780
electrophoretic deposition, 780
sintering, 782
synthesis, 779
Electrochemical conversion of chemical energy into electrical energy, 446
Electrochemical energy, 556
Electrochemical gas sensors, 455
Electronic packaging, 397
alumina-based, 397
application spaces, 413
future demands, 408
glass–ceramic, 401
greensheets, 397
manufacturing methods for advanced packaging, 406
metallization, 397
multilayer ceramic (MLC) package, 398
packaging of the future, 414
tape casting, 397
unique opportunities for multilayer ceramics, 415
Electronics, 287
advanced packaging technologies, 298
direct-write processing, 303
hybrid integrated systems, 296
microelectronic integration and opportunities, 294
opportunities for nanomaterial integration and assembly, 304
process control strategies, 300
Electrospaying of melts, 783
Enabling discoveries, 139
Energy, 431
ceramics in, 433
Energy conservation, 10
Energy costs, 10
Energy efficiency, 133
Energy-saving measures in the ceramic industry, 655
Engineer of 2020, 122
Enrollment trends in materials disciplines, 119
Environment, 595
Environmental barrier coatings, 574
Environmental issues, 656
impact of ceramic nanotechnology on, 656
Environmental performances of modern ceramic manufacture and products, used as competitiveness factors, 681
emissions into the atmosphere, 685
Environmental protection, 663
photocatalyst materials for, 663
Evolving functionality of ceramics, 69
Ferroelectric/piezoelectric ceramics, 381
advances and trends in fabrication
technology, 386
anisotropy of properties, 383
bulk technology, 386
calculations of functioning of ferroelectric/piezoelectric components, 385
calculations of properties, 385
ceramic thin films, 386
first-principle calculations, 384
modeling of new aaterials, 384
morphotropic boundary compositions, 383
nanocomposites, 388
new 1D structures, 390
new ferroelectrics for microelectronics and high-frequency electronics, 383
new materials, 382
new piezoelectronics, 382
self-assembly, 387
Fiber optics, 203
Fine ceramics, 37
First International Congress on Ceramics, 1
First-principle calculations, 384
Flexible LSI (LSI on plastic), 319
Floating-gate-type EEPROM, 314
Fossil energy, 563
Fuel cells, 499, 529 (see also Solid oxide fuel cells)
alkaline, 533
characteristics, 530
development and demonstration status, 533
drivers and potential benefits, 531
molten carbonate, 534
phosphoric acid, 533
polymer exchange membrane (PEM), 536
solid oxide fuel cell (SOFC), 534
types of, 530
Gas turbine components, 565
Gas turbine engines, 919
applications of ceramics for, 919
current technology, 922
future challenges for advanced ceramics, 924
future challenges for CMCs, 925
future challenges for monolithics, 924
history, 920
Geopolymers, 623
building products, 624
mining industry, 625
Geopolymers (continued)
nuclear industry, 625
scientific and nomenclature issues to be addressed, 626
Glass, 725
chemical tempering, 728
cladding/casing, 727
clues to solving strength of, 755
coatings, 728
cracking, 737
fatigue, 729, 731
hardness, 735
lamination, 728
new techniques and applications, 741
residual stress, 741
strength, 726, 729
inert intrinsic, 730
strength testing, 753
strengthening, 726
stress birefringence, 741
thermal tempering, 727
ultrastrong, 749
Glass melting technology, 765
batch-related fluctuations, 767
combustion-related fluctuations, 767
E-field-enhanced processes for the preparation of nanomaterials, 777
in situ sensors, 769
process-related fluctuations, 768
sensors for environmental measurements, 771
sensors for monitoring glass melt properties, 769
emission spectroscopy, 770
laser-induced breakdown spectroscopy (LIBS), 770
redox measurement, 770
viscosity, 769
voltammetric sensor, 770
sensors for monitoring species in the combustion space, 771
sensors for optimizing combustion efficiency, 771
target properties of glass melt and glass product, 766
Glass and transparent ceramic materials, 703
applications, 706
directions, 708
issues, 707
Glass industry, 715
academia–industry collaborations, 722
basic research benefitting, 715
questions remaining to be solved or approached, 721
how to efficiently screen unexplored domains of glass composition, 721
how to speed up the melting and the fining, 721
what glass homogeneity is, and how to measure it, 721
will it be possible to elaborate high-toughness nanoglasses?, 721
recent breakthroughs, 715
composition dependence of the fictive temperature of glass, 718
environment of cations in glasses, 715
fracture physics of heterogeneous solids, 720
glass transition, 718
plastic deformation, 719
structure, 715
surfaces: structure and reactivity, 718
Glass of the future, 725
Glass–ceramics, 225, 401
as biomaterials, 225
Global environment, 10
Global manufacturing, 32
Global R&D, 31
Global Roadmap for Ceramics, 1
consumer products, 6
crosscutting issues, 6
economics, 9
education, 7
electronics, 2
energy, 5
environmental preservation, health, and safety, 3
hard materials/armor, 6
innovation, 7
intellectual property, 8
materials informatics, 8
measurements and standards, 7
medical applications, 3
optics and photonics, 5
technical goals, 2
transportation, 4
Globalization, 29
Government initiatives worldwide for
INDEX

hydrogen and fuel cell technologies, 501
Australia, 502
Canada, 501
Japan, 502
Singapore, 502
Thailand, 503
United States, 502

Health and safety issues, 10
Health care, 197
Hidden ceramics in the energy and transport sectors, 553
High-critical-temperature superconducting ceramics, 489
HiLight™ Transparent Ceramic Scintillator, 797
History of floating-gate-type nonvolatile memory development, 312
Honda–Fujishima effect, 664
Hydrogen, 498
Hydrogen economy, 498
Hydrogen production by photocatalysis, 664
Hydrogen separation technologies, 460

Industrial ceramics, 67
Innovation and invention, 83
Innovation in the staples of society, 129
Integrated circuits, 97
measurement needs and solutions for, 98
Integrated functions in multilayer ceramic technologies, 375
Integrated high-frequency dielectrics, 372
Intellectual property, 162
issues, 10
International trends and business perspectives, 13
Ion beam assisted deposition (IBAD) method, 482
Italian ceramic tile industry, 681
environmental performance of, 687

Japan, 37
R&D of fine ceramics in, 37

Key materials of endurance, 132
Kyocera, 19
ceramic technology development at, 19
environmental preservation, 25

information and communications, 24
quality of life, 27
vision for the future, 23

Laser parameter studies, 215
Laser-assisted rapid prototyping of dental components in the SiO₂–Al₂O₃ system, 211
Lasers, 104
measurement needs for, 105
Layer-wise slurry deposition (LSD), 211, 212
Light-emitting diodes (LEDs), 104
measurement needs and solutions for, 105
Linking productivity analysis and innovation for materials and energy, 143
Low-cost, high-performance, epitaxial ceramic films on artificial substrates for energy and electronic applications, 891
implications for applications other than superconductors for maximizing the “extrinsic” properties for a given set of “intrinsic” properties, 897
implications for non-HTS applications, 900
maximization of “extrinsic” properties for a given set of “intrinsic” properties, 892
maximization of “intrinsic” properties of REBCO conductors via nanotechnology, 897
rolling-assisted biaxially textured substrates (RABiTS), 894
Low-temperature co-fired ceramic (LTCC) technology, 298
LTCC materials, 326
cavity formation, 334
cofiring technology of different materials, 334
cost reduction, 334
first-generation, 326
high mechanical toughness, 334
second-generation, 327
third-generation, 332

Magnetic storage, 101
measurement needs and solutions for, 102
Making ceramics able to carry large electrical currents, 479
Making ceramics ductile, 479
Managing the global enterprise, 35
Markets, 34
Materials by Design®, 122
Materials education, 9
Measurement needs, 111
Measurement science and technology for ceramics innovations, 89
identifying needs for, 89
measurement needs, 90
Metal, ore, and energy production, 145
Mexico, 275
advantages and disadvantages of globalization, 278
evolution of the ceramic industry, 275
importance of the ceramics industry in, 275
innovative processing, 280
intellectual property, 280
national center of metrology (CENAM), 284
present economic situation, 275
Microelectromechanical systems (MEMS), 106
measurement needs and solutions for, 107
Microwave materials for low-temperature cofired ceramics, 325
Miniature light sources, 204
Multilayer ceramic capacitors, 362
Multilayer ceramic devices, 361
 capacitors, 362
Nanocermics, 355, 356, 839
cold spray, 843
high-pressure sintering, 841
outlook, 844
rate-control sintering, 840
solid oxide fuel cells, 358
strength of nanocrystalline bulk ceramics, 841
synthesis and characterization of thin films, 842
 thermal interface materials, 356
Nanocomposites, 91
Nanoparticle engineering, 419
Nanoparticles, 91, 353
Nanostructured materials, 353
Nanotechnology, 353, 475
National Institute for Materials Science (NIMS) (Japan), 39
biofunctional materials, 44
innovative ceramics, 41
materials for fuel cells, 45
materials for semiconductor devices, 43
materials for sensors, 46
nano/organic modules, 41
nanoparticle processing, 41
nanoparticles, 41
 nanosheets, 41
 nanotubes, 41
optoceramics, 44
photocatalysts, 46
research projects at, 40
superconducting materials, 45
National Research Council Report,
 Globalization of Materials R&D:
 Time for a National Strategy, 1
National Science Foundation (NSF) (USA), 127
ceramics at, 127
Ceramics Program (CER), 127
New global business model for technology companies, 29
NGC, 327
Nonvolatile memory, 311, 314
Nuclear energy, 560
Nuclear power industry, 541
ceramic fuels, 543
ceramic materials in, 541
 nuclear fuels, 543
SiC/SiC composites in nuclear fusion reactors, 562
Trisotropic (TRISO) fuels, 544
Nuclear waste separation technology, 546
Nuclear waste stabilization, 546
Opportunities for ceramic education in a materials world, 117
Organically modified silicate (ORMOSIL), 419, 423
Patenting ceramic-related inventions, 161
Patents, 162
“prior art”, 170
ceramics-specific issues, 167
change in the U.S. patent landscape, 168
changing from a first-to-invent to a first-to-file priority framework, 169
eliminating the best-mode requirement, 170
enabling third-party pregrant submissions of prior art and creating a new postgrant opposition system, 171
in China, 172
issues presently shaping the global patent landscape, 164
limiting the doctrine of willful infringement, 171
providing for the publication of substantially all utility patent applications at 18 months, 170
strength, 164
Patents filed in major countries in 2004, 32
Photocatalysts, 635, 695
(S, N)-codoped TiO₂, 698
(S, rare earth elements)-codoped TiO₂, 698
apatite doped with Ti(IV), 670
application and industrialization, 672
characteristics, 636
detection and diffusion of active species, 667
dry processing, 672
factors that affect photocatalytic properties, 665
highly active, 665
N-doped TiO₂, 696
phase and morphology, 639
photocatalytic activity, 641
photo-induced hydrophilic conversion, 667
plasma spraying, 636
powders, 636
preparation and characterization, 696
surface chemical state, 639
Ta₃N₅ nanoparticles, 700
thin film properties, 667
visible light sensitivity, 669
water and air cleaning, 666
wet processing, 671
wettability control, 667
working under visible light irradiation, 695
Photoelectrochemical conversion of solar energy into chemical energy, 447
Photonic/material combinations, 203
Piezoelectric ceramic fibers, 829
energy harvesting, 830
lighting, 835
piezoelectric ceramic fibers by VSSP, 832
piezoelectric power generation, 833
smart structures, 836
ultra-low-power electronics, 830
viscous suspension spinning process (VSSP), 833
wireless sensor networks, 834
Piezoelectric multilayers, 369
Poly isolation chemical mechanical planarization (CMP) process, 419
in the ULSI process, 419
Preparation of nanocomposites, 785
Product stewardship, 601
Product Stewardship Program for Refractory Ceramic Fiber, 601
benefits, 613
communications, 608
employee morale, 615
exposure assessments, 607
formulating a comprehensive, 605
health effects research, 607
improved unit processes and operations, 616
liability issues, 617
new products, 616
product research, 608
special studies, 608
study of workplace controls, 607
ties to customers, 615
workplace monitoring, 607
Productivity in materials processing, 154
Radical innovation, 153
Rapid prototyping (RP) processes, 211
Reciprocating engines, 578
Recycling of high-volume ceramic waste, 646
cement and concrete, 646
glass, 648
immobilization, 651
pigments, 650
refractories, 647
Reducing emissions, 656
Refractory ceramic fiber (RCF), 603
Research and development of fine ceramics, 37
RFCPU on glass substrate, 311
Rolling-assisted biaxially textured substrates (RABITS) method, 482
RWG, 332
Saint-Gobain Glass and Ceramics, 67
Segregation, 447
Self-cleaning titania coatings, 454
Semiconductor fab, 341
Semiconductor processing, 337
 chemical mechanical planarization, 348
eposure, 344
 implant, 343
interconnect metallization, 347
ion implant, 345
lithography, 342
oxidation, 344, 346
RTP and EPI, 347
use of advanced ceramics, 337
wafer carriers, 348
Shanghai Institute of Ceramics, 885
 bioceramics, 885
 organic–inorganic bionic nanocomposites, 886
 prospective and recent development on advanced inorganic materials and their applications, 885
 solid oxide fuel cells, 888
Silicon nitride ceramics for bearing applications, 437
 carbon nanotube dispersed silicon nitride ceramics, 440
 evaluation by the contact damage method, 440
future work, 440
 history of, 438
 new innovations in, 439
 TiN in-situ precipitated Si₃N₄ ceramics, 439
Silicon photovoltaic solar cells, 463
Carbon nanotubes, 339
Slurry preparation, characterization, and optimization, 214
Software, 34
Solar energy, 558
Solid freeform fabrication (SFF) techniques, 211
Solid oxide fuel cells (SOFCs), 358, 497, 534
 basic system setup, 510
 fuels and fuel processing for, 511
 German and EU perspective, 525
 power ranges and scale-up of, 511
 stacks, 512
 active stack components, materials, and manufacturing, 513
 design aspects, 512
 future, 523
 high-temperature sealing technology, 520
 improvements in long-term stability, 525
 improvements on cell level, 523
 increase of stack power output, 525
 interconnectors, 517
 mechanical and thermomechanical aspects, 513
 operating experiences, 522
 operating parameters, 512
 operating temperature, 512
 passive stack components, materials, and manufacturing, 515
 voltage level, 512
 weight and volume, 513
Standards, 175
 facilitate purchasing, 177
 needed for emerging technologies, 179
 needed in the development process, 178
 reduce costs, 176
 speed acceptance by regulatory agencies, 177
Structured EPD compacts, 784
Sustainable development, 643
Synthetic vitreous fiber (SVF), 603
Technical glasses, 709
 advances in, 709
 Celcor, 714
 Cercor, 711
 Chemcor, 711
 Communications, 710
 Corning Incorporated, 709
 display materials, 709
 environmental, 711
 optical fiber, 710
Technological development in materials businesses, 68
Thermal barrier coatings, 569
Thermal plasma deposition of ceramic coatings, 903
 applications, 903, 909
 coating processes and structures, 903
current technology, 903
diagnostics, 906
equipment, 907
future directions, 908
modifications to the APS process, 908
process control and design, 908
process simulation, 907
recent advances, 905
thermal spray processes, 905
Thin-film capacitors, 365
Thin-film polycrystalline silicon on class, 469
Thin-film silicon, 466
Three-dimensional laser surface sintering (3D-LSS), 211, 218
Titania photoelectrodes for water photolysis, 452
Transparent polycrystalline ceramics, 803
application areas for, 804
critical needs and concerns, 807
infrared transparent materials, 805
translucent/transparent materials for lighting, 806
transparent armor, 804
transparent ceramic scintillator materials, 807
transparent electro-optic ceramics, 807
transparent polycrystalline laser materials, 805
Transportation, 913

Ultra large scale integrated (ULSI) devices, 419

Ultra-high-temperature ceramics, 847
application of the spark-plasma sintering technique for the densification of
UHTC ceramics, 855
effects of secondary phases on densification behavior microstructure,
mechanical properties, and oxidation resistance, 852
influence of the final machining, 859
production of ultrarefractory composites through reaction and sintering
processes, 857
role of sintering aids in densification and microstructure evolution, 849

United Kingdom (UK), 63
structural ceramics network, 63
aims and scope, 64
operation, 64
outlook, 65
United States Patent and Trademark Office (USPTO), 166
United Technologies Corporation (UTC), 81
prospects for ceramic technology in, 81
Users of ceramics, 123

World Intellectual Property Organization (WIPO), 164

Yttria-stabilized zirconia (YSZ) for electrochemical devices, 450