Contents

List of Contributors XIII

1 Self-Organization of Inorganic Nanocrystals 1

Laurence Motte, Alexa Courty, Anh-Tu Ngo, Isabelle Lisiecki, and Marie-Paule Pileni

1.1 Introduction 1

1.2 Surface Modification of Nanocrystals and Interparticle Forces in Solution 2

1.2.1 Van der Waals Forces 4

1.2.2 Magnetic Dipolar Forces 4

1.2.3 Electrostatic Forces 5

1.2.4 Steric Forces 5

1.2.5 Solvation Forces 5

1.3 What is Required to Provide Highly Ordered Self-Assemblies? 6

1.3.1 Nanocrystal Size Distribution Effect 6

1.3.2 Substrate Effect 6

1.3.3 Capillary Forces 8

1.3.3.1 Solvent Evaporation Process 8

1.3.3.2 Application of a Magnetic or Electric Field During the Evaporation Process 9

1.4 Self-Assemblies in the Absence of External Forces 9

1.4.1 Control of the Interparticle Gap Via the Coating Agent 16

1.4.1.1 Silver Sulfide Nanocrystals 16

1.4.1.2 Silver Nanocrystals 17

1.4.2 Influence of the Substrate 19

1.4.3 Thermal and Time Stabilities 24

1.4.3.1 Crystallinity Improvement Related to the Atomic and Nanocrystal Ordering 24

1.4.3.2 A New Approach to Crystal Growth 27

1.4.3.3 Stability with Time 29

1.5 Self-Assemblies in the Presence of External Forces and Constraints 31

1.5.1 Fluid Flow 31
1.5.2 Application of a Magnetic Field

1.5.2.1 Applied Field Parallel to the Substrate 34

1.5.2.2 Applied Field Perpendicular to the Substrate 40

1.6 Conclusion 45

References 45

2 Structures of Magnetic Nanoparticles and Their Self-Assembly 49

Zhong L. Wang, Yong Ding, and Jing Li

2.1 Introduction 49

2.2 Phase Identification of Nanoparticles 49

2.2.1 Core–Shell Nanoparticles 49

2.2.2 FePt/Fe₃Pt Nanocomposites 55

2.3 Determining the Nanoparticle Shapes and Surfaces 58

2.3.1 The Shape of Fe₃O₄ Nanoparticles 59

2.3.2 The Shapes of FePt Nanoparticles 60

2.4 Multiply Twinned FePt Nanoparticles 61

2.5 Phase Transformation and Coalescence of Nanoparticles 65

2.6 Self-Assembled Nanoarchitectures of Fe₃O₄ Nanoparticles 69

2.7 Summary 72

References 73

3 Self-Organization of Magnetic Nanocrystals at the Mesoscopic Scale: Example of Liquid–Gas Transitions 75

Johannes Richardi and Marie-Paule Pileni

3.1 Introduction 75

3.2 Simulation Studies of Liquid–Gas Transitions (LGT) in Colloids and Dipolar Systems 76

3.2.1 Liquid–Gas Transitions in Colloids 76

3.2.2 Liquid–Gas Transition in Dipolar Systems 77

3.3 Orientational and Structural Correlations in Dipolar Fluids 79

3.4 Mesoscopic Organization of Magnetic Nanocrystals in a Parallel Field 80

3.5 Mesoscopic Organization of Magnetic Nanocrystals in a Perpendicular Field 82

3.6 Conclusion 87

References 87

4 In Situ Fabrication of Metal Nanoparticles in Solid Matrices 91

Junhui He and Toyoki Kunitake

4.1 Introduction 91

4.2 In Situ Fabrication of Metal Nanoparticles in Films 92

4.2.1 In Situ Fabrication of Metal Nanoparticles in Inorganic Films 92

4.2.1.1 In Situ Fabrication of Metal Nanoparticles in Mesoporous Inorganic Films 92
4.2.1.2 *In Situ* Fabrication of Metal Nanoparticles in Metal Oxide Ultrathin Films: the Surface Sol–Gel Process 95
4.2.1.3 *In Situ* Fabrication of Metal Nanoparticles in TiO₂ Films Prepared from Anatase Sol by Spin-Coating 99
4.2.2 *In Situ* Fabrication of Metal Nanoparticles in Polymeric Films 101
4.2.3 *In Situ* Fabrication of Metal Nanoparticles in Layer-by-Layer Assembled Polyelectrolyte Thin Films 104
4.3 *In Situ* Fabrication of Metal Nanoparticles in Nonfilm Solid Matrices 106
4.3.1 *In Situ* Fabrication of Metal Nanoparticles in Inorganic Matrices 107
4.3.2 *In Situ* Fabrication of Metal Nanoparticles in Polymeric Matrices 110
4.4 Physicochemical Properties 112
4.4.1 Catalytic Properties 113
4.4.2 Optical Properties 113
4.4.3 Magnetic Properties 114
4.5 Summary and Outlook 115

References 115

5 Three-Dimensional Self-Assemblies of Nanoparticles 119
*Sachiko Matsushita and Shin-ya Onoue*

5.1 Introduction 119
5.2 Mesoscopic Assembly of Inorganic Nanoparticles in Molecular Matrixes 120
5.2.1 Introduction 120
5.2.2 Random Assemblies of Inorganic Nanoparticles by Various Triggers 120
5.2.2.1 pH and Ions 121
5.2.2.2 Small Molecules and Polymers 121
5.2.2.3 Biological Components (Programmed Assemblies and Sensors) 121
5.2.3 Versatile Assemblies of Inorganic Nanoparticles Guided by Designable Templates: Superstructures and 1D and 3D Assemblies 123
5.2.3.1 Langmuir–Blodgett Films 123
5.2.3.2 Amphiphiles and Surfactants 124
5.2.3.3 Gels (Networks) 124
5.2.3.4 Polymer and DNA as a Template 124
5.2.3.5 Inorganic Templates 125
5.2.3.6 Others 126
5.2.4 Layer-by-Layer Assemblies Embedded with Inorganic Nanoparticles 126
5.2.4.1 Multifunctional Molecules and Polymers 127
5.2.4.2 Inorganic Molecules 127
5.2.5 “Key and Vision” for Future Development 128
5.3 Three-Dimensional Self-Assemblies via Nanoparticle Interactions 129
5.3.1 Liquid Colloidal Crystals 129
5.3.1.1 Control of the Lattice Structure 130
5.3.1.2 Control of the Orientation 131
5.3.1.3 Overcoming the Mechanical Fragility 133
5.3.1.4 Self-Assembly Preparations for Complicated Structures 133
5.3.2 Solid Colloidal Crystals 135
5.3.2.1 Control of the Orientation 136
5.3.2.2 Control of the Lattice Structure 137
5.3.2.3 Overcoming the Slow Growth Rate 137
5.3.2.4 Self-Assembly Preparations for Complicated Structures 137
5.3.3 Two-Dimensional Colloidal Crystals 137
5.3.3.1 Various Preparation Methods 140
5.3.3.2 Control of the Lattice Structure 142
5.3.4 Processing of Self-Assembled Structures 143
5.3.4.1 Submicrostructures Formed by Reactive Ion Etching in 3D Self-Assembled Structures 143
5.3.4.2 Flexible Self-Assembled Structures 144
5.3.4.3 Freestanding Colloidal Crystals 144
5.3.5 Dissipative Process for Fabrication of 3D Self-Assembly 145
5.4 Applications of Three-Dimensional Self-Assemblies of Nanoparticles 145
5.4.1 Photonic Crystals 148
5.4.2 Sensing Materials 150
5.4.3 Optical Switches 150
5.4.4 Optical Memory Media 150
References 151

6 Dissipative Structures and Dynamic Processes for Mesoscopic Polymer Patterning 157
Masatsugu Shimomura
6.1 Introduction 157
6.2 Formation of Dissipative Structures in Drying Polymer Solutions 159
6.3 Regular Pattern Formation of Deposited Polymers After Solvent Evaporation 160
6.4 Preparation of Honeycomb-Patterned Polymer Films 164
6.5 Processing of Honeycomb Patterns 166
6.6 Application of Regularly Patterned Polymer Films 167
6.7 Conclusion 169
References 169
7 Self-Assemblies of Anisotropic Nanoparticles: Mineral Liquid Crystals 173
Patrick Davidson and Jean-Christophe P. Gabriel

7.1 Introduction 173
7.2 Basic Principles and Investigation Techniques 174
7.2.1 Basic Principles 174
7.2.2 Investigation Techniques 177
7.3 Nematic Phases 178
7.3.1 The Onsager Model 179
7.3.2 Rigid Rodlike Nanoparticles 180
7.3.3 Semiflexible Wires, Ribbons, and Tubules 181
7.3.3.1 Li₂Mo₆Se₆ Wires 181
7.3.3.2 V₂O₅ Ribbons 182
7.3.3.3 Imogolite Nanotubules 189
7.3.4 Nanorods, Nanowires, and Nanotubes: A Wealth of Potential New MLCs 189
7.3.5 Disklike Nanoparticles 190
7.3.5.1 Clays 190
7.3.5.2 Gibbsite Nanodisks 193
7.4 Lamellar Phases 195
7.4.1 Numerical Simulations 195
7.4.2 “Schiller Layers” 196
7.4.3 Suspensions of H₃Sb₃P₂O₁₄ and HSbP₂O₈ Nanosheets 196
7.5 Columnar Phases 199
7.5.1 Numerical Simulations 199
7.5.2 Two-Dimensional Phases of Rodlike Particles 200
7.5.3 Hexagonal Phase of Disklike Particles 201
7.6 Physical Properties and Applications 202
7.6.1 Rheological Properties 202
7.6.2 Composite Materials 204
7.6.3 The Outstanding Magnetic Properties of Goethite Nanorods 205
7.6.4 Electric Field Effects 207
7.6.5 The Use of Mineral Liquid-Crystalline Suspensions for the Structural Determination of Biomolecules 207
7.7 Conclusion 209

References 210

8 Collective Properties Due to Self-Organization of Silver Nanocrystals 213
Arnaud Brioude, Alexa Courty, and Marie-Paule Pileni

8.1 Introduction 213
8.2 Results and Discussion 214
8.2.1 Intrinsic Properties Due to “Supra” Crystal Formation 216
8.2.2 Dipolar Interactions 218
8.2.2.1 Absorption Spectroscopy 218
9 Scanning Tunneling Luminescence from Metal Nanoparticles 231

Fabrice Charra

9.1 Introduction 231
9.2 Mechanisms of Scanning Tunneling Luminescence 232
9.2.1 Electromagnetic-Field-Assisted Inelastic Tunneling 233
9.2.2 Local Plasmon Modes 234
9.3 Experimental Details 235
9.4 Tip-Formed Protrusions 236
9.5 Colloidal Silver Nanoparticles 238
9.5.1 Single-Particle Contact by STM 239
9.5.2 Collective Plasmon Modes 240
9.5.3 Individual-Site Dependence of Luminescence 243
9.5.4 Tip-Modified Luminescence 246
9.6 Conclusion 248

References 249

10 Collective Magnetic Properties of Organizations of Magnetic Nanocrystals 251

Christophe Petit, Laurence Motte, Anh-Tu Ngo, Isabelle Lisiecki, and Marie Paule Pileni

10.1 Introduction 251
10.2 General Principles of the Magnetism of Nanoparticles: Theory and Investigation 252
10.2.1 Magnetocrystalline Anisotropy Energy and Blocking Temperature 253
10.2.2 Magnetic Characterization from the Hysteresis Curves 254
10.2.3 Demagnetizing Fields 254
10.3 Origin of the Collective Properties in Mesoscopic Structures of Magnetic Nanocrystals 255
10.3.1 Orientation of the Easy Magnetic Axes 255
10.3.2 Dipolar Interactions 256
10.4 Collective Magnetic Properties of Mesostructures Made of Magnetic Nanocrystals 256
10.4.1 Materials and Mesoscopic Structures 257
10.4.2 Bidimensional (2D) Organization of Cobalt Nanocrystals 257
10.4.3 Three-Dimensional (3D) Organizations of Cobalt Nanocrystals 259
10.4.4 Does the Internal Order Play a Role? 260
10.4.5 Does the Structure Play a Role? 263
10.4.5.1 Linear Chains of Cobalt Nanocrystals 263
10.4.5.2 Patterned 3D Film of Magnetic Nanoparticles 266