Index

a
AAI (adhesion angle index) 21, 290
Abrasion 5, 54 f, 59 f
ABS see: Polymers
Absorber gas 27, 107–113, 397, 435
Absorption see: Absorber
Acceleration 338, 344
– see also: Centrifuges
Accuracy 7, 23 f
Acetal extrusion 306
Acetaldehyde 219, 375
Acetic acid 208, 237, 375
Acetic anhydride 279
Acetone 107, 219, 375
Acetonitral 278
Acetoxidation 200
Acetoxylation 221
Acetylation 200, 217, 221
Acetylene 222
Acid demister see: Demister
Acidic conditions/corrosion 5
Acids 132
Acrolein 218, 222
Acrylamide 277
Acrylates 224
Acrylics 127, 210, 306
Acrylonitrile 201 f, 222, 266
Activated sludge reactor 254, 274 f, 426
– see also individual types
Activated alumina/carbon 118 f
Activation energy (E) 189–194, 224
Active species for catalysts, 199–205
Active, mentally 23
Activity coefficient 4
Activity, catalyst see: Catalyst
Adhesives 210, 323 f
Adiabatic temperature rise 188 f, 211, 229
Adiabatic operation
– compression 46
– reactors 188 ff, 229 ff, 242 ff, 261, 276
Adipic acid 219, 154, 167
Adsorbents 118 f
Adsorbers see: Absorption
Adsorption 47, 54, 118 ff
– backwash 289
– capital cost 399
– see also individual types
Aeration
– agitators 17, 256 f
– capital cost 421, 428 ff
– diffuser 17, 237
– mixing 282 f
– oxygen per cell mass 207
– oxygen transfer rate 12
– sparging 17, 254, 283
– surface 262, 275
– see also: Bubbles
Aeration tanks 238, 262, 274 f, 421–426
Aerobic terms see: Biological reactors
Affinity adsorption
 see: Chromatographic separation
Afterburners 138, 142
Agar 154
Agar-agar 323
Agarose-based gels 136
Agenda 35, 38
Agents 87, 30
Agglomeration 302 f, 433
Agitated falling film, GL 247
– see also: Evaporation
Agitated vessel: see: Stirred Tank
Agitated pan dryers see: Dryers
Agitator 280–289, 371, 427 f
AI (arching index) 20, 59 ff, 289 ff, 331
Air cyclone classifiers see: Classifiers
Air pulse 290
Air cooled heat exchangers
 see: Heat exchangers
Air leaks into vacuum 49
Air 46, 129

Rules of Thumb in Engineering Practice. Donald R. Woods
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31220-7
Archimedes number (Ar) 266, 361, 367
Archimedes screw pump 385
Area per unit volume 11–19, 70, 146, 234
Area of application (equipment) 2
Area 336
Aromatics 130
Arrhenius number (Arr) 188 f, 361
Arsenic 107
Asphalt 323
Asphaltenes 28 f, 239
Assertiveness 35
Assessment 39
Atomizers 293
– see also: Spray
Attapulgite 169
Attending 34
Autoclave 174, 216, 260
Autothermal reaction 230, 261
Avogadro’s number 358
Axial fans see: Fans
Axial compressors see: Compressors
Azeotropic distillation see: Distillation

b
B, target solute transport coefficient 131
Backmix reactor see: Stirred tank reactor,
CSTR, Fluidized bed reactor
Backmixing 363, 370
Backwash
– fluidization 289
– IX 121
– membranes 133 f
– adsorption 119
– rotating microscreen 159
– deep bed filters 171
Bacteria 122, 131, 208, 237 f
Baffles 72 f
– GL quenchers, 80
– GS separators 402 ff
– L mixing 281
– LL direct contact heat exchange 79 f
– scrubbers/absorbers 109, 143
– separators 137
– SS classifier 180
Bag filters see: Filters
Bagging machines 332 f, 436
Baker’s yeast 237
Ball mills see: Crushing/grinding
Ballast trays see: Trays
Banbury mixer see: Blenders
Band see: Coalescence
Bar screens see: Screens
Bare module costing (BM) 3, 21 f, 376 ff
Barite 169, 332
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium sulfate</td>
<td>122</td>
</tr>
<tr>
<td>Barium sulfide</td>
<td>250</td>
</tr>
<tr>
<td>Barometric condensers</td>
<td>81, 391</td>
</tr>
<tr>
<td>Bartles-Mozley tilting tables see: Tables</td>
<td></td>
</tr>
<tr>
<td>Batac jig see: Jigs</td>
<td></td>
</tr>
<tr>
<td>Batch operations</td>
<td>11</td>
</tr>
<tr>
<td>Baum jigs see: Jigs</td>
<td></td>
</tr>
<tr>
<td>Bauxite</td>
<td>248</td>
</tr>
<tr>
<td>Bayonet heaters see: Heat exchangers</td>
<td></td>
</tr>
<tr>
<td>Bd see: Bodenstein number</td>
<td></td>
</tr>
<tr>
<td>BDI bin density index</td>
<td>20, 59, 63</td>
</tr>
<tr>
<td>Bed</td>
<td></td>
</tr>
<tr>
<td>– adsorbers</td>
<td>118 ff</td>
</tr>
<tr>
<td>– chromatography</td>
<td>136</td>
</tr>
<tr>
<td>– ion exchange</td>
<td>121</td>
</tr>
<tr>
<td>– packed beds</td>
<td>54</td>
</tr>
<tr>
<td>– reactors</td>
<td>215, 258</td>
</tr>
<tr>
<td>– space velocity</td>
<td>215</td>
</tr>
<tr>
<td>Beer</td>
<td>237</td>
</tr>
<tr>
<td>Belt dryers/tables etc. see: Dryers/Tables etc.</td>
<td></td>
</tr>
<tr>
<td>Belt, chilled</td>
<td>323 f</td>
</tr>
<tr>
<td>Bendelari jigs see: Jigs</td>
<td></td>
</tr>
<tr>
<td>Beneficiation</td>
<td>175</td>
</tr>
<tr>
<td>Bentonite</td>
<td>332</td>
</tr>
<tr>
<td>Benzene</td>
<td>219, 223, 278, 375</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>219, 323</td>
</tr>
<tr>
<td>Bernoullis principle</td>
<td>45, 139</td>
</tr>
<tr>
<td>Beryl saddles packing see: Packing</td>
<td></td>
</tr>
<tr>
<td>BFB (bubbling fluidized bed) see: Fluidization</td>
<td></td>
</tr>
<tr>
<td>Bins</td>
<td>290, 330 ff, 436</td>
</tr>
<tr>
<td>Biodegradability</td>
<td>209</td>
</tr>
<tr>
<td>Biofilter</td>
<td>242 f</td>
</tr>
<tr>
<td>Biological fouling</td>
<td>28</td>
</tr>
<tr>
<td>Biological reactors</td>
<td>207–213</td>
</tr>
<tr>
<td>– agitation</td>
<td>282</td>
</tr>
<tr>
<td>– air lift</td>
<td>237</td>
</tr>
<tr>
<td>– anaerobic</td>
<td>207, 278</td>
</tr>
<tr>
<td>– biofilm area</td>
<td>18, 242 f</td>
</tr>
<tr>
<td>– bubble column</td>
<td>223</td>
</tr>
<tr>
<td>– capital cost</td>
<td>419–426</td>
</tr>
<tr>
<td>– carbon removal</td>
<td>242 f</td>
</tr>
<tr>
<td>– CSTR series</td>
<td>254</td>
</tr>
<tr>
<td>– Da no.</td>
<td>365</td>
</tr>
<tr>
<td>– extractive</td>
<td>256, 278</td>
</tr>
<tr>
<td>– fermenter</td>
<td>424 f</td>
</tr>
<tr>
<td>– fluidized bed</td>
<td>267</td>
</tr>
<tr>
<td>– GL biosolids</td>
<td>248</td>
</tr>
<tr>
<td>– GL, oxygen transfer rate</td>
<td>11–16, 208</td>
</tr>
<tr>
<td>– GLS contactors</td>
<td>18</td>
</tr>
<tr>
<td>– immersed column</td>
<td>240</td>
</tr>
<tr>
<td>– inoculation tank</td>
<td>424 f</td>
</tr>
<tr>
<td>– packed column</td>
<td>15</td>
</tr>
<tr>
<td>– PFTR with recycle</td>
<td>274 f</td>
</tr>
<tr>
<td>– pipe contactor</td>
<td>225 f</td>
</tr>
<tr>
<td>– reactor conditions</td>
<td>195, 216, 223</td>
</tr>
<tr>
<td>– spray</td>
<td>239 f</td>
</tr>
<tr>
<td>– STR</td>
<td>223, 255–262</td>
</tr>
<tr>
<td>– tank</td>
<td>273 f, 276</td>
</tr>
<tr>
<td>– thin film contactor</td>
<td>248</td>
</tr>
<tr>
<td>– tray column</td>
<td>241</td>
</tr>
<tr>
<td>Biomass gasifiers</td>
<td>266</td>
</tr>
<tr>
<td>Biomass</td>
<td>208</td>
</tr>
<tr>
<td>Bioprocessing</td>
<td></td>
</tr>
<tr>
<td>– adsorption</td>
<td>118 ff</td>
</tr>
<tr>
<td>– bag</td>
<td>332 f</td>
</tr>
<tr>
<td>– capital cost</td>
<td>402</td>
</tr>
<tr>
<td>– cell disintegration</td>
<td>295</td>
</tr>
<tr>
<td>– chromatographic separation</td>
<td>135 f</td>
</tr>
<tr>
<td>– deodorize</td>
<td>113</td>
</tr>
<tr>
<td>– desolventize</td>
<td>153, 156</td>
</tr>
<tr>
<td>– dialysis</td>
<td>129</td>
</tr>
<tr>
<td>– drying</td>
<td>151, 154 f, 158</td>
</tr>
<tr>
<td>– expel</td>
<td>175</td>
</tr>
<tr>
<td>– extrusion (food)</td>
<td>306 ff</td>
</tr>
<tr>
<td>– filter</td>
<td>171</td>
</tr>
<tr>
<td>– flakers</td>
<td>323 f</td>
</tr>
<tr>
<td>– foam</td>
<td>292 f</td>
</tr>
<tr>
<td>– IX</td>
<td>120 f</td>
</tr>
<tr>
<td>– leach</td>
<td>173 f</td>
</tr>
<tr>
<td>– membranes</td>
<td>125, 128, 133</td>
</tr>
<tr>
<td>– pelleting</td>
<td>304</td>
</tr>
<tr>
<td>– precipitation</td>
<td>107</td>
</tr>
<tr>
<td>– solvent extraction</td>
<td>115 ff</td>
</tr>
<tr>
<td>– tablet</td>
<td>304</td>
</tr>
<tr>
<td>– tempered heat exchange</td>
<td>85</td>
</tr>
<tr>
<td>– zone refining</td>
<td>102</td>
</tr>
<tr>
<td>– see also: Biological reactors</td>
<td></td>
</tr>
<tr>
<td>Biot number (Bi)</td>
<td>362</td>
</tr>
<tr>
<td>Bird number (Bir)</td>
<td>181 ff, 362</td>
</tr>
<tr>
<td>Black peppers</td>
<td>332</td>
</tr>
<tr>
<td>Blast furnace</td>
<td>250 ff</td>
</tr>
<tr>
<td>Bleacher see: Adsorption</td>
<td></td>
</tr>
<tr>
<td>Blenders</td>
<td>290 f, 429 f</td>
</tr>
<tr>
<td>Blood</td>
<td>154</td>
</tr>
<tr>
<td>Blowers</td>
<td>45 ff, 381</td>
</tr>
<tr>
<td>Blown film</td>
<td>305, 308</td>
</tr>
<tr>
<td>Blowout of lines</td>
<td>54, 63</td>
</tr>
<tr>
<td>BM (bare module) cost estimation</td>
<td>3, 21 f, 376 ff</td>
</tr>
<tr>
<td>BOD<sub>n</sub>, relationship–BOD<sub>n</sub></td>
<td>209, 237, 242 , 254, 274 f</td>
</tr>
<tr>
<td>Boilers</td>
<td>67 f, 72–78, 83 ff, 388 ff</td>
</tr>
<tr>
<td>Boiling phenomena</td>
<td>72</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>358, 363</td>
</tr>
<tr>
<td>Bond energy</td>
<td>216 ff</td>
</tr>
<tr>
<td>Bond number (Bo)</td>
<td>363</td>
</tr>
<tr>
<td>Bodenstein number (Bd)</td>
<td>224, 253 f, 260, 363</td>
</tr>
<tr>
<td>Boiling temperature see: Vapor pressure</td>
<td></td>
</tr>
<tr>
<td>Boiling phenomena</td>
<td>72</td>
</tr>
<tr>
<td>Bond energy</td>
<td>216 ff</td>
</tr>
</tbody>
</table>
Index

Bone char 248
Books coatings 324
Booster ejector see: Ejector
Boot, part of separator 149
Boron trifluoride 29
Boussinesq number 363
Bowl centrifuge see: Centrifuge
Breaking, emulsions/dispersions see: Dispersed phase
Breaking foams see: Foams
Breakup of films see: Thin films
Bridge cranes see: Cranes
Briquetting 303, 433
Bromination 195
Brownian movement 298
Bubble cap tray see: Tray
Bubble columns 236 ff
– bioreactor 208
– capital cost 421 f
– GL contactor 12–18
– Hatta number/β values 198
– reactors 212, 222 ff, 236 ff
Bubbles 17, 174 ff, 236 f
– foam fractionation 123, 237, 292 f
– capital cost 421, 428
Bucket elevators see: Conveyors/bucket
Buckman tilting tables see: Tables
Bulk–film volume ratio (d+) 11–16, 198, 239–247, 262 ff
– STR 255
– foam fractionation 123
Burke-Plummer equation 251
Burner 67, 211, 222–226
Butadiene 202, 218
Butane 69, 375
Butanol 219
Butanone-2 202
Butene 375
Butene diol 219
Butyl acetate 219

C
C4–C6 94
Ca see: Capillary number
CA (cellulose acetate) see: Polymers
Cage mill (pulverizer) see: Crushing/grinding
Cake 168 f
Calandrias see: Boilers
Calcination 267, 250
Calcium ion 115
Calcium sulfate 28, 122
Calcium carbonate 154, 170
Canola 173 ff
Capillary number (Ca) 325 f, 364
Capital cost see: Cost, capital
Caprylic acid 375
Carbides 199
Carbon dioxide
– absorption 108, 111
– heat capacity ratio 46
– permeance 129
– vapor pressure 375
Carbon 118 f, 125, 199, 248
Carbon black 332
Carbonic acid 122
Carbonylation 201, 217, 222
Carboxy methyl cellulose 107, 154
Carousel filter see: Filters
Carousel leacher see: Leaching, French basket
Carroccenan 107
Cast sheet 305
Catalyst 199–207
– crush strength 230
– diameter 18, 277, 229 f, 244
– porosity 20, 199
– reactor conditions 190, 201 f, 205 f
Cat cracking see: Cracking, catalytic
Cations/IX 121
Caustic dihydrate 105
Caustic wash 227
Caustics 323
Cavitation 6, 11, 53 ff
CCD (counter current decantation) 151, 163, 174, 409 f
Cell Disintegration 295, 430
Cellulose acetate see: Polymers
Cellulose triacetate 219
Cellulosic see: Polymers
Cement 250, 332
Centrifugal classifiers/blowers/Pumps see: Classifiers/Blowers/Pumps
Centrifuges 150–151, 163–168, 410 f
– sedimentation 145, 404 f
– see also individual types
CEPCI Chemical Engineering process cost index 3, 376
Ceramics 125 f, 152 f, 306, 309, 434
Cereals 306, 309
CFB (circulating fluidized bed) see: Fluidization
Change management 39 f
Charcoal 249
Chloral 222
Chloride 199
Chlorinated polyesters 210
Chlorination reaction 195 f, 217
– reactor conditions 201, 222
– selection 212
Chlorine 47
Chloroprene 220 ff
Chocolate 323
Chromatographic Separation 135 f, 402
Chromium 107
CI (chute index) 20, 59, 63, 290
Citric acid 104, 215
Classifiers 161–165, 175, 180 f, 417
Clay, acid treated
– adsorbent 119
– area 336
– catalyst support 199
– pump 54
– dry 153
CMC see: Carboxyl methyl cellulose
Coagulation see: Flocculation
Coal 157
Coalescence band 146
Coalescers 145 ff, 299 ff, 433
Coating 324–328, 363–372
– reactor conditions 210
– wire/cable, extrusion, 305, 308
– see also individual types
Cobalticyanide 122
Cocoa 332
COD bioreaction rates 209, 258, 274 f
Coffee 153, 396
Coker 67
Colburn equations 109, 113
Colloid mill 263 f, 285, 294 f, 430
Comminutor 296 f, 432
Combustion reaction 187, 197, 217, 222, 266
Communication 32 f
Composition sensors 7
Compressors 46 ff, 96, 381 f
– see also individual types
Concentration 4
Concentrators 175, 182 f, 362, 417 f
Concrete see: Cement
Condensate 74 f
Condensation reaction 187, 197, 202, 217, 222
Condensers 81, 391
– see also: Heat exchangers
Conductivity 143, 172, 177, 354
Conflict 36 ff
Conservation 86, 158
Contact angle 325
Contact stabilization 275
Contamination 29, 103–106, 117, 146 ff
Contempt 34
Continuous flow stirred tank reactor see: CSTR

Control valve see: Valve
Control systems 6–11
– capital cost 379
– centrifugal compressors 46
– decanters 146
– evaporative crystallizers 103
– pressure drop 63
– process improvement 31
– pumped fluids/reciprocating devices 54
– steam 83
Conveyor 59–62, 385 f
– see also: Pneumatic conveying, Feeders
Cooling towers 80, 390 f
Cooling water 4, 69
Copra 175
Corn 175, 333
Corrosion 5 f, 27, 329
Cosmetics 173, 284
Cost, capital 2–3, 21 f, 186 f, 376–380
Cottonseed 173 ff
CPR (classified product removal crystallizers) 104
Cracking
– catalytic 67, 202, 217, 234 f, 265–273
– thermal (pyrolysis) 67 f, 217–226, 388 f
Cranes 386
Creativity 22–23
Criticism 34
Crushing/grinding 295 ff, 430 ff
Cryogenic 81, 91
Crystallization 73, 101–106, 215, 396 f
– see also individual types
Crystals 153, 157
CSD (crystal size distribution) 104 f
CSTR (continuous flow stirred tank reactor) 214, 261–266
– air lift loops 237
– backmixing 253
– batch STR/LL esterification 238, 254
– Bd no. 253
– bioreactor 208
– capital cost 424 f
– cascade or multistage/chamber tank 214
– Da no. 365
– Ha based GL reactions 198
– heat transfer 69, 73
– LL systems 222, 263 f
– PFTR 214, 254, 274 ff, 426
– reactor conditions 216
– selection criteria 192–194, 207, 222 f, 253
– see also individual types
Cumene 222
Cycles
- adsorbers 118f
- bagging 142, 333
- batch operation 31, 98
- batch/semibatch reactors 188f, 255, 260
- catalysts 191, 199
- chromatographic separation 135
- diaphragm plates 169
- dryers 153f
- filtering centrifuges 166f
- hydraulic press 175
- injection molding 306
- innovation 41
- IX 121
- LS filtration 170f
- magnetic separators 178
- membranes 130–134
- pneumatic convey 61
- process improvement 31
- screens 159
- sedimentation centrifuges 164
- solution crystallization 104
- zone refining 102
Cyclus 27
- distillation columns 100
- evaporators 90
- extruders (including surging) 318f, 323
- fluidized bed reactors 268ff
- furnaces 84
- reboilers 76ff
- steam traps 139f
Cyclohexanol 218
Cyclohexane 104
Cyclohexane, (stripping, deodorizing) 86f, 113–114
Cyclohexene 218
Cyclohexylamine 104
Cyclone
- capital cost 402f
- hearth 214
- pressure drop 47
- separation 138–143, 175, 180
- wet 138, 143
Cyclopentadiene 218
Cyclopentadiene, (stripping, deodorizing) 86f
Cyclopentanone 111f, 112f
Decane 375
Decanizer 145ff, 149, 404
Decision making 24ff, 36
Decomposition reaction 187, 197
Deep bed filters 300
Defensiveness 34
Degradation 28, 122ff, 199
Degrees of freedom 8
Dehydration 202, 217, 222ff
Dehydrochlorination 202, 217, 222
Dehydrogenation 195, 217
- CSTR hazard 263
- membrane reactor 278
- reactor conditions 202, 223
- STR hazard 258ff
Delayed coking 225
Demisters 138, 149, 298f, 432
Dense Media Separation (DMS) 175, 183, 418
Density 341
Density-weighted vapor flowrate (capacity factor, F) 96, 109f, 113
Density-weighted vapor velocity (k) 96, 139, 299
Deodorizer see: Desorption
Design 11, 30f
Desolventizer 151, 156, 407
Desorption, (stripping, deodorizing) 86f, 113–114, 397
Deacidification 217
Detergents 323
Dewatering
- extruders 309
- hydraulic press 175
- capital cost 408, 415
- screens 159f
- see also: Filters/deep bed
Dextrin 116
Dextrinose 226
Dialysis see: Membranes
Diatomaceous earth 169
Diaz decomposition reaction 217
Diazotization reaction 187, 197, 217
Dicalcium phosphate 154
Diffusers 11, 17ff, 236f, 282f, 421
- see also: Biological reactors
Diffusivity 173, 340
Dimerization reaction 203
Dimethyl terephthalate 220
Dimethylaniline 220f
Discounted cash flow (DCF) 22, 53, 93
Disjoining pressure 5, 292
Dispersed phase
- break 28
- capital cost 427ff
- coalescers 300
Index

- drops 137 ff, 155
- GL/LL systems 11–18, 27 ff, 144 ff
- size 227, 284, 294
- solvent extraction 263, 284 ff, 294, 373
- stability 28, 146 ff
- see also: Bubbles, Aeration, Particulate systems
Disproportionation reaction 203, 223
Dissolved air flotation (DAF) 145, 150 ff., 170 ff, 414
Dissolution rate see: Rate of dissolution
Distance 335
Distillation 50, 86 ff, 91–101
- area/void volume 17
- Da no. 365
- frequency of faults 31
- HIGEE 94, 277
- industry wastes 258
- pressure drop 47
- reactive 94, 222 ff
- reboiler 78
- see also individual types
Distributor 245, 267 ff
Dodecyl methacrylate 223
Dolomite calcination 250
Double arm kneader see: Blender/kneader
Douglas equation 95
Dowtherm A 375
- see also: Heat transfer media
DRI (direct reduced iron) 249
Drives 64 ff, 387 ff
- see also individual types
Drops see: Dispersed phase
Dryers 150–158, 405 ff
DT (draft tube crystallizer) 104
Ducts 47, 63, 387
Dyes 151, 154

E

e-Business 42
Economics 21 ff, 376 ff
Edible oil 59, 63
- adsorption 120
- deodorizing 113
- foul heat transfer 72
- pump 54
Efficiency listed for each device
Ejectors, (jets) G
- bubble/drop size/area 17
- burner reactor 224
- capital cost 382 ff, 418 ff
- GL contactors 11–16
- jet loop 208, 212, 236 ff
- jet tube scrubber/washer 211, 225 ff
- nozzle loop/plunging jet 212, 239 ff
- reactor, select 212
- surface area/power input 12
- tube 211, 225 ff
- vacuum/steam 48 ff
Elasticity 328, 366
Electricity 65
Electrodialysis see: Membranes
Electrokinetic effects 28
Electrolytes 5, 28, 238
Electrostatic/electrical units 351–355
Electrostatic precipitators, GS 142 ff, 403
Electrostatic separators, SS 175 ff, 415
Elements/group identification 199–206
Elevators see: Conveyors
Emery dust 54
Empty tube reactor see: Pipe contactor
Emulsions see: Dispersed phase
Endothermic reactor conditions 73, 185–197
- health/safety hazard 207–217, 224 ff,
 229, 234, 247, 265
- target gas reaction 231, 235
Energy 347
- see also: Drives, Electricity, Furnaces,
 Heat exchange, Refrigeration, Steam
Engines 64 ff, 387
Enthalpy 64, 82 ff
Entrainment 28
Entrepreneurship 41 ff
Entropy 348
Environment 27
Enzymes 207 ff
- lytic 295
- reactor conditions 159, 199, 216
Eotvos number 244, 363, 366
Epoxidation 197, 203, 217, 223
Equalization basin 435
Equilibrium, exchange 86, 91
Equilibrium controlled reactions 196, 211, 233
Ergun equation 251
Errors 24 ff, 31 ff
Erythritol 220
Esterification 217–223
- CSTR hazard 226, 238, 263, 277
- reactors 203, 223, 238
- STR hazard 258 ff
Ethan 69, 375
Ethanol
- pervaporation 130
- precipitation 107
- production 278
- reactor residence time 218 ff, 223
– vapor pressure 375
Ethyl acetate 278
Ethyl amine 222
Ethyl benzene 200, 375
Ethyl chloride 375
Ethyl hexanol 220
Ethylene 224 ff
 – heat capacity ratio 46
 – membrane reactor 278
 – vapor pressure 375
Ethylene dichloride 227
Ethylene oxide 206, 218
Ethylene glycol 220, 223
Ethynylation reaction 203, 217, 223
Eukaryotes 208
Eutectic melt crystallization/
 zone refining 102
Evaluation see: Assessment/
 Performance review
Evaporators 86–90, 392, 393
 – see also individual types
Exothermic reactor conditions 73, 185–189,
 231, 235
 – health/safety hazard 187–197, 207–229,
 233 ff, 247, 265
Expellers 151, 175, 414 ff
Explosives 323
Extended aeration 275
 – see also individual types
F
F-factor 96, 109 ff, 113
Facultative lagoons 274, 426
Falling film see: Thin film
Fanning friction factor 366
Fans 46 ff, 380
Faraday’s constant 358
Fatty acids 323
Fatty alcohols 323
FC forced circulation 104
FCC (fluidized catalytic cracking) 266–273
FDI (flow density index) 20, 59, 63
Feedback 35
Feeder 59–63, 180, 331 ff, 386
Fenske equation 95
Fermentation see: Biological reactors
Ferricyanides 122
Ferrosilicon 183
Ferrous sulfide 30
Fertilizer 122, 157, 302 ff, 309, 332 ff
Films 110, 324
 – see also: Thin film, Agitated falling film,
 Scraped film
Filter aid 150, 171 f
Filter cake 165–170, 342
Filters 9, 54, 142 ff, 150 ff, 168–173,
 402, 411 ff
 – see also individual types
Financial attractiveness 22, 30
Financial reports 22
Fine chemicals 216
Fire tube see: Pipe contactor
Fischer Tropsch synthesis 201 f
 – alkanes/alcohols 222
 – fluidized bed reactor 267
 – reactor conditions 203, 217, 222
 – supercritical reactions 209
Fixed bed catalytic reactor, adiabatic see: PFTR
Flaker 323, 434
Flax seed 175
Flexibility 187
Flocculation 145, 150, 162, 289, 301, 432
Flooding 29, 97–101
Flotation 137, 175 ff, 415
Flour 154, 332
Flow regimes 58, 244
Flow 7 f
Flowability 20–21, 289, 333
Flowrate 338
Fluidized bed 265 f
 – adsorption 120, 289
 – Ar 361
 – backwash 289
 – biofilm area 18
 – bioreactor 208
 – capital cost 390, 407, 425
 – coil for heat exchange 79
 – crystallization 105
 – GLS 18, 222
 – GS 152–157
 – IX 121, 289
 – LS 289
 – mass transfer coefficient 18
 – reactor characteristics 207–214,
 265–273
 – size increase 302 ff
 – see also individual types
Fluoropolymers 124, 127
Flush lines 59, 63, 162
Foam 27 ff, 86, 292 ff
 – absorption 111
 – break 29, 90, 238, 258
 – bulk/film volume ratio, Hatta/(δ*) 123,
 198
 – distillation 92 ff, 98
 – evaporator 88
 – fractionation 123, 292, 376, 400, 435
– surface tension 111
FOB (free on board) 3, 21, 376 ff
Fog 137
Food
– bag 333
– bleaching 120
– deodorize 113
– drying 151–155
– edible oils 175
– extrusion 309
– foams 292
– heat via votator 69
– leach 173
– membranes 133
– microorganisms 254, 262, 273, 275
– pellet 304
– piping 63
– processing waste 258
– scraped surface heater 69, 73
Force 344
Forming, storming, norming, performing 36
 Fouling 28, 86
– cleaning 74
– crystallizers 104
– evaporators 89 f
– heat exchangers 72
– IX 122
Fourdrinier machine 154
Fourier number (Fo) 367
Freeze Concentration 101, 396
Freon 29
Frequency 357
FRI (flow ratio index) 20, 59, 289 f, 332
Friction factor 45
Friedel Crafts reaction (STR) 256
Froude number (Fr) 266, 281, 361 ff, 367, 371
Fruit juices 396
FT see: Fischer Tropsch
Fuel oil 72, 375
Fullers earth 119
Fumeric acid 154
Fungi 28, 208, 237
Furfuryl alcohol 204
Furnace
– blast 214, 250 ff
– burner 224
– capital cost 388 f, 423 f
– distillation reboilers 67 f
– frequency of faults 31
– heat transfer 67 f
– melting cyclone 214, 253
– multiple hearth 248 f
– reactors 67, 226
– rotary kiln 213, 250 f, 156 f
– shaft 214, 250 f
– steam boiler 83
– traveling grate 213, 249

G
Galileo number (Ga) 367, 361
Gas, natural (methane) 96
Gas Density-weighted vapor flowrate, F factor 96
Gas Density-weighted vapor velocity, k factor 96
Gas-liquid systems (GL) 11–18
– Hatta number 198
– reactors 197, 211–215
– separations 137 f
– see also: Two-phase flow, Thin/Scraped film, Decanter, Solvent extraction
Gas-liquid-solid systems (GLS) 18
Gas permeation see: Membranes
Gas-solid systems (GS) 137 f, 152–157, 207
Gas systems (G) 45–50, 196 f, 211–215, 380 ff
– see also: Thermal wheel, Furnaces, Adsorption, Membranes
Gasification 265 f
Gear reduction unit 388
GHHSV see: Space velocity
Glassy membranes 128
Glycol dehydration 28 ff, 111–114
Goals 22–26, 34
Gravitational acceleration see: Centrifuges
Grinding see: Crushing/grinding
Group skills see: Team
Guar 332
Guidelines, equipment selection 2
Gypsum 332

h
Halide 5
Haloalkene 218
Halogenation reaction 187, 195, 203, 256
Hamaker constant 5
Hatta number (Ha)
– CSTR 262
– GL reactions 368
– location prediction 197
– STR 239 ff, 255
– thin film 247
– trickle bed 244
Hazard see: Health/safety
HAZOP 32
HDHI 87 f
HDPE (high density polyethylene) see: Polymers
Health/Safety 32
- control 6, 10
- CSTR 263
- data 187, 197, 217 f
- furnace 84
- STR 258 ff
- valve failure position 8
- see also: systems thinking
Heat capacity 46, 348 f
Heat exchangers
- boilers, reboilers 72–78
- capital cost 389 f, 421, 435
- condensers 72–76
- direct contact, LL 79 ff
- falling film evaporators 88
- fault frequency 31
- fouling factors/resistances 72
- furnace reactors 67 f, 73
- indirect contact 64–78
- liquid 54
- multitube reactor 185–188, 211 f, 229, 234 f
- pressure drop 47
- shell/tube reactors 70 f, 229
- steam condensation 65
- see also: Thermal wheel, Dryers, Quenchers, Cooling towers
Heat exchange media see: Heat transfer media
Heat flux density 350
Heating value 348
Heat loss 82
Heat of reaction 187 ff, 197, 216–224, 347
Heat transfer 207, 225, 276
Heat transfer coefficients 64, 68 ff, 350 f
- bubble column wall–mix 238
- condensers 72
- coolants 210, 229, 234
- crackers 226
- crystallizers 105
- dryers 153–157
- evaporators 87 f
- exchangers 72 f
- falling film absorber 110
- flaker 323 f
- fluidized beds 79
- fouling 210
- furnaces 67, 226
- heating agents 226, 229, 234
- HIGEE 98
- j-factor 369
- liquid side 234
- per surface area 67 ff
- per unit volume 80
- PFTR reactors 229, 234
- polymerization reactors 210
- reboilers 72 f
- reformer heat flux 226
- scraped surface reactor 248
- thermal wheels 81
Heat transfer media
- capital cost 392
- fouling factor 72
- high temperature fluids 69, 84
- refrigerants 82
- tempered heat exchange systems 85
- vapor pressure 375
- see also: Steam, Refrigeration, Water, cooling
Heavy chemicals 216
Height of a transfer unit see: HTU
Height of a theoretical stage see: HETS
Henry's law constant 107 f, 239 f
Heptane 375
HETP see: HETS
HE trouble shooting 91 ff
- absorption 108 f
- chromatographic separation 136
- distillation 91–98
- height of mass transfer unit, HTU 91, 109, 114
- solvent extraction 115–117
- stripping 108 f, 114
Hexane 375
HI (hopper index) 20, 59, 63, 331 f
Hickman decomposition hazard index 87 f
HIGEE 215, 277
- see also: Distillation
High temperature heating media see: Heat transfer media
High Impact polystyrene (HIPS) 221, 305 ff
Hildebrand solubility parameter 348
Hoffmeister series 107
Hoists 386
Holdup 11–19, 110, 116, 126
Holmes-Rahe scale/stress 25
Homogenizer 263 f, 285, 294, 430
Hoppers 290, 330, 436
HTU (height of mass transfer unit) 91, 97, 109, 114
Humic acid complex 122
Hydration reaction 203, 217, 223
Hydraulic conveying see: Particulate systems
Hydraulic Permeability (A) 131–134
Hydraulic Press 151, 175, 414f
Hydrocarbons 72
Hydrocyclones
 – capital cost 409, 417
 – LL/LS systems 145ff, 161
 – SS separate 161, 175, 180
Hydrodealkylation 204, 217, 223
Hydroformylation 217
 – reactor conditions 201, 204, 222
 – supercritical reactions 209
Hydrogen
 – equilibrium reaction 196
 – GG heat exchange 81
 – membranes 128f
 – property 64
Hydrogen sulfide 108, 111
Hydrogenation 217
 – capital cost 424f
 – hazard 187
 – heat of reaction 197, 217
 – membrane reactor 278
 – pipe reactor 228
 – reactive distillation 277
 – reactor conditions 204, 223
 – STR 255f
 – supercritical 209
 – trickle bed 229
Hydrolysis 217
 – hazard 258ff, 263
 – reactor conditions 205, 223, 226
Hydrophilicity/Hydrophobicity 125
Hydrocracking 205, 245f
 – IX 120ff
 – J-factor 369
 – Jersey knits 324f
 – Jet loop 236, 238
 – Jet, plunging see: Plunging jet
 – Jet, mixing miscible liquids 282
 – Jet nozzle see: Ejector
 – Jig Concentrators 175, 182, 418
 – Juices 101, 105

i
 – Ideal gas constant 358
 – Idiophase 223
 – Ignition plug 170
 – Immersed wick contactor 208
 – Immiscible liquids see: Liquid-liquid,
 Dispersed phase
 – Improvement process 31
 – Incineration 249–253, 265f, 423ff
 – Induration 249
 – Inflation index 3, 376
 – Injection molding see: Molding, injection
 – Instruments/sensors 6–10, 379
 – Intermediate chemicals 216
 – Interpersonal skills see: People skills
 – Entrepreneurship 41
 – Ion exchange (IX)
 – backwash 289
 – batch bed types 121
 – capital cost 399, 400
 – electrodialysis 129

 – k values 96f, 139
 – Kaolin 169f, 249, 332
 – Ketene 191, 225
 – Ketones 130
 – Kieselguhr 199
 – Kiln, rotary 250f
 – capital cost 407f, 423
 – dryer 153, 157
 – reactor 213
 – Kinetics controlled reactions 196ff, 225,
 236, 261
 – Kirton KAI values 41
 – Kneaders 282
 – Knock-out pots 131, 139f
 – capital cost 435
 – compressor outlet 47
 – k value 96, 139
 – Kremser equation 108ff

j
 – Jet loop 236, 238

k
 – k values 96f, 139
 – Latex 169, 210, 302
 – Latent heat 4, 347f
 – LDPE (low density polyethylene) see: Polymers

l
 – L/M 2f, 21, 377
 – Lactic acid 220
 – Lactic acid ester 226
 – Lagoon 254
 – see also: Tank reactor

Index
Index

Le Chatelier principle 187 ff, 195
Leaching 173–174, 414
Leadership 36, 40
Leaks 74, 83
Level 7, 29, 146 f
Lewis number (Le) 369
LHSV see: Space velocity
Liberation size 137, 175, 17, 183
Light distillate 205
Lignin 24, 89
Lime 249, 332
Limestone 250
Liquid piston vacuum pump see: Vacuum
Liquid systems (L) 51–57
 – capital cost 383–385, 427 f
 – mixing 280 ff
 – reactors 195 ff, 211–215
 – see also: Heat exchangers, Adsorption, Membranes, Chromatographic separation
Liquid-gas systems see: Gas-liquid systems
Liquid-liquid systems (LL) 17 ff
 – heating/cooling 79 f
 – mixing 284 f
 – reacting 211–215
 – separating 137–138
 – see also: Distillation, Solvent Extraction, Dispersed phase
Liquid-solid systems (LS)
 – moving/pumping 52
 – reacting 211–215
 – separating 150 f
 – surface area/volume 17
 – see also: Crystallization, Particulate systems
Listening 33 f
Litho coating 324
Liver extract 154
Ljungstrom heater see: Thermal wheel
LMTD (log mean temperature difference) 70–74
Lubricating oil 29, 375
Luikov number (Lu) 369
Luminance 356 f

m
Mach number (M) 369
Magnetic units 355 f
Magnetic mass susceptibility 178, 355
Magnetic tape 324
Magnetic separators 175–180, 416, 417
Magnetite 183
Magnetization 178 ff
Maize gluten 154
Maleic acid 154
Maleic anhydride 85, 227, 323
Management 25, 42
Marangoni number (Ma) 369
Marangoni effects
 – coat 328
 – foam 29
 – solvent extraction 117 f, 263 f
 – stability 147 ff
Margoulis number 369
Mass transfer 11–19, 86
 – controlling 18, 103, 109 ff, 197 ff, 230–247
 – mass 329 f
Materials of construction
 – alloys/L+M 3, 21, 377
 – codes 188, 191, 329
 – corrosion 5 f, 329
 – reactor operating window 190 f
McCabe-Thiele diagram 91 f
Melamine 154
Melamine phenolic resins 210
Melt Crystallization see: Crystallization
Melting cyclone burner 214, 253, 424
Melts 157
Membranes 124–133
 – capital cost 400 ff
 – LL coalescers 300
 – pressure drop/reverse osmosis 54
 – reactors 215, 278
 – ultrafiltration 132 ff, 170
Mentoring 42
Mercury 375
Mesh size 20
Metal oxides 125, 199
Methane 46, 375
Methanol
 – equilibrium controlled 196
 – pervaporation 130
 – precipitant 107
 – reactor conditions 201
 – vapor pressure 375
Methyl acetate 278
Methyl butynol 220, 223
Methyl chloride 375
Methyl ethyl ketone 29
Methyl methacrylate 224
Methyl tertiary butyl ether 277 f
Methyld 278
Micelles 292 f
Microfiltration see: Membranes
Microorganisms 133, 208 f
Mills 294 f, 430
Mineral processing 172–176
Index

– dense media separation (DMS) 183
– feed assay 137
– liberation size 137, 175, 179
– mixing 286
– separation by screens 159
– thickening, flux rate 162

Mistakes see: Errors

Mixing
– capital cost 427f
– degree, Pe 370
– frequency of faults 31
– L systems 280ff
– LL contactor 18f, 280–285
– LS systems 286f
– time 281ff, 290
– see also: Fluidized bed, Blending

MM (molar mass) 340f
MMCO (molar mass cut off) 124
Mohs hardness 295, 296
Mol 341
Molding, injection 305–317, 433f
Molecular distillation 91, 98, 395
Molecular geometry 86
Molecular sieves 118
Momentum transfer coefficient
see: Friction factor
Monitoring 10, 23
Monofilaments 305, 308
Monolithic heat exchanger 69, 73
– capital cost 389, 422
– catalyst 199
– GLS reactor 18, 207, 213, 247
Mortar mix 332
Motors, electric 64ff, 387
– see also individual types
Moulds, bioreactors 208, 237
Moving bed 120f, 211, 223, 228, 387
Moyno pump see: Pumps/rotary screw
MSMPR (mixed suspension mixed product removal) 104
MSW (municipal solid waste) 180
MTBE, reactive distillation 277
Multiple hearth furnace 213, 248f, 423

n
Nanofiltration see: Membranes
Net Positive Suction head (NPSH) 51–56
Networking 40, 43
Neutralization reaction 197, 217, 223, 258–263
Newton number 371
Newtonian fluids 51
NHTU 158
Nickel sulfate 105

NIPR see: Net positive suction head
Nitration reaction 217
– heat of reaction 197, 217, 223
– reactive extraction/HIGEE 277
– reactor conditions 205, 223
– STR 258
Nitric acid 227
Nitrification 242f
Nitrobenzene 375
Nitrodecomposition reaction 217, 197
Nitrogen 128
Non-Newtonian pump slurries 58f, 385
Nozzle loop see: Ejectors/Spray column
NPSH see: Net Positive Suction head
NTS (number of theoretical stages) 91
– absorption/stripping 114
– batch distillation 98
– driving force 108
– Fenske/Douglas/Latour 95
– Kremser 108f
– stripping 113
NTU (number of transfer units) 91, 109f, 157
Nusselt number (Nu) 64, 369f
Nylon 210
– extrusion 305ff
– nylon-6/66 membrane 124f
– pellet 304
– static mixer reactor 227

o
Oat/rice hull ash 332
Octane 375
Ohnesager number (Z) 370
Olefins 130
Olive oil 375
Operability 10, 98
Operating cost see: Cost, operating
Operating window 90, 94, 186–191
Orange juice 105
Ore
– agglomerate 302ff
– dryer 157
– reduce 249
– roast 250, 267
– wettability 176
– see also: Minerals
Organics
– dryer 156
– foul IX 122
– pervaporation 130
– resins, bag 332f
Orifices 7
OTR (Oxygen transfer rate) 348
Index

- bioreactors 208, 226f, 236–243, 248, 255 ff
- GL contactors 11–16

Oxalic acid 28, 154

Oxidation reaction 217, 258–262
- burner reactor 224
- CSTR hazard 263
- equilibrium reaction 196
- membrane reactor 278
- oxidation ditch 275
- reactor conditions 197, 206, 219–224
- static mixer reactor 227
- STR hazard 258 ff
- trickling filter reactor 243

Oxidative dehydrogenation 278

Oxides 199

Oxo reaction 217
- see also: Carbonylation

Oxygen 47, 111

Ozone generator 236

Pachuca
- capital cost 414
- crystallization 105
- GLS reactor 236 ff, 283
- leach 173 f

Packed bed 20, 230 f
- backmixing 370
- blast furnace 251
- catalyst/IX resin 120
- Ergun equation 251
- filter cake 170
- gas distributor 197
- particle size/permeability 251, 170
- pressure drop 47, 54
- reactor 230
- trickle flow reactor 244
- see also: Adsorption, Cake, Filters

Packed column 17
- bioreactor 208
- capital cost 390 f, 394 f, 404
- F/k factor 96
- flow 142 f
- GL contactor 15, 198
- GL heat exchanger 80
- GLS scrubber 138, 142 f
- LL contactor 19
- Pe no. 370
- pressure drop 47
- reactive distillation 215, 277
- reactor 213, 242 f
- uniform spheres 15, 17

- see also: Absorber, Distillation,
 Hatta volume ratio, Solvent extraction,
 Trickling filter

Paddle/Pan mixer see: Blenders

Paper 152, 324

Paraffins 130

Pareto's principle 24

Particles 20
- capital cost 429 f
- centrifuge 163
- conductivity 143, 177
- demixing 291
- flowability 20 f, 289, 333
- fumes 141
- GS reactions 207
- large size treatments 290 f
- mesh size 20
- permeability 150, 168–172, 251
- settling velocity 157
- SS separation 137 f, 175
- surface area/volume 17
- temperature sensitivity 151
- void volume (porosity) 20, 170, 230, 244
- water 161
- see also: Bagging, Bins, Crushing,
 Crystallization, Sintering,
 Flocculation etc.

Particulate Systems
- capital cost 385 ff
- concentrating via agitated falling film 69
- fluidized bed reactors 69
- gas reactions 207
- GLS 18
- GS 20, 59–63
- LS (slurry) 286 f
- LS processes 121
- LS reactors 211–215
- LS separations 137 f, 150 f
- PFTR 69
- pumping clay 54
- reactors 213 f
- solids dispersion/dissolving 288 f
- solids mixing 52, 58 f
- SS separations 137 f, 175
- see also: Crystallization, Solids suspension, Packed beds, Conveying,
 Pipe contactor etc.

Partition coefficient 86

Pasta 306, 309

Payback time 22

Peabody scrubber (baffled) 80, 109, 142 f, 403

Pebble bed, GG heat exchanger 81

Peclet number (Pe), backmixing 370
Index

– bubble bioreactor 238
– catalyst bed 230
– empty multitube reactor 229
– packed bed 234
– packed column 242
– pipe reactors 224
– semibatch 225, 230, 260 f
– STR 254
Pectate 107
Pelleting 304 f, 433
Penicillin 154, 216, 220
Pentane/Pentene 375
People 25, 30
People Skills 34
Performance Review 39 f
Permeability
– blast furnace 251
– Ergun equation 251
– filter cakes 168, 172
– particle diameter 172
– porosity (ε) 170
– precoat filters 150
Permeation unit 343 f
Personal style/uniqueness 36–41
Pervaporation see: Membranes
Pesticides 323
Pet foods 306, 309
PFTR (plug flow tubular reactor) 192 ff, 211–216
– bed with radial flow 212, 234
– capital cost 389, 420 f, 426
– CSTR 214
– empty multitube, non-adiabatic 229
– fixed bed, adiabatic 222, 229 ff
– mass transfer control 230
– multibed, adiabatic with interbed quench 222 ff
– multitube, fixed bed, non-adiabatic 212, 221 f, 234 f
– slurry/fluidized bed reactors 230
– with recycle 274 ff
– see also individual types
pH
– acid 107, 123
– anaerobic digestion 258 f, 274
– basic 125
– bioreactors 230, 258 f
– changing 107
– coalescers 300
– corrosion 5 f, 112
– filtration 167
– flocculation/thickening 162, 301 f
– fouling 115, 123
– IX 120 ff
– membranes 125, 133 f
– PDI 299
– precipitation 107
– wettability/flotation 176
– zero point of charge/stability 28, 112, 117, 146 ff, 239, 258 f, 263 f, 301
Pharmaceuticals
– dryers, temperature sensitivity 151
– filtration 171
– flake 323
– supercritical 173
– working capital 22
– zone refining 102
Phase equilibrium see: Equilibrium, phase
Phenol 222, 226
Phosgenation reaction 212
Phosphate 67, 122
Phosphorous pentoxide 225
Phthalic anhydride 267, 323
Physical Module (PM) cost 3, 21, 378
Pickle liquor 162
PfD (proportional-integral-derivative control) 9
Pigments 133, 151, 250, 332
Pinch, thermal 26, 31, 74
Pipe contactor
– capital cost 386 f, 419 f
– direct contact heat exchange 79 f
– fluid systems 12–17, 57 ff, 211, 222–226, 283
– GL 12–17, 57
– LL 263 f, 285, 294
– particulate systems 58 f, 228
– reactors 57 f, 211, 223–228
– transportation 211, 222–226
– see also: Gas/Liquid moving, Pumps,
 Pneumatic conveying, Drying, Flash,
 Fire tube
Pipe 63
– blowout lines 54
– flow 47, 53, 59
– thickeners 162
– tube, extrusion 305, 308
Plant extract 154
Plasma 154
Plaster 332
Plastic films 324 f
Plastic pellets 332 f
Plate see: Tray
Plate heat exchanger see: Heat exchanger
Platforming 232
Plug flow tubular reactors see: PFTR
Plunging jet, reactor 238 ff
PM see: Physical Module cost
Pneumatic conveying 60f, 386
Poison 122, 199
Polycondensation 254
Polyethylene glycol 107, 116
Polymer, resin, pellet 304
Polymerization 209 ff, 217, 224
– activation energy 191, 224
– agitation/shear number 280
– hazard 187, 263
– heat of reaction 197, 217
– multistage CSTR 254
– PFTR with large recycle 276
– pipe reactor 226
– reaction rate 195
– reactive extraction/HIGEE 277
– scraped film (votator) heat transfer coefficient 73
– scraped surface reactor 248
– static mixer reactor 227
– STR 255, 258 ff
– tempered heat exchange systems 85
– trouble shooting 260 ff
– turnover frequency (TOF) 199
Polymers 210 ff
– acrylonitrile butadiene styrene 4
– blend 290
– cellulosics 4, 127, 130 ff
– chromatography 136
– dewater 175
– drying 153, 158
– elastomeric 124
– extrusion 290 ff, 305 ff
– fluoropolymers 125 ff, 301
– glass temperature 129
– glassy 124, 128
– HIPS polystyrene 221
– hydrophilicity 125, 307
– LDPE 4, 221 ff, 304 f
– membrane 124, 130
– mold 305 f
– nylon 125
– pervaporation 130
– polycetals (POM) 210, 306
– polycrylamide (PA) 4, 306
– polycryllics 4, 125 ff
– polyacrylonitrile 130
– polyamide 130
– polybutadiene 210
– polycarbonate 4, 128, 210, 305 ff
– polyester 220
– polyetherimide 128
– polyetherpolyol 221
– polyethersulfone 124 f
– polyethylene terephthalate 221, 304 ff
– polyethylene 210, 267, 304 ff
– polyimide 128 ff
– polyisoprene 210, 221
– polymethyl methacrylate 4, 210, 305 f
– polyolefin 124 f, 305 f
– polyoxymethylene (POM) 306
– polypropylene oxide (PPO) 4, 306
– polypropylene 4, 125, 197, 210, 304 ff
– polystyrene acrylonitrile 210
– polystyrene butadiene 210, 306
– polystyrene 4, 128, 169 f, 224 ff, 305 f, 332
– polysulfones 124, 128–133, 308
– polyurethane 221, 224 ff
– polyvinyl acetate 210, 224
– polyvinyl alcohol 130, 210
– polyvinyl chloride 4, 28, 128, 152–156, 210, 305 ff
– polyvinyl fluoride 128
– polyvinylidine fluoride 125
– resins 290, 305 f
– reverse osmosis 131
– spiral wound membrane 127
– styrenic polymers 210
– teflon 128
– viscosity 4
– zero point of charge 125
Polysaccharides 208
Polytropic operation 46
Pond see: Tank reactor
Pore size 124
Porosity (\(\phi\))
– bulk versus solid density 199
– catalytic/trickle bed 230, 244
– filter cakes 170
– packed/porous beds 20
Potassium carbonate (potash) 105
Potato flakes 154
Potential determining ions 299
Powders see: Particles
Power 349 f
Power generation see: Electricity
Power input/volume 12, 18 f
Prandtl number (Po) 371
Prandtl number (Pr) 4, 367–371
Prater number (Pra) 371
Precipitation 107
Precast see: Filter aid
Prefixes, for SI units 334
Pressure 346
– Ergun-/Blake-Plummer equation 251
– catalyst bed 230
– reactors 187 ff
Pressure drop 46–54, 63
– bulk versus solid density 199
– catalytic/trickle bed 230, 244
– filter cakes 170
– packed/porous beds 20
Potential determining ions 299
Powders see: Particles
Power 349 f
Power generation see: Electricity
Power input/volume 12, 18 f
Prandtl number (Po) 371
Prandtl number (Pr) 4, 367–371
Prater number (Pra) 371
Precipitation 107
Precast see: Filter aid
Prefixes, for SI units 334
Pressure 346
– Ergun-/Blake-Plummer equation 251
– catalyst bed 230
– reactors 187 ff
Index

- distillation 90, 94
- sensors 7
Pressure-enthalpy diagram 82
Prilling tower 323 f, 434
Problem Solving/Creativity 22, 25, 33
- see also: Trouble shooting
Process Improvement 31
Process Vessels 146, 329, 434 f
Profile/shape 306
Profitability 10, 22
Prokaryote 208
Promoters 199
Propane 69, 375
Propellers 281 ff, 428
Prop benzene 375
Propylene 69, 203, 375
Propylene oxide 220
Proteins
- cell disintegration 295
- chromatography 136
- dialysis 129
- dyer 154
- extrusion 306, 309
- flocculation/coagulation 301
- IX 121
- precipitation 107
- reactor 208, 237
- solvent extraction 115 ff
- see also: SCP
Pug mills 306, 309, 433 f
Pulsation dampener 47, 54 f
Pumping characteristics of mechanical agitators 280
Pumps 45–57, 382 ff
- see also: Particulate systems, LS slurry, Transportation
Purge lines 59, 63
Pyrazole 218
Pyrites 249 f
Pyrolysis reaction 217 ff

q
Quality of product 10
Quench 211
Quenchers, GL 80, 391

R
Rag buildup 28 f, 117, 148
Rain 137
Raining bucket contactor
- see: Solvent extraction
Rake Classifiers 181
RAS (rough wall angle of slide) 21, 59, 289 ff
Rate of coalescence 147
Rate of dissolution 174
Rate of filtration 168
Rate of reaction 188, 191–198, 211–215, 344
- Da no. 365
- gases/solids 207
- heat transfer controlled 207, 225
- kinetics controlled 225, 236, 261
- mass transfer controlled 195 f,
 239–247, 365
- setting temperature 231, 235
Rate of settling 147, 155 f, 161, 324
Rayleigh number (Ra) 371
Rayleigh breakup 293
RBC/RDC see: Rotating biological/disk contactor
Reaction injection molding (RIM) 214, 224,
 276, 426 f, 433 f
Reactions 185 ff, 191–199
- bioreactions 207–209
- CART 32
- Da no. 365 f
- supercritical, polymerizations 209 f
Reactive Extrusion 276
Reactive Distillation/Extraction/Crystallization 277, 393 ff
Reactors 31, 185–197, 207, 211–224
- see also individual types
Recalcination 249
Redistributor 243
Reduction 249 ff, 423 f
Refinery oils 202
Reflection 23, 34
Reforming, catalytic 205 f, 217, 224
Reforming 217, 226, 235
Refractories 333
Refrigereation 82 f, 391
Regeneration
- absorbents 109, 118
- catalyst 199–206
- multiple hearth furnace 248 f
Residence time 215–224
- decanters 146
- equalization basins 329
- GS reactions 248–253
- knock out pots 119
- surge vessels 329
Resins 305, 323 f, 332
- see also: Polymers
Reverse osmosis (RO) see: Membranes/types
Reynolds number (Re) 64 f, 126, 226 , 251,
 276, 280 ff, 326 ff, 361–372
- mixers 282 ff
- particle, fluidization 266
RI (ratholing index) 20
Index

- blender 290
- demixing 59, 63, 291
- flowability 289
- TS bins 331
Ribbon blenders see: Blenders
Rice hull ash 332
Rights of people 34–39
Roaster 265 ff
Roasting ores 248 f, 265 ff
Rotary Kiln see: Kiln, rotary
Rotary vane vacuum pump see: Vacuum
Rotating disc contactor(RDC) 79 f, 238
- see also: Solvent extraction/types
RTD (resistance temperature detector) 7
RTL (raining bucket contactor)
- see: Solvent extraction
Rubbers 210
Rules of thumb xiv, 1 f, 23 ff, 35–40
s
S see: Stripping factor
Saccharomycetacea (yeast) 209
Safety see: Health/safety
Safflower seeds 175
Salt
- bag 333
- concentration/corrosion 5 f
- drying 153
- filtration rate 167
- powder flowability 333
- separation 132
- see also: Electrolyte
Sand 333
Sand/refractory 249, 332
Sanderson 20 min rule 36
SBI (spring back index) 21, 59
Schmidt number (Sc) 363, 369 ff
SCP (single cell protein) 208, 221, 237 f
Scraped Surface
- capital cost 393, 396, 422 f
- crystallizer 73, 102 ff
- evaporator 69, 87 f, 158 f
- foodstuffs 248
- heat transfer 73, 248
- reactor 73, 213, 248
Screens
- capital cost 408, 418
- LS separation 150, 159 f
- SS separation 183 ff
Screw conveyor see: Conveyor
Scrubber
- absorber 107–110, 142 f
- capital cost 403 f
- GL contactors 14
- jet tube 12
- packed, wet cross flow 142 f
- pressure drop 47
- separation 138, 141 ff
- wet countercurrent 108, 142
- wet cyclone 138, 143
- see also individual types
Seeds 173, 332
Selectivity 185 ff
Self management 42 f
Semibatch STR reactor 260, 424 f
Semibatch reactor see: Stirred tank reactor
Semiconductors 102
Sensing the message (listening) 33
Sensors see: Instruments
Separations 87, 150 f, 175
Serum 278
Settlers 141–151, 160, 404, 408 f
- see also: Decanters, Thickeners
Shaft furnace 214, 250 ff, 423 f
Shallow bed reactor see: packed column
Shear number 280
Sheet thickness 305, 308
Sherwood number (Sh) 12–16, 372
SI units 334
SIER (sensing, interpreting, evaluating, responding) 33
Sigma (2), equivalent settling cross-sectional area 164
Silica 332
- adsorbent 118
- filters 169 f
- fouling IX 122
- zero point of charge 125
Silica gel 199
Silicone rubber 128
Silicones 324
Similitude 54, 307
Single cell protein see: SCP
Sintered metals 127, 135
Sintering 199, 249 f
Sizing maps xvii
- centrifugal pumps 52 f
- shell/tube heat exchangers 71
- distillation columns 92 f
- reactors 185 ff
SL/RN process 250
Sluice Concentrators 175, 182 f, 418
Slurry see: Pipe contactor, particulate systems
Sodium benzoate 221 ff
Sodium bicarbonate 167
Sodium carbonate monohydrate 104
Sodium chloride 103 ff
Sodium hydroxide 105, 323
Sodium sulfate 28, 89, 104 f
Solid-solid separations see: Particulate systems
Solidification 157
– see also: Flakers, Belts, Crystalization, Extruders etc.
Solids see: Particles
Solubility product \((K_{sp}^+) \) 103, 107
Solubility
– separations 86, 147
– extractive distillation 98
– absorbers, Henry's law 109
– temperature 195 f
Solution crystallization see: Crystallization
Solvent 109 f
Solvent extraction (SX) 114 ff
– capital cost 397 f
– contactor 19
– drop size 17, 145
– reactors 215
– separation 114, 150
– surface area 17
– see also: Dispersed phases
Sonification 263 f, 285, 294 f
Sorbitol 221
Soups 306, 309
Sour water strippers (SWS) 113 f
Sour water/corrosion 6
Soybean, oil 173 ff, 333, 375
Space velocity 215, 257
– see also: Bed volumes/unit time
Sparger 17, 238, 282 f, 294, 428
Specialty chemicals 216
Speed of reactions/filtration see: Rate
Spherical agglomeration 302
Spiral classifiers 175, 181, 418
– see also: Sluice concentrators
Spray column
– absorber 108–113
– area 17
– capital cost 404
– GL contactor 14
– GL separator 138, 143
– Hatta number 198
– heat exchanger 79 f
– LL, contactor 19
– quencher 80
– reactor 212, 238 f
– see also: Solvent extraction, individual types
Sprays 293, 370
Stability of dispersions see: Dispersed phase
Stakeholders 26
Standard gas conditions 337
Stanton number (St) 189, 369, 372
Starch 150, 258
Static charge 142
Static electification 59
Static mixers
– capital cost 419 f
– creating drops 145, 263, f, 284 f, 294
– extrusion 305, 308, 322
– G, reactor 211, 227
– GL, contactor 12–17
– L, heat exchanger 79
– LL, contactor 19
– mixing 282 f
– PFTR multitubular 229
– solvent extraction 116
– spray 293
STD 337
Steam 63 ff, 75, 83 ff
– barometric condensers 81
– blowout 54
– capital cost 392
– cooling water 4
– corrosion 6
– distillation 4, 90 f
– fouling factor 72
– heat transfer coefficients 229
– heating water 70
– multistage evaporation 88
– reform ex methane 205
– sour water 113
– traps 74, 138 f
– velocity 47, 83
– see also: Ejector, Turbine
Stearic acid 323, 375
Steel 125, 188, 191
Steroids 237
Stirred tank 280 f
– batch mode 221 f, 255
– Bd no. 254
– bioreactor 208
– blend miscible liquids 282 f
– capital cost 390, 424, 427 f, 432
– continuous mode (CSTR) 254, 261
– disperse bubbles in liquid 236, 256 f
– esterification 238
– flocculation 289, 301
– GL contactor 12–17
– Hatta values 198
– heat exchange 73
– liquid phase 196
– LL systems 19
– LS systems 288
– mix mode of CSTR/PFTR 274
<table>
<thead>
<tr>
<th>Index</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mixing</td>
<td>284f, 294</td>
</tr>
<tr>
<td>reactor</td>
<td>192–107, 210–224, 254–260</td>
</tr>
<tr>
<td>semi batch mode</td>
<td>214, 260</td>
</tr>
<tr>
<td>simulated mode</td>
<td>276</td>
</tr>
<tr>
<td>Stokes number</td>
<td>373</td>
</tr>
<tr>
<td>Storage Vessels</td>
<td>330, 435f</td>
</tr>
<tr>
<td>STP</td>
<td>337</td>
</tr>
<tr>
<td>STR: see: Stirred tank/reactor</td>
<td></td>
</tr>
<tr>
<td>Strawberry pulp</td>
<td>154</td>
</tr>
<tr>
<td>Stress, problem solving</td>
<td>22ff</td>
</tr>
<tr>
<td>Strippers</td>
<td>30, 113f, 397, 434f</td>
</tr>
<tr>
<td>Stripping factor (S)</td>
<td>108, 113f</td>
</tr>
<tr>
<td>Stucco</td>
<td>332</td>
</tr>
<tr>
<td>Styrene acrylonitrile</td>
<td>210</td>
</tr>
<tr>
<td>Styrenes</td>
<td>278, 375</td>
</tr>
<tr>
<td>Styrenics</td>
<td>305f</td>
</tr>
<tr>
<td>Sublimation</td>
<td>154, 158</td>
</tr>
<tr>
<td>Sugar</td>
<td></td>
</tr>
<tr>
<td>– crystallization</td>
<td>104</td>
</tr>
<tr>
<td>– leach</td>
<td>173</td>
</tr>
<tr>
<td>– powder flowability</td>
<td>332</td>
</tr>
<tr>
<td>– separation</td>
<td>132f</td>
</tr>
<tr>
<td>– solidification</td>
<td>323</td>
</tr>
<tr>
<td>Sulfate</td>
<td>122</td>
</tr>
<tr>
<td>Sulfides</td>
<td>199</td>
</tr>
<tr>
<td>Sulfonation</td>
<td>217</td>
</tr>
<tr>
<td>– heat of reaction</td>
<td>197, 217, 224</td>
</tr>
<tr>
<td>– heat transfer coefficient</td>
<td>73</td>
</tr>
<tr>
<td>– reactive extraction/HIGEE</td>
<td>277</td>
</tr>
<tr>
<td>– reactor</td>
<td>212f, 224</td>
</tr>
<tr>
<td>– scraped surface reactor</td>
<td>248</td>
</tr>
<tr>
<td>– static mixer reactor</td>
<td>227</td>
</tr>
<tr>
<td>– STR hazard</td>
<td>258</td>
</tr>
<tr>
<td>Sulphur</td>
<td>199</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>46, 142</td>
</tr>
<tr>
<td>Sulfur trioxide</td>
<td>195, 205</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>6, 121, 375</td>
</tr>
<tr>
<td>Supercritical reaction</td>
<td>173f, 209, 277</td>
</tr>
<tr>
<td>Supports catalyst</td>
<td>199</td>
</tr>
<tr>
<td>Surface activity</td>
<td>86</td>
</tr>
<tr>
<td>Surface area/volume see: Area/volume</td>
<td></td>
</tr>
<tr>
<td>Surface charge</td>
<td>121, 125, 299</td>
</tr>
<tr>
<td>Surface concentration</td>
<td>5, 123</td>
</tr>
<tr>
<td>Surface tension</td>
<td>4f, 144–148, 347</td>
</tr>
<tr>
<td>– absorption</td>
<td>110f</td>
</tr>
<tr>
<td>– coalescers</td>
<td>300f</td>
</tr>
<tr>
<td>– coating</td>
<td>324ff</td>
</tr>
<tr>
<td>– distillation</td>
<td>98</td>
</tr>
<tr>
<td>– solvent extraction</td>
<td>115f</td>
</tr>
<tr>
<td>– wetting</td>
<td>98, 110, 125, 243</td>
</tr>
<tr>
<td>Surfactants</td>
<td>323</td>
</tr>
<tr>
<td>Surge conditions</td>
<td>46ff, 270</td>
</tr>
<tr>
<td>Surge vessels</td>
<td>329</td>
</tr>
<tr>
<td>Solvent extraction</td>
<td>284f</td>
</tr>
<tr>
<td>Systems Thinking</td>
<td>27–32</td>
</tr>
<tr>
<td>Table concentrators</td>
<td>175, 182, 418</td>
</tr>
<tr>
<td>Tabletting</td>
<td>304, 433</td>
</tr>
<tr>
<td>Talc</td>
<td>169f</td>
</tr>
<tr>
<td>Tank/Drum reactor</td>
<td>214, 223, 273f, 425f</td>
</tr>
<tr>
<td>– see also individual types</td>
<td></td>
</tr>
<tr>
<td>Taylor number</td>
<td>372f</td>
</tr>
<tr>
<td>TDS (total dissolved solids)</td>
<td>6</td>
</tr>
<tr>
<td>Team/Group skills</td>
<td>35–39</td>
</tr>
<tr>
<td>TEFC (totally enclosed fan cooled)</td>
<td>65</td>
</tr>
<tr>
<td>Temperature</td>
<td>359f</td>
</tr>
<tr>
<td>– catalyst</td>
<td>190</td>
</tr>
<tr>
<td>– selecting media</td>
<td>69, 84</td>
</tr>
<tr>
<td>– sensors</td>
<td>7ff</td>
</tr>
<tr>
<td>Temperature gradients</td>
<td>230</td>
</tr>
<tr>
<td>Tempered heat exchange systems</td>
<td>85, 392</td>
</tr>
<tr>
<td>Terephthalic acid</td>
<td>221</td>
</tr>
<tr>
<td>Tetrachlorobenzene</td>
<td>323</td>
</tr>
<tr>
<td>Theoretical stage</td>
<td>91</td>
</tr>
<tr>
<td>Thermal expansion</td>
<td>68ff, 74</td>
</tr>
<tr>
<td>Thermal pinch</td>
<td>26</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>4, 351</td>
</tr>
<tr>
<td>Thermal reaction number</td>
<td>189, 229</td>
</tr>
<tr>
<td>Thermal wheels</td>
<td>81, 391</td>
</tr>
<tr>
<td>Thermoplastics</td>
<td>305</td>
</tr>
<tr>
<td>Thickener</td>
<td>150f, 162f, 287, 409, 428</td>
</tr>
<tr>
<td>Thin film</td>
<td></td>
</tr>
<tr>
<td>– absorber</td>
<td>110</td>
</tr>
<tr>
<td>– heat exchanger</td>
<td>79</td>
</tr>
<tr>
<td>– agitated falling film</td>
<td>247</td>
</tr>
<tr>
<td>– capital cost</td>
<td>393, 398, 423, 434f</td>
</tr>
<tr>
<td>– crystallization</td>
<td>102</td>
</tr>
<tr>
<td>– evaporators</td>
<td>393</td>
</tr>
<tr>
<td>– G systems</td>
<td>80</td>
</tr>
<tr>
<td>– GL biosolids</td>
<td>248</td>
</tr>
<tr>
<td>– GL systems</td>
<td>15</td>
</tr>
<tr>
<td>– gravity film</td>
<td>247</td>
</tr>
<tr>
<td>– Hatta</td>
<td>198</td>
</tr>
<tr>
<td>– LL systems</td>
<td>19</td>
</tr>
<tr>
<td>– reactor</td>
<td>216, 247</td>
</tr>
<tr>
<td>– rising/falling films</td>
<td>110, 393</td>
</tr>
<tr>
<td>– selection</td>
<td>213, 247f</td>
</tr>
<tr>
<td>– solvent extraction: RDC</td>
<td>115ff</td>
</tr>
<tr>
<td>– see also individual types</td>
<td></td>
</tr>
<tr>
<td>Three phase separators: gas-liquid-liquid</td>
<td></td>
</tr>
<tr>
<td>Thring number</td>
<td>363, 373</td>
</tr>
<tr>
<td>THTU (height of a thermal transfer unit)</td>
<td>18, 69, 72</td>
</tr>
<tr>
<td>Time management</td>
<td>25</td>
</tr>
<tr>
<td>Time</td>
<td>357</td>
</tr>
</tbody>
</table>
Titanium dioxide 170, 332
TM cost (total module cost) 7, 22, 378
Toaster 156, 407
TOC (total organic carbon) 119
TOF (turnover frequency) 199
Toluene diisocyanate 218, 221
Transfer line see: Pneumatic conveying, Pipe contactor
Transfer unit 91
Traveling Grate reactor 213, 249, 423
Tray column
 – capital cost 393 f
 – GL contactor 15
 – Hatta number, volume ratio 198
 – heat exchange 79 f
 – LL contactor 19
 – pressure drop 47
 – quencher 80
 – reactive distillation 277
 – reactors 212, 241
 – see also: Absorber, Scrubber, Stripper, Solvent extraction
Trickle bed
 – capital cost 423, 434 f
 – Eotvos number 245
 – flow characteristics 244
 – GL 12–15, 229
 – hydrogenation 228
 – membrane reactor 278
 – reactor 213, 244 f
Trickling filter 15 ff, 213, 242 f, 422
 – see also: Packed column
Triggers, for creativity 23 f
Trommel see: Screens, SS separation
Tropophase 222
Trommel see: Screens, SS separation
Trophophase 222
Trouble shooting xvi, 27–31, 38 ff
Trust 34 f, 40
Tube, multi- see: Heat exchanger, PFTR
Turbine steam 64 ff, 388
Turbine, impeller 280–288, 427
 – see also: Mixing
Turbulent bed contactor 107, 142 f, 403 f
Turnover rate 281 ff
Twin shell see: Blenders
Two-phase Flow 57 ff, 385 ff, 419
Tyler mesh size 20

ν
 Vacuum 48–50, 382 f
 – dilute phase pneumatic conveying 60 f
 – freeze drying 154
 – reactors 211, 215, 225, 279
 – see also: Crystallization, Distillation/ vacuum, Evaporation, Stripping.
Valve 7–11, 54, 63, 83, 379
Vapor recompression 88 f, 105, 396
Vegetable seeds 153
Velocity 53, 63, 339, 358
 – compressors 46 f
 – contactors 11–16, 19
 – gas flow 47
 – superficial density-weighted 96
 – see also: Particles, Dispersed phase
Vents 63, 74, 147
Venturi jet 12 ff
 – gas absorber 107–113, 403
 – Henry's law 239
 – pressure drop 47
 – reactor 212, 240, 403
 – scrubber 138, 142 f, 403
Vermiculite 332
Vessels, process 191, 329 f, 434 f
 – see also individual types
Vibration 47
Vinegar 237
Vinyl acetate 206
Vinyl bonds 218
Vinyl chloride 227
Vinyl polymers see: Polymers
Vinylation 217
Visbreaking 67, 225
Viscosity 51 ff, 211 ff, 335–343
VOCs (volatile organic compounds) 128
Void volume 11–20, 199
Volume 337
Vortex, Fr no. 367, 371
Vortex breaker (antiswirl lug) 6, 51, 139, 147 ff
Votator see: Scraped surface/horizontal film

ω
 Waste minimization 32
Waste sludge 267
Waste water treatment 208 ff
 – activated sludge reactor 254, 274 f
 – aerated lagoon 254
 – bubble columns 237
 – capital cost 432
 – comminutor 296 f
 – deep shaft 238

u
 Ultrafiltration (UF) see: Membranes
Underwood equation 95
Units of measurement 344 ff
Uranium dioxide 225
Uranium hexafluoride 225
Urea 104, 167
Index

- thickener 162

Water 4, 64, 74 ff, 301, 375

Waxes 323

Weber number (We) 144, 373

Wetted wall see: Thin film

Wetting 28, 86, 125
- coalescers/demisters 299
- ores 176
- packing 243
- packing 97

What if/Why? problem solving 23 f, 26

WHSV, definition 215

Working capital 22, 378

x

Xylene 205, 221 ff, 227

o-Xylene 375

p-Xylene 105

y

Yeast 208 ff, 237

Yield 185 ff

z

Zeigler Nichols reactor 210

Zero point of charge (zpc) 125
- I X 121
- membrane separation 125, 134
- precipitation 107
- stability 28, 112, 117, 147 f, 239, 258 f, 263 f, 301

Zinc sulfide 170

Zone refining 102