Contents

Volume 1

Preface XXVII

List of Contributors XXXI

1 Guidelines for the Functional Analysis of Engineered and Mutant Enzymes 1
Dale E. Edmondson and Giovanni Gadda
1.1 Introduction 1
1.2 Steady-State Kinetics 2
1.3 Enzyme Assays and the Acquisition of Initial Velocity Data 3
1.3.1 Biological Sample Appropriate for Assay 3
1.3.2 Enzymatic Assays 4
1.3.3 Analysis of Initial Rate Data 6
1.3.4 Determination of Functional Catalytic Site Concentrations 8
1.4 Steady-State Kinetic Parameters and Their Interpretation 8
1.4.1 pH-Dependence of Steady-State Kinetic Parameters 11
1.4.2 Analysis of Two-Substrate Enzymes 11
1.5 Concluding Remarks 12
References 12

2 Engineering Enantioselectivity in Enzyme-Catalyzed Reactions 15
Romas Kazlauskas
2.1 Introduction 15
2.2 Molecular Basis for Enantioselectivity 18
2.2.1 Enzymes Stabilize Transition States for Fast-Reacting Enantiomers Better than Slow-Reacting Enantiomers 18
2.2.2 The Slow-Reacting Enantiomer Fits by Exchanging Two Substituents 18
2.2.3 The Slow Enantiomer Fits by an Umbrella-Like Inversion 19
2.3 Qualitative Predictions of Enantioselectivity 23

Contents

2.3.1 Comparing Substrate Structures Leads to Empirical Rules and Box Models 23
2.3.2 Computer Modeling Based on X-Ray Structures of Enzymes 25
2.3.3 What Is Missing from Current Computer Modeling? 26
2.4 Protein Engineering to Increase or Reverse Enantioselectivity 30
2.4.1 Mutations Closer to the Active Site Increase Enantioselectivity More Effectively than Mutations Far from the Active Site 30
2.4.2 Reversing Enantioselectivity by Exchanging Locations of Binding Sites or a Catalytic Group 36
2.5 Concluding Remarks 40
References 41

3 Mechanism and Catalytic Promiscuity: Emerging Mechanistic Principles for Identification and Manipulation of Catalytically Promiscuous Enzymes 47
Stefanie Jonas and Florian Hollfelder
3.1 Introduction 47
3.2 Calculation of Rate Accelerations 52
3.3 Catalytic Features and Their Propensity for Promiscuity 55
3.3.1 Metal Ions 55
3.3.2 Recognition of Transition State Charges: Analysis of the Nature of the Transition State 61
3.3.3 Catalytic Dyads and Triads 63
3.3.4 General Acid/Base Catalysts in Promiscuous Functional Motifs in Catalytic Superfamilies 64
3.4 Steric Effects and Structural Constriction in the Active Site: Product Promiscuity 67
3.5 Medium Effects in Enzyme Active Sites 70
3.6 Conclusions 71
References 72

4 Φ-Value Analysis of Protein Folding Transition States 81
Neil Ferguson and Alan R. Fersht
4.1 Introduction 81
4.2 Theoretical Principles of Protein Engineering 82
4.2.1 Overview 82
4.2.2 Basic Concepts 83
4.2.3 Theory of Φ-Value Analysis 87
4.2.4 Relationship between Φ and Leffler α 90
4.2.5 Linear Free-Energy Relationships and Denaturant Concentration 93
4.3 Guidelines for the Determination of Accurate Φ-Values 95
4.3.1 Buffer Preparation and Selection 96
4.3.2 Optimization of Experimental Conditions 97
4.3.3 Equilibrium Denaturation Experiments 99
4.3.3.1 Practical Considerations 99
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.3.2 Curve-Fitting</td>
<td>103</td>
</tr>
<tr>
<td>4.3.4Kinetic Measurements</td>
<td>105</td>
</tr>
<tr>
<td>4.3.4.1 Practical Considerations</td>
<td>107</td>
</tr>
<tr>
<td>4.3.4.2 Curve Fitting</td>
<td>110</td>
</tr>
<tr>
<td>4.3.4.3 Error Analysis for Chevron Plots</td>
<td>113</td>
</tr>
<tr>
<td>4.4 Conclusions</td>
<td>115</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>116</td>
</tr>
<tr>
<td>References</td>
<td>116</td>
</tr>
</tbody>
</table>

5 Protein Folding and Solubility: Pathways and High-Throughput Assays

Adam C. Fisher, Thomas J. Mansell, and Matthew P. DeLisa

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>121</td>
</tr>
<tr>
<td>5.2 Biosynthesis of Natural Proteins in Bacteria</td>
<td>122</td>
</tr>
<tr>
<td>5.2.1 Recombinant Protein Folding</td>
<td>122</td>
</tr>
<tr>
<td>5.2.2 Protein Misfolding and Inclusion Body Formation</td>
<td>123</td>
</tr>
<tr>
<td>5.2.3 Proteolysis</td>
<td>124</td>
</tr>
<tr>
<td>5.2.4 Cytoplasmic Chaperones</td>
<td>124</td>
</tr>
<tr>
<td>5.2.5 Export Pathways</td>
<td>125</td>
</tr>
<tr>
<td>5.3 Biosynthesis of de novo-Designed Proteins in Bacteria</td>
<td>126</td>
</tr>
<tr>
<td>5.4 Combinatorial Strategies for Assaying Protein Folding in Bacteria</td>
<td>126</td>
</tr>
<tr>
<td>5.4.1 Initial Protein-Folding Studies</td>
<td>128</td>
</tr>
<tr>
<td>5.4.2 Protein Chimeras</td>
<td>128</td>
</tr>
<tr>
<td>5.4.3 Split Proteins</td>
<td>129</td>
</tr>
<tr>
<td>5.4.4 Genetic Response</td>
<td>130</td>
</tr>
<tr>
<td>5.4.5 Cellular Quality Control Systems</td>
<td>130</td>
</tr>
<tr>
<td>5.5 Structural Genomics</td>
<td>131</td>
</tr>
<tr>
<td>5.6 Protein-Misfolding Diseases</td>
<td>132</td>
</tr>
<tr>
<td>5.7 Future Directions</td>
<td>135</td>
</tr>
<tr>
<td>5.7.1 Folding versus Solubility</td>
<td>137</td>
</tr>
<tr>
<td>References</td>
<td>138</td>
</tr>
</tbody>
</table>

6 Protein Dynamics and the Evolution of Novel Protein Function

Jörg Zimmermann, Megan C. Thielges, Wayne Yu and Floyd E. Romesberg

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>147</td>
</tr>
<tr>
<td>6.2 Physical Background</td>
<td>149</td>
</tr>
<tr>
<td>6.2.1 Flexibility, Conformational Heterogeneity and Time Scales of Protein Dynamics</td>
<td>149</td>
</tr>
<tr>
<td>6.2.2 Protein Dynamics and Thermodynamics of Molecular Recognition</td>
<td>151</td>
</tr>
<tr>
<td>6.3 Experimental Studies of Protein Dynamics</td>
<td>153</td>
</tr>
<tr>
<td>6.3.1 NMR Relaxation Experiments</td>
<td>153</td>
</tr>
<tr>
<td>6.3.2 Ultrafast Laser Spectroscopy</td>
<td>154</td>
</tr>
<tr>
<td>6.4 Experimental Techniques</td>
<td>158</td>
</tr>
</tbody>
</table>
6.4.1 Time-Correlation Function and the Spectral Density of Protein Motions 158
6.4.2 NMR Relaxation Techniques to Determine \(\rho(\omega) \) 160
6.4.3 Ultrafast Laser Spectroscopy to Determine \(C(t) \) and \(\rho(\omega) \) 160
6.4.4 Additional Approaches to the Characterization of Protein Dynamics 162
6.4.5 Chromophores to Probe Protein Dynamics 164
6.5 Case Study: Protein Dynamics and the Evolution of Molecular Recognition within the Immune System 165
6.6 Implications for Protein Engineering 172

References 173

7 Gaining Insight into Enzyme Function through Correlation with Protein Motions 187
Nicolas Doucet and Joelle N. Pelletier
7.1 Introduction 187
7.1.1 Enzyme Catalysis—the Origin of Rate Acceleration 187
7.1.2 Proteins Are Intrinsically Dynamic Molecules 188
7.1.3 Are Protein Motions Essential in Promoting the Catalytic Step of Enzyme Reactions? 190
7.2 Experimental Investigation of Enzyme Dynamics during Catalysis 191
7.2.1 Quantum Tunneling Revealed by Unusually Large Kinetic Isotope Effects (KIEs): Are Enzyme Dynamics Involved? 191
7.2.1.1 Varying Atomic Mass Can Alter the Rate of Proton Transfer 192
7.2.1.2 KIEs Reveal Quantum Tunneling 192
7.2.1.3 Quantum Tunneling and Protein Dynamics 192
7.2.2 Nuclear Magnetic Resonance: Experimental Observation of Protein Dynamics over a Broad Range of Time Scales 193
7.2.2.1 Extracting Information on Protein Dynamics by NMR 194
7.2.2.2 NMR Dynamics of Enzymes 194
7.2.3 Crystallographic Evidence of Motions in Enzymes 197
7.2.3.1 Time-Resolved X-Ray Crystallography 197
7.2.3.2 Motional Behavior in the Course of Enzyme Action 198
7.2.4 Computational Methods 199
7.2.4.1 Molecular Dynamics Simulations: Computational Models of Protein Motions 199
7.2.4.2 Combining Quantum Mechanics with Molecular Mechanics: QM/MM 200
7.3 Future Challenges 201
7.3.1 Promising New Methodologies for the Study of Enzyme Dynamics 201
7.3.2 NMR: Improving Methodologies 202
7.3.3 Kinetic Crystallography: Snapshots of a Protein in Various States 203
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.4</td>
<td>Computational Advances</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>205</td>
</tr>
<tr>
<td>8</td>
<td>Structural Frameworks Suitable for Engineering</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Birte Höcker</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>213</td>
</tr>
<tr>
<td>8.2</td>
<td>Choice of Protein Scaffold in Engineering: General Considerations</td>
<td>214</td>
</tr>
<tr>
<td>8.3</td>
<td>Examples of Engineered Structural Frameworks in Natural Evolution</td>
<td>215</td>
</tr>
<tr>
<td>8.3.1</td>
<td>The (βα)₈-Barrel Fold: A Natural Framework for Catalytic Function</td>
<td>216</td>
</tr>
<tr>
<td>8.3.1.1</td>
<td>Features of the (βα)₈-Barrel Fold</td>
<td>217</td>
</tr>
<tr>
<td>8.3.1.2</td>
<td>Engineering Experiments with (βα)₈-Barrel Proteins</td>
<td>218</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Periplasmic Binding Proteins: Using the Flexible Hinge</td>
<td>220</td>
</tr>
<tr>
<td>8.3.2.1</td>
<td>Features of the PBP Fold</td>
<td>221</td>
</tr>
<tr>
<td>8.3.2.2</td>
<td>Biosensors, Switches and Computational Design</td>
<td>221</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Repeat Proteins: Binding Large Molecules</td>
<td>223</td>
</tr>
<tr>
<td>8.3.3.1</td>
<td>Features of the Repeat Folds</td>
<td>224</td>
</tr>
<tr>
<td>8.3.3.2</td>
<td>Engineering Approaches with Repeat Folds</td>
<td>225</td>
</tr>
<tr>
<td>8.4</td>
<td>Summary</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>227</td>
</tr>
<tr>
<td>9</td>
<td>Microbes and Enzymes: Recent Trends and New Directions to Expand Protein Space</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Ana Beloqui, Miren Zumárraga, Miguel Alcalde, Peter N. Golyshin, and Manuel Ferrer</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>233</td>
</tr>
<tr>
<td>9.2</td>
<td>Protein Complexity of Microbial Communities through Metagenomics</td>
<td>233</td>
</tr>
<tr>
<td>9.3</td>
<td>Important Methodological Developments in Metagenomics</td>
<td>236</td>
</tr>
<tr>
<td>9.3.1</td>
<td>DNA Extraction Methodologies</td>
<td>236</td>
</tr>
<tr>
<td>9.3.1.1</td>
<td>Separation of Cellular Biomass from a Soil Homogenate via a Nycodenz Gradient</td>
<td>238</td>
</tr>
<tr>
<td>9.3.1.2</td>
<td>Isolation of High-Quality DNA by Phenol:Chloroform Method Followed by DNA Cleaning</td>
<td>238</td>
</tr>
<tr>
<td>9.3.1.3</td>
<td>Isolation of High-Quality DNA with Commercial Kits</td>
<td>239</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Functional Expression in Heterologous Hosts</td>
<td>241</td>
</tr>
<tr>
<td>9.3.2.1</td>
<td>Materials</td>
<td>242</td>
</tr>
<tr>
<td>9.3.2.2</td>
<td>Method for DNA Separation</td>
<td>242</td>
</tr>
<tr>
<td>9.3.2.3</td>
<td>Method for DNA Fragmentation</td>
<td>243</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Amplification and Subtraction of Whole Genomes in Low-Biomass Samples</td>
<td>243</td>
</tr>
</tbody>
</table>
9.3.4 Phylogenetic Affiliation of Metagenomic Fragments 244
9.4 Metagenomic Analysis of Whole-Metagenome Sequences: Shotgun Sequencing and Pyrosequencing 245
9.5 Bottlenecks in the Discovery of ‘Natural’ Proteins 246
9.5.1 PCR-Based Approach 246
9.5.2 Methods of Nucleic Acid Capture 248
9.5.3 Indirect Methods by Using Genetic Traps and Quorum-Sensing Promoters 249
9.5.4 Mutational Screening Methods 249
9.5.5 Supplementation Methods 249
9.5.6 Functional Screening Methods 250
9.6 Conclusions to Metagenomics for Gene Discovery: The Limits of ‘Natural’ Protein Diversity 253
9.7 Directed Molecular Evolution for Creating ‘Artificial’ Protein Diversity 254
9.8 Generation of Diversity in vitro 256
9.8.1 Random Mutagenesis 256
9.8.2 Methods of DNA Recombination 258
9.8.3 In vivo Methods 258
9.8.4 In vivo Methods Using S. cerevisiae as a Tool for the Generation of Diversity 259
9.9 Semi-Rational Approaches: Saturation Mutagenesis 260
9.10 The Development of Efficient Screening Methods 261
9.11 Metagenomic DNA Shuffling: Increasing Protein Complexity by Combining ‘Natural’ and ‘Artificial’ Diversity 262
Acknowledgments 263
References 264

10 Inteins in Protein Engineering 271
Alison R. Gillies and David W. Wood
10.1 Introduction 271
10.1.1 Inteins 271
10.1.2 Origin and Evolution 272
10.1.3 Structure 273
10.1.4 Splicing Mechanism 274
10.1.5 Overview of Applications in Protein Engineering 276
10.2 Expressed Protein Ligation 277
10.2.1 EPL Methods 277
10.2.2 Applications of EPL 279
10.3 Protein trans-Splicing 280
10.3.1 PTS Methods 280
10.3.2 Applications of PTS 282
10.4 Cyclization of Proteins 282
10.4.1 Cyclization Methods 284
10.4.2 Applications of Cyclization 285
10.5 Protein cis-Splicing and Cleaving 285
10.5.1 Cis-Splicing or Cleaving Methods 285
10.5.2 Applications of cis-Splicing or Cleaving 286
10.6 Potential Future Uses in Protein Engineering 288
References 289

11 From Prospecting to Product–Industrial Metagenomics Is Coming of Age 295
Jürgen Eck, Esther Gabor, Klaus Liebeton, Guido Meurer, and Frank Niehaus
11.1 Prospecting for Novel Templates 295
11.1.1 Metagenome—a Definition 295
11.1.2 Microorganisms as the Predominant Life-Form 296
11.1.3 Microbial Diversity and the Problem of Cultivation 296
11.1.4 Molecular Genetic Analysis of Diversity 297
11.2 Sample Generation: Access to the Metagenome 298
11.2.1 Preparation of Metagenomic DNA 298
11.2.2 Purification and Amplification of Metagenomic DNA 299
11.2.3 Construction of Metagenomic Gene Libraries 301
11.2.4 Increasing Hit Rates of Target Enzymes 303
11.2.5 Recovering Enzyme-Encoding Genes from the Metagenome 303
11.3 Sequence-Based Screening 307
11.3.1 Screening of Metagenome Libraries 307
11.3.2 Direct Access to Metagenome Sequence Information 308
11.4 Activity-Based Screening 309
11.4.1 Screening of Metagenome Expression Libraries 309
11.4.2 Heterologous Gene Expression: Transcription and Translation 310
11.4.3 Codon Usage 311
11.4.4 Alternative Expression Hosts 312
11.4.5 Assay Systems 313
11.5 Metagenomics—the Industrial Perspective 315
References 316

12 Computational Protein Design 325
Jeffery G. Saven
12.1 Introduction 325
12.2 Methods of Computational Protein Design 327
12.2.1 Target Structure 327
12.2.2 Degrees of Freedom 327
12.2.3 Energy Function 328
12.2.4 Solvation and Patterning 328
12.2.5 Search Methods 329
12.3 Computationally Designed Proteins 329
12.3.1 Protein Re-Engineering 330
12.3.2 De novo-Designed Proteins 333
13 Assessing and Exploiting the Persistence of Substrate Ambiguity in Modern Protein Catalysts 343

Kevin K. Desai and Brian G. Miller

13.1 Quantitative Description of Enzyme Specificity 343
13.2 Models of Enzyme Specificity 345
13.3 Advantages and Disadvantages of Specificity 346
13.4 Substrate Ambiguity as a Mechanism for Elaborated Metabolic Potential 347
13.5 Experimental Approaches to Detect Ambiguity 348
13.5.1 Whole Cell Mutagenesis and Selection 349
13.5.2 Phenotypic Screening 350
13.5.3 Overexpression Libraries 351
13.5.3.1 Purification of Genomic DNA 351
13.5.3.2 Generating Genomic DNA Fragments 353
13.5.3.3 Preparation of Vector DNA 353
13.5.3.4 Ligation and Transformation of Libraries 354
13.6 General Comments on Overexpression Libraries and Genetic Selections 354
13.7 Challenges and Prospects for the Future 356
13.7.1 Functional Genomics 356
13.7.2 Metagenomic Libraries 357
13.7.3 Universal Genetic Selection Systems 358

References 359

14 Designing Programmable Protein Switches 363

Martin Sagermann

14.1 Introduction 363
14.2 Engineering Allostery 365
14.3 A Fundamental Experimental Challenge 365
14.3.1 Engineering of Side-Chain Allostery 366
14.3.2 Secondary Structure Transitions 367
14.3.3 Designing Proteins that Adopt Different Folds with the Same Sequence 368
14.3.4 Insertion of Conformational Switches 369
14.4 A Different Approach: Creation of Internal Sequence Repeats 369
Contents

14.4.1 Experimental Details 370
14.4.2 Switching Conformations Through Secondary Structure Transitions 371
14.4.3 Duplication and Switching of β-Strands 373
14.4.4 Duplication of an α-Helix 377
14.4.5 Circular Permutations 381
14.5 Engineering a Conundrum 383
14.6 Advantages of Sequence Duplications, and Possible Future Applications 384
Acknowledgments 385
References 385

15 The Cyclization of Peptides and Proteins with Inteins 391
Blaise R. Boles and Alexander R. Horswill
15.1 Introduction 391
15.2 Protein Cyclization 393
15.2.1 *In vitro* Protein Cyclization 393
15.2.2 *In vivo* Protein Cyclization 395
15.3 Cyclization of Peptides 396
15.3.1 Intein Generation of *in vivo* Cyclic Peptide Libraries 398
15.3.2 Applications of *in vivo* Cyclic Peptide Libraries 398
15.3.3 Other Applications of Intein-Catalyzed Cyclization 400
15.3.4 Future Directions 402
15.4 Conclusions 403
References 403

Volume 2

16 A Method for Rapid Directed Evolution 409
Manfred T. Reetz
16.1 Introduction 409
16.2 Focused Libraries Generated by Saturation Mutagenesis 414
16.3 Iterative Saturation Mutagenesis 416
16.3.1 General Concept 416
16.3.2 Combinatorial Active-Site Saturation Test (CAST) as a Means to Control Substrate Acceptance and/or Enantioselectivity 418
16.3.3 B-Factor Iterative Test (B-FIT) as a Means to Increase Thermostability 425
16.3.4 Practical Hints for Applying ISM 430
16.4 Conclusions 430
References 431
17 Evolution of Enantioselective *Bacillus subtilis* Lipase 441
Thorsten Eggert, Susanne A. Funke, Jennifer N. Andexer, Manfred T. Reetz and Karl-Erich Jaeger

17.1 Introduction 441
17.2 Directed Evolution of Enantioselective Lipase from *Bacillus subtilis* 444
17.3 Directed Evolution by Error-Prone PCR 445
17.4 Complete Site-Saturation Mutagenesis 446
17.5 Conclusions 448
References 449

18 Circular Permutation of Proteins 453
Glenna E. Meister, Manu Kanwar, and Marc Ostermeier

18.1 Introduction 453
18.2 Evolution of Circular Permutations in Nature 454
18.2.1 Naturally Occurring Circular Permutations 454
18.2.2 Identification of Natural Circular Permutations 455
18.2.3 Mechanisms of Circular Permutation 457
18.3 Artificial Circular Permutations 459
18.3.1 Early Studies 459
18.3.2 Systematic and Random Circular Permutation 460
18.3.3 Protein Folding and Stability 462
18.4 Circular Permutation and Protein Engineering 463
18.4.1 Alteration of the Spatial Arrangement of Protein Fusions 463
18.4.2 Oligomeric State Modification 464
18.4.3 Improvement of Function 465
18.4.4 Creation of Protein Switches 466
18.4.5 Protein Crystallization 467
18.5 Perspective 468
Acknowledgments 468
References 468

19 Incorporating Synthetic Oligonucleotides via Gene Reassembly (ISOR): A Versatile Tool for Generating Targeted Libraries 473
Asael Herman and Dan S. Tawfi k

19.1 Introduction 473
19.1.1 Background 473
19.1.2 Overview of the Method 474
19.1.3 Applications 475
19.2 Materials 475
19.2.1 DNeasI Digestion 475
19.2.2 Assembly 476
19.2.3 Magnetic Separation and Product Amplification 476
19.3 Methods 476
19.3.1 DNeasI Digestion 476
20 Protein Engineering by Structure-Guided SCHEMA Recombination 481
Gloria Saab-Rincon, Yougen Li, Michelle Meyer, Martina Carbone,
Marco Landwehr, and Frances H. Arnold
20.1 Introduction 481
20.1.1 SCHEMA Recombination of Proteins: Theoretical Framework 481
20.1.2 Comparison of SCHEMA with Other Guided-Recombination Methods 483
20.1.3 Practical Guidelines for SCHEMA Recombination 485
20.2 Examples of Chimeric Libraries Designed Using the SCHEMA Algorithm 485
20.2.1 SCHEMA Recombination of β-Lactamases 485
20.2.2 SCHEMA-Guided Recombination of Cytochrome P450 Heme Domains 486
20.3 Conclusions 490
References 491

21 Chimeragenesis in Protein Engineering 493
Manuela Trani and Stefan Lutz
21.1 Introduction 493
21.1.1 Homology-Independent in vitro Recombination (Chimeragenesis) 494
21.1.1.1 Homology-Independent Random Gene Fusion 494
21.1.1.2 Homology-Independent Recombination with Multiple Crossovers 496
21.1.2 Predictive Algorithms in Chimeragenesis 498
21.2 Experimental Aspects of the SCRATCHY Protocol 499
21.2.1 Creation of ITCHY Libraries 499
21.2.2 Size and Reading Frame Selection 501
21.2.3 Enhanced SCRATCHY via Forced Crossovers 503
21.3 Future Trends in Chimeragenesis 506
21.3.1 Combining SCRATCHY and SCHEMA 508
21.3.2 The Future of Chimeragenesis 508
21.4 Conclusions 511
Acknowledgments 511
References 511
22 Protein Generation Using a Reconstituted System 515
Bei-Wen Ying and Takuya Ueda

22.1 Introduction 515
22.2 The PURE System 516
22.2.1 Concept and Strategy 516
22.2.2 The Composition of PURE 517
22.2.3 Advantages of PURE 517
22.2.4 Preparation of the Components 519
22.2.4.1 Overexpression and Purification of Translation Factors 519
22.2.4.2 Preparation of Ribosomes 520
22.2.5 Set-Up of the Translation Reaction 522
22.3 Current Applications 523
22.3.1 Protein Generation 523
22.3.2 *In vitro* Selection 528
22.3.3 Extensive Relevance in Mechanism Studies 529
22.4 Prospective Research 530
22.4.1 Modifications and Developments 531
22.4.2 Artificial Cells 531
22.4.3 Complexity and Network 532
22.5 Concluding Remarks 532

23 Equipping *in vivo* Selection Systems with Tunable Stringency 537
Martin Neuenschwander, Andreas C. Kleeb, Peter Kast, and Donald Hilvert

23.1 Genetic Selection in Directed Evolution Experiments 537
23.2 Inducible Promoters for Controlling Selection Stringency 538
23.2.1 Problems Associated with Commonly Used Inducible Promoter Systems 539
23.2.2 Engineering Graded Homogeneous Gene Expression 540
23.2.3 An Optimized Tetracycline-Based Promoter System for Directed Evolution 543
23.3 Controlling Catalyst Concentration 545
23.3.1 Reducing Catalyst Concentration by Switching to Weaker Promoters 545
23.3.2 Reducing Catalyst Concentration through Graded Transcriptional Control 547
23.3.3 Combining Graded Transcriptional Control and Protein Degradation 547
23.3.4 General Considerations 549
23.4 Controlling Substrate Concentrations 550
23.4.1 Engineering a Tunable Selection System Controlled by Substrate Concentration 551
23.4.2 Applications 554
23.4.3 Advantages of Metabolic Engineering Approaches 555
24 Protein Engineering by Phage Display

Agathe Urvoas, Philippe Minard, and Patrice Soumillion

24.1 Introduction

563

24.2 The State of the Art

563

24.2.1 Engineering Protein Binders by Phage Display

563

24.2.1.1 Antibodies and Antibody Fragments

563

24.2.1.2 Alternative Scaffolds

566

24.2.2 Engineering Protein Stability by Phage Display

571

24.2.3 Engineering Enzymes by Phage Display

573

24.2.3.1 Engineering Allosteric Regulation

573

24.2.3.2 Engineering Catalytic Activity

574

24.3 Practical Considerations

578

24.3.1 Choosing a Vector

578

24.3.2 Phage Production

582

24.3.3 Phage Purification

582

24.3.3.1 PEG Precipitation

583

24.3.3.2 CsCl Equilibrium Gradient

583

24.3.4 Measuring Phage Titer

583

24.3.5 Measuring Phage Concentration

584

24.3.6 Evaluating the Level of Display

584

24.3.6.1 Western Blot

584

24.3.6.2 Active-Site Labeling

584

24.3.7 Measuring the Affinity of a Phage for a Ligand

585

24.3.8 Measuring the Activity of a Phage-Enzyme

585

24.3.9 Library Construction

585

24.3.10 Library Production

586

24.3.11 Selections

587

24.3.11.1 Affinity-Based Selections

587

24.3.11.2 Activity-Based Selections of Phage-Enzymes

588

24.3.12 Troubleshooting

591

24.3.12.1 Phage Titers are not Reproducible

591

24.3.12.2 Displayed Protein is Degrading with Time

592

24.3.12.3 Phages are not Genetically Stable

592

24.3.12.4 The Ratio ‘Out/In’ is not Increasing with the Selection Rounds

592

24.4 Conclusions and Future Challenges

592

References

593

25 Screening Methodologies for Glycosidic Bond Formation

Amir Aharoni and Stephen G. Withers

25.1 Introduction

605
25.2 Glycosynthases 607
25.3 Glycosyltransferases 608
25.4 Protocol and Practical Considerations for Using HTS Methodology in the Directed Evolution of STs 610
25.4.1 Cloning of the Target ST and CMP-Neu5Ac-Synthetase 610
25.4.2 Synthesis of Fluorescently Labeled Acceptor Sugar 611
25.4.3 Cell-Based Assay in JM107 Nan A[−] Strain 611
25.4.4 Transformation, Growth and Expression of Plasmids Containing ST and CMP-syn Genes in JM107 Nan A[−] Strain 612
25.4.5 Cell-Based Assay 613
25.4.6 Validation, Sensitivity and Dynamic Range of the Cell-Based Assay 613
25.4.7 Model Selection 614
25.4.8 Generation of Genetic Diversity in the Target ST Gene: Strategies for Constructing Large Mutant Libraries 614
25.4.9 Library Sorting, Rounds of Enrichment and the Stringency of Selection 615
25.4.10 Identification and Isolation of Improved Mutants 615
25.4.11 Characterization of Improved ST Mutants 616
25.5 Challenges and Prospects of GT Engineering 617

References 617

26 Yeast Surface Display in Protein Engineering and Analysis 621
Benjamin J. Hackel and K. Dane Wittrup
26.1 Review 621
26.1.1 Introduction 621
26.1.2 Protein Engineering 622
26.1.2.1 Affinity Engineering 623
26.1.2.2 Stability and Expression Engineering 623
26.1.2.3 Enzyme Engineering 624
26.1.3 Protein Analysis 624
26.1.3.1 Clone Characterization 624
26.1.3.2 Paratope: Epitope Study 625
26.1.3.3 YSD in Bioassays 626
26.2 Protocols and Practical Considerations 626
26.2.1 Materials 627
26.2.1.1 Cells and Plasmids 627
26.2.1.2 Media and Buffers 627
26.2.1.3 Buffers 627
26.2.1.4 Flow Cytometry Reagents 627
26.2.2 Nucleic Acid and Yeast Preparation 628
26.2.2.1 DNA Preparation 628
26.2.2.2 Yeast Transformation 630
26.2.2.3 Yeast Culture 632
26.2.3 Combinatorial Library Selection 632
26.2.4 FACS 633
26.2.4.1 Other Selection Techniques 635
26.2.4.2 Stability 636
26.2.4.3 Clone Identification 637
26.2.5 Analysis 637
26.2.5.1 Binding Measurements 637
26.2.5.2 Stability Measurement 641
26.3 The Future of Yeast Surface Display 642

Abbreviations 644
Acknowledgments 644
References 644

27 In Vitro Compartmentalization (IVC) and Other High-Throughput Screens of Enzyme Libraries 649
Amir Aharoni and Dan S. Tawfik
27.1 Introduction 649
27.2 The Fundamentals of High-Throughput Screens and Selections 650
27.3 Enzyme Selections by Phage-Display 651
27.4 HTS of Enzymes Using Cell-Display and FACS 652
27.5 Other FACS-Based Enzyme Screens 653
27.6 In vivo Genetic Screens and Selections 653
27.7 In vitro Compartmentalization (IVC) 654
27.8 IVC in Double Emulsions 657
27.9 What’s Next? 659
27.10 Experimental Details 660
Acknowledgments 662
References 662

28 Colorimetric and Fluorescence-Based Screening 669
Jean-Louis Reymond
28.1 Introduction 669
28.2 Enzyme-Coupled Assays 670
28.2.1 Alcohol Dehydrogenase (ADH)-Coupled Assays 671
28.2.2 Peroxidase-Coupled Assays 673
28.2.3 Hydrolase-Coupled Assays 674
28.2.4 Luciferase-Coupled Assays 676
28.3 Fluorogenic and Chromogenic Substrates 678
28.3.1 Release of Aromatic Alcohols 678
28.3.2 Aniline Release 681
28.3.3 FRET 682
28.3.4 Reactions that Modify the Chromophore Directly 685
28.3.5 Separation of Labeled Substrates 685
28.3.6 Precipitation 687
28.4 Chemosensors and Biosensors 688
28.4.1 Quick-E with pH-Indicators 688
28 Functional Group-Selective Reagents
- 28.4.2 Functional Group-Selective Reagents 689
- 28.4.3 Antibodies, Aptamers and Lectins 690
- 28.4.4 Gold Nanoparticles 691

28.5 Enzyme Fingerprinting with Multiple Substrates
- 28.5.1 APIZYM 693
- 28.5.2 Protease Profiling 695
- 28.5.3 Cocktail Fingerprinting 695
- 28.5.4 Substrate Microarrays 697

28.6 Conclusions 698

Acknowledgments 699

References 699

29 Confocal and Conventional Fluorescence-Based High Throughput Screening in Protein Engineering 713

Ulrich Haupts, Oliver Hesse, Michael Sterath, Peter J. Walla, and Wayne M. Coco

29.1 General Aspects 713

- 29.1.1 HTS and Combinatorial DNA Library Strategies in Protein Engineering 713
- 29.1.2 HTS in Protein Engineering: Coupling Genotype and Phenotype and the Advantages of Clonal Assays 715

29.2 Fluorescence 718

- 29.2.1 Overview of Theory and Principles of Fluorescence 719
- 29.2.1.1 Choice of Fluorophores in HTS 721
- 29.2.1.2 Concentration Requirements for Fluorescent Analytes 722
- 29.2.1.3 Fluorescence Intensity Measurements with a Precautionary Note on Fluorescent Labeling of Substrates and Binding Partners 722
- 29.2.1.4 Confocal Versus Bulk Detection Methods 723
- 29.2.1.5 Advantages of the Confocal Fluorescence Detection Format 724
- 29.2.1.6 Anisotropy 724
- 29.2.1.7 FRET/TR-FRET/Lifetime 725
- 29.2.1.8 Fluorescence Correlation Spectroscopy 726
- 29.2.1.9 FIDA 726

29.3 Hardware and Instrumentation 727

- 29.3.1 Confocal and Bulk Concepts 727
- 29.3.1.1 Light Sources 727
- 29.3.1.2 Wavelength Selection/Filtering 729
- 29.3.1.3 Detectors 729
- 29.3.1.4 Reader Systems 730

29.4 Practical Considerations and Screening Protocol 730

- 29.4.1 Introduction 730
- 29.4.2 Fluorescence-Based Assay Design: Practical Considerations 731
- 29.4.2.1 Choice of Assay Design 731
- 29.4.2.2 Labeling 731
30 Alteration of Substrate Specificity and Stereoselectivity of Lipases and Esterases 753
Dominique Böttcher, Marlen Schmidt, and Uwe T. Bornscheuer
30.1 Introduction 753
30.2 Background of Protein Engineering Methods 754
30.2.1 Directed Evolution 754
30.2.2 Rational Design 756
30.3 Assay Systems 757
30.3.1 Selection 757
30.3.1.1 Display Techniques 757
30.3.1.2 In vivo Selection 758
30.3.2 Screening 759
30.4 Examples 764
30.5 Conclusions 770
References 770

31 Altering Enzyme Substrate and Cofactor Specificity via Protein Engineering 777
Matthew DeSieno, Jing Du, and Huimin Zhao
31.1 Introduction 777
31.1.1 Overview 777
31.1.2 Approaches 779
31.1.2.1 Rational Design 779
31.1.2.2 Directed Evolution 781
31.1.2.3 Semi-Rational Design 781
31.2 Specific Examples 782
31.2.1 Cofactor Specificity 782
31.2.1.1 NAD(P)(H) 783
31.2.1.2 ATP 783
31.2.1.3 Summary and Comments for Cofactor Specificity 784
31.2.2 Substrate Specificity 784
31.2.2.1 P450s 785
31.2.2.2 Aldolases 785
31.2.2.3 Transfer-RNA Synthetases 786
31.2.2.4 Restriction Endonucleases 786
31.2.2.5 Homing Endonucleases 788
31.2.2.6 Polymerases 789
31.2.2.7 Summary and Comments for Substrate Specificity 789
31.3 Challenges and Future Prospects 790
31.3.1 New Strategies for Engineering Cofactor/Substrate Specificity 790
31.3.2 Cofactor/Substrate Specificity Engineering for Combinatorial Biosynthesis 791
31.3.3 Cofactor/Substrate Specificity Engineering for Metabolic Engineering 792
31.3.4 Cofactor/Substrate Specificity Engineering for Gene Therapy 793
Acknowledgments 793
References 793

32 Protein Engineering of Modular Polyketide Synthases 797
Alice Y. Chen and Chaitan Khosla
32.1 Introduction 797
32.2 Polyketide Biosynthesis and Engineering 798
32.2.1 Active Sites and Domain Boundaries in Multimodular PKSs 799
32.2.2 Past Achievements in Genetic Reprogramming of Polyketide Biosynthesis 802
32.2.2.1 Starter Unit Incorporation 802
32.2.2.2 Extender Unit Incorporation 804
32.2.2.3 \(\beta\)-Carbon Processing 805
32.2.2.4 Chain Length Control 807
32.2.2.5 Additional Modifications 807
32.2.2.6 Other PKS Engineering Opportunities 807
32.2.3 Pre-/Post-PKS Pathway Engineering 809
32.2.3.1 Precursor Production 809
32.2.3.2 Post-PKS Modification 810
32.3 Engineering and Characterization Techniques 810
32.3.1 Common Genetic Techniques for PKS Engineering 810
32.3.1.1 Restriction Site Engineering 811
32.3.1.2 Gene SOEing 811
32.3.1.3 Red/ET Homology Recombination 811
32.3.1.4 Gene Synthesis 812
32.3.1.5 Gene Shuffling 813
32.3.2 In vitro Characterization 814
32.3.2.1 Protein Expression 814
32.3.2.2 Protein Purification 814
32.3.2.3 Protein Characterization 815
32.3.3 In vivo Characterization 816
32.3.3.1 Host Engineering 816
32.3.3.2 High-Throughput Screening Assay 817
32.4 The Path Forward 818
Abbreviations 819
References 819

33 Cyanophycin Synthetases 829
Anna Steinle and Alexander Steinbüchel
33.1 Introduction 829
33.2 Occurrence of Cyanophycin Synthetases 830
33.3 General Features 830
33.4 Reaction Mechanism 831
33.5 Substrate Specificity 832
33.6 Primary Structure Analysis 836
33.7 Enzyme Engineering 838
33.8 Biotechnical Applications 843
Acknowledgments 843
References 843

34 Biosynthetic Pathway Engineering Strategies 849
Claudia Schmidt-Dannert and Alexander Pisarchik
34.1 Introduction 849
34.2 Initial Pathway Design 850
34.2.1 Functional Pathway Assembly 850
34.2.2 Selection of the Heterologous Host 854
34.3 Optimization of the Precursor Supply 855
34.3.1 Identification and Overexpression of Rate-Limiting Enzymes 856
34.4 Engineering of Control Loops 858
34.5 Engineering of Alternative Precursor Routes 858
34.6 Balancing Gene Expression Levels and Activities of Metabolic Enzymes 859
34.7 Metabolic Network Integration and Optimization 861
34.8 Engineering Pathways for the Production of Diverse Compounds 863
34.9 Future Perspectives 866
Abbreviations 867
References 868
35 Natural Polyester-Related Proteins: Structure, Function, Evolution and Engineering 877

Seiichi Taguchi and Takeharu Tsuge

35.1 Introduction 877
35.2 Enzymes Related to the Synthesis and Degradation of PHA 878
35.3 Structure-Based Engineering of PHA Synthase and Monomer-Supplying Enzymes 879
35.3.1 PHA Synthase (PhaC, PhaEC, PhaRC) 880
35.3.2 3-Ketoacyl-CoA Thiolase (PhaA) 882
35.3.3 Acetoacetyl-CoA Reductase (PhaB) 887
35.3.4 (R)-Specific Enoyl-CoA Hydratase (PhaJ) 890
35.3.5 (R)-3-Hydroxyacyl-ACP-CoA Transferase (PhaG) 891
35.3.6 3-Ketoacyl-ACP Synthase III (FabH) 891
35.4 Directed Evolution of PHA Synthases 892
35.4.1 Engineering of the Type I Synthases 893
35.4.2 Engineering of the Type II *Pseudomonas* Species PHA Synthases 897
35.5 Structure–Function Relationship of PHA Depolymerases 899
35.5.1 Domain Structure of Extracellular PHA Depolymerases 899
35.5.2 Intracellular PHA Depolymerase 903
35.5.3 Amino Acid Residues Related to Binding Affinity 904
35.6 Application of PHA-Protein Binding Affinity 905
35.7 Perspectives 906
References 907

36 Bioengineering of Sequence-Repetitive Polypeptides: Synthetic Routes to Protein-Based Materials of Novel Structure and Function 915

Sonha C. Payne, Melissa Patterson, and Vincent P. Conticello

36.1 Introduction 915
36.2 Block Copolymers as Targets for Materials Design 918
36.2.1 Amphiphilic Block Copolymers 919
36.2.2 Elastin-Mimetic Block Copolymers 920
36.3 Strategies for the Construction of Synthetic Genes Encoding Sequence-Repetitive Polypeptides 923
36.3.1 DNA Cassette Concatemerization 924
36.3.2 Recursive Directional Ligation 925
36.3.3 Genetic Assembly of Synthetic Genes Encoding Block Architectures 926
36.4 A Hybrid Approach to the Controlled Assembly of Complex Architectures of Sequence-Repetitive Polypeptides 928
36.5 Future Outlook 935
Acknowledgments 936
References 936
37 Silk Proteins – Biomaterials and Bioengineering 939
Xiaoqin Wang, Peggy Cebe, and David. L. Kaplan

37.1 Silk Protein Polymers – An Overview 939

37.2 Silk Protein Polymers – Methods of Preparation 947

37.2.1 Preparation of Spider Silks 947

37.2.2 Preparation of Scaffolds 949

37.3 Silk Protein Polymers – Future Perspectives and Challenges 951

Acknowledgments 954

References 954

Index 961