Contents

Preface xiii
Contributors xv

1 Introduction 1
Richard Coles
1.1 Introduction 1
1.2 Packaging developments – an historical and future perspective 3
1.3 Role of packaging for enhanced sustainability of food supply 5
1.4 Definitions and functions of packaging 9
1.5 Packaging strategy 10
1.6 Packaging design and development 10
1.6.1 The packaging design and development framework 13
1.6.2 Packaging specifications and standards 26
1.7 Conclusion 27
References 27
Websites 28

2 Food Biodeterioration and Methods of Preservation 31
Gary S. Tucker
2.1 Introduction 31
2.2 Agents of food biodeterioration 32
2.2.1 Enzymes 32
2.2.2 Microorganisms 33
2.2.3 Non-enzymic biodeterioration 38
2.3 Food preservation methods 38
2.3.1 High temperatures 39
2.3.2 Low temperatures 47
2.3.3 Drying and water activity control 49
2.3.4 Chemical preservation 51
2.3.5 Fermentation 53
2.3.6 Modifying the atmosphere 53
2.3.7 Other techniques and developments 54
References 57

3 Packaged Product Quality and Shelf Life 59
Helen Brown, James Williams and Mark Kirwan
3.1 Introduction 59
3.2 Factors affecting product quality and shelf life 62
iv Contents

3.3 Chemical/biochemical processes 63
 3.3.1 Oxidation 63
 3.3.2 Enzyme activity 66
3.4 Microbiological processes 67
 3.4.1 Examples where packaging is key to maintaining microbiological shelf life 68
3.5 Physical and physico-chemical processes 70
 3.5.1 Physical damage 70
 3.5.2 Insect damage 71
 3.5.3 Moisture migration 71
 3.5.4 Barrier to odour pick-up 73
 3.5.5 Flavour scalping 73
3.6 Migration from packaging to foods 73
 3.6.1 Migration from plastic packaging 74
 3.6.2 Migration from other packaging materials 77
 3.6.3 Factors affecting migration from food contact materials 78
 3.6.4 Packaging selection to avoid migration and packaging taints 79
 3.6.5 Methods for monitoring migration 79
3.7 Conclusion 81
References 81

4 Logistical Packaging for Food Marketing Systems 85
Diana Twede and Bruce Harte

4.1 Introduction 85
4.2 Functions of logistical packaging 86
 4.2.1 Protection 86
 4.2.2 Utility/productivity 87
 4.2.3 Communication 88
4.3 Logistics’ activity-specific and integration issues 89
 4.3.1 Packaging issues in food processing 89
 4.3.2 Transport issues 90
 4.3.3 Warehousing issues 93
 4.3.4 Retail customer service issues 94
 4.3.5 Waste issues 95
 4.3.6 Supply chain integration issues 96
4.4 Distribution performance testing 97
 4.4.1 Shock and vibration testing 97
 4.4.2 Compression testing 98
4.5 Packaging materials and systems 99
 4.5.1 Corrugated fibreboard boxes 99
 4.5.2 Shrink bundles 101
 4.5.3 Reusable totes 101
 4.5.4 Unitisation 102
4.6 Conclusion 104
References 105
Further reading 105
5 Metal Packaging

Bev Page, Mike Edwards and Nick May

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Overview of market for metal cans</td>
<td>107</td>
</tr>
<tr>
<td>5.2 Container performance requirements</td>
<td>107</td>
</tr>
<tr>
<td>5.3 Container designs</td>
<td>108</td>
</tr>
<tr>
<td>5.4 Raw materials for can-making</td>
<td>110</td>
</tr>
<tr>
<td>5.4.1 Steel</td>
<td>110</td>
</tr>
<tr>
<td>5.4.2 Aluminium</td>
<td>111</td>
</tr>
<tr>
<td>5.4.3 How steel and aluminium are used in metal packaging</td>
<td>111</td>
</tr>
<tr>
<td>5.4.4 Sustainability – the infinite recycling loop of metal for packaging</td>
<td>112</td>
</tr>
<tr>
<td>5.5 Can-making processes</td>
<td>113</td>
</tr>
<tr>
<td>5.5.1 Three-piece welded cans</td>
<td>114</td>
</tr>
<tr>
<td>5.5.2 Two-piece single drawn and multiple drawn (DRD) cans</td>
<td>115</td>
</tr>
<tr>
<td>5.5.3 Two-piece drawn and wall ironed (DWI) cans</td>
<td>116</td>
</tr>
<tr>
<td>5.5.4 Two-piece impact extruded cans</td>
<td>118</td>
</tr>
<tr>
<td>5.6 End-making processes</td>
<td>118</td>
</tr>
<tr>
<td>5.6.1 Plain food can ends and shells for food/drink easy-open ends</td>
<td>118</td>
</tr>
<tr>
<td>5.6.2 Conversion of end shells into easy-open ends</td>
<td>119</td>
</tr>
<tr>
<td>5.6.3 Peelable membrane ends for food cans</td>
<td>120</td>
</tr>
<tr>
<td>5.7 Coatings, film laminates and inks</td>
<td>120</td>
</tr>
<tr>
<td>5.8 Processing of food and drinks in metal packages</td>
<td>121</td>
</tr>
<tr>
<td>5.8.1 Can reception at the packer</td>
<td>121</td>
</tr>
<tr>
<td>5.8.2 Filling and exhausting</td>
<td>122</td>
</tr>
<tr>
<td>5.8.3 Seaming</td>
<td>123</td>
</tr>
<tr>
<td>5.8.4 Heat processing</td>
<td>125</td>
</tr>
<tr>
<td>5.8.5 Post-process drying</td>
<td>126</td>
</tr>
<tr>
<td>5.8.6 Container handling</td>
<td>126</td>
</tr>
<tr>
<td>5.8.7 Storage and distribution</td>
<td>127</td>
</tr>
<tr>
<td>5.9 Shelf life of canned foods</td>
<td>127</td>
</tr>
<tr>
<td>5.9.1 Interactions between the can and its contents</td>
<td>128</td>
</tr>
<tr>
<td>5.9.2 The role of tin</td>
<td>129</td>
</tr>
<tr>
<td>5.9.3 Tin toxicity</td>
<td>130</td>
</tr>
<tr>
<td>5.9.4 The dissolution of tin from the can surface</td>
<td>130</td>
</tr>
<tr>
<td>5.9.5 Iron</td>
<td>131</td>
</tr>
<tr>
<td>5.9.6 Aluminium</td>
<td>132</td>
</tr>
<tr>
<td>5.9.7 Lacquers</td>
<td>132</td>
</tr>
<tr>
<td>5.10 Internal corrosion</td>
<td>133</td>
</tr>
<tr>
<td>5.11 Stress corrosion cracking</td>
<td>133</td>
</tr>
<tr>
<td>5.12 Environmental stress cracking corrosion of aluminium alloy beverage can ends</td>
<td>133</td>
</tr>
<tr>
<td>5.13 Sulphur staining</td>
<td>134</td>
</tr>
<tr>
<td>5.14 External corrosion</td>
<td>134</td>
</tr>
<tr>
<td>5.15 Conclusion</td>
<td>135</td>
</tr>
<tr>
<td>References</td>
<td>135</td>
</tr>
<tr>
<td>Further reading</td>
<td>135</td>
</tr>
</tbody>
</table>
6 Packaging of Food in Glass Containers
Peter Grayhurst and Patrick J. Girling

6.1 Introduction
6.1.1 Definition of glass
6.1.2 Brief history
6.1.3 Glass packaging
6.1.4 Glass containers market sectors for foods and drinks
6.1.5 Glass containers

6.2 Attributes of food packaged in glass containers
6.2.1 Glass pack integrity and product compatibility
6.2.2 Consumer acceptability

6.3 Glass and glass container manufacture
6.3.1 Melting
6.3.2 Container forming
6.3.3 Design parameters
6.3.4 Surface treatments

6.4 Closure selection
6.4.1 Normal Seals
6.4.2 Vacuum seals
6.4.3 Pressure seals

6.5 Thermal processing of glass packaged foods

6.6 Plastic sleeving and decorating possibilities

6.7 Strength in theory and practice

6.8 Glass pack design and specification
6.8.1 Concept and container design

6.9 Packing – due diligence in the use of glass containers

6.10 Environmental profile
6.10.1 Reuse
6.10.2 Recycling
6.10.3 Reduction – light weighting

6.11 Glass as a marketing tool

References

Further reading

7 Plastics in Food Packaging
Mark J. Kirwan, Sarah Plant and John W. Strawbridge

7.1 Introduction
7.1.1 Definition and background
7.1.2 Use of plastics in food packaging
7.1.3 Types of plastics used in food packaging

7.2 Manufacture of plastics packaging
7.2.1 Introduction to the manufacture of plastics packaging
7.2.2 Plastic film and sheet for packaging
7.2.3 Pack types based on use of plastic films, laminates, etc.
7.2.4 Rigid plastic packaging
Contents

7.3 Types of plastic used in packaging
- 7.3.1 Polyethylene (PE) 170
- 7.3.2 Polypropylene (PP) 171
- 7.3.3 Polyethylene Terephthalate (PET or PETE) 173
- 7.3.4 Polyethylene naphthalene dicarboxylate (PEN) 174
- 7.3.5 Polycarbonate (PC) 175
- 7.3.6 Ionomers 175
- 7.3.7 Ethylene vinyl acetate (EVA) 176
- 7.3.8 Polyamide (PA) 176
- 7.3.9 Polystyrene (PS) 177
- 7.3.10 Polystyrene chlorinated (PVC) 178
- 7.3.11 Polystyrene (PS) 178
- 7.3.12 Styrene butadiene (SB) 179
- 7.3.13 Acrylonitrile butadiene styrene (ABS) 179
- 7.3.14 Ethylene vinyl alcohol (EVOH) 179
- 7.3.15 Polymethyl pentene (TPX) 180
- 7.3.16 High nitrile polymers (HNP) 180
- 7.3.17 Fluoropolymers 180
- 7.3.18 Cellulose-based materials 181
- 7.3.19 Polymethyl pentene (TPX) 180

7.4 Coating of plastic films – types and properties
- 7.4.1 Introduction to coating 182
- 7.4.2 Acrylic coatings 182
- 7.4.3 PVdC coatings 183
- 7.4.4 PVOH coatings 183
- 7.4.5 Low-temperature sealing coatings (LTSCs) 183
- 7.4.6 Metallising with aluminium 183
- 7.4.7 SiOx coatings 184
- 7.4.8 DLC (Diamond-like coating) 184
- 7.4.9 Extrusion coating with PE 184

7.5 Secondary conversion techniques
- 7.5.1 Film lamination by adhesive 185
- 7.5.2 Extrusion lamination 186
- 7.5.3 Thermal lamination 186

7.6 Printing
- 7.6.1 Introduction to the printing of plastic films 187
- 7.6.2 Gravure printing 187
- 7.6.3 Flexographic printing 188
- 7.6.4 Digital printing 188

7.7 Printing and labelling of rigid plastic containers
- 7.7.1 In-mould labelling 188
- 7.7.2 Labelling 188
- 7.7.3 Dry offset printing 189
- 7.7.4 Silk screen printing 189
- 7.7.5 Heat transfer printing 189

7.8 Food contact and barrier properties
- 7.8.1 The issues 189
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to sealability and closure</td>
<td>192</td>
</tr>
<tr>
<td>Heat sealing</td>
<td>192</td>
</tr>
<tr>
<td>Flat jaw sealing</td>
<td>192</td>
</tr>
<tr>
<td>Crimp jaw conditions</td>
<td>193</td>
</tr>
<tr>
<td>Impulse sealing</td>
<td>194</td>
</tr>
<tr>
<td>Hot wheel sealing</td>
<td>195</td>
</tr>
<tr>
<td>Hot air sealers</td>
<td>195</td>
</tr>
<tr>
<td>Gas flame sealers</td>
<td>195</td>
</tr>
<tr>
<td>Induction sealing</td>
<td>195</td>
</tr>
<tr>
<td>Ultrasonic sealing</td>
<td>195</td>
</tr>
<tr>
<td>Cold seal</td>
<td>195</td>
</tr>
<tr>
<td>Plastic closures for bottles, jars and tubs</td>
<td>196</td>
</tr>
<tr>
<td>Adhesive systems used with plastics</td>
<td>196</td>
</tr>
<tr>
<td>How to choose</td>
<td>196</td>
</tr>
<tr>
<td>Packaging innovation</td>
<td>198</td>
</tr>
<tr>
<td>Applications</td>
<td>199</td>
</tr>
<tr>
<td>Advantages and disadvantages</td>
<td>200</td>
</tr>
<tr>
<td>Production of pouches</td>
<td>201</td>
</tr>
<tr>
<td>Filling and sealing</td>
<td>201</td>
</tr>
<tr>
<td>Processing</td>
<td>202</td>
</tr>
<tr>
<td>Process determination</td>
<td>203</td>
</tr>
<tr>
<td>Post retort handling</td>
<td>203</td>
</tr>
<tr>
<td>Outer packaging</td>
<td>204</td>
</tr>
<tr>
<td>Quality assurance</td>
<td>204</td>
</tr>
<tr>
<td>Shelf life</td>
<td>204</td>
</tr>
<tr>
<td>Environmental and waste management issues</td>
<td>205</td>
</tr>
<tr>
<td>Environmental benefit</td>
<td>205</td>
</tr>
<tr>
<td>Sustainable development</td>
<td>205</td>
</tr>
<tr>
<td>Resource minimisation – light weighting</td>
<td>205</td>
</tr>
<tr>
<td>Plastics manufacturing and life cycle assessment (LCA)</td>
<td>206</td>
</tr>
<tr>
<td>Plastics waste management</td>
<td>206</td>
</tr>
<tr>
<td>References</td>
<td>209</td>
</tr>
<tr>
<td>Further reading</td>
<td>210</td>
</tr>
<tr>
<td>Websites</td>
<td>210</td>
</tr>
<tr>
<td>Appendices</td>
<td>211</td>
</tr>
</tbody>
</table>

8 Paper and Paperboard Packaging

M.J. Kirwan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>213</td>
</tr>
<tr>
<td>Paper and paperboard – fibre sources and fibre separation (pulping)</td>
<td>215</td>
</tr>
<tr>
<td>Paper and paperboard manufacture</td>
<td>217</td>
</tr>
<tr>
<td>Stock preparation</td>
<td>217</td>
</tr>
</tbody>
</table>
8.3.2 Sheet forming 217
8.3.3 Pressing 218
8.3.4 Drying 218
8.3.5 Coating 219
8.3.6 Reel-up 219
8.3.7 Finishing 219
8.4 Packaging papers and paperboards 219
 8.4.1 Wet strength paper 220
 8.4.2 Microcreping 220
 8.4.3 Greaseproof 220
 8.4.4 Glassine 220
 8.4.5 Vegetable parchment 220
 8.4.6 Tissues 220
 8.4.7 Paper labels 221
 8.4.8 Bag papers 221
 8.4.9 Sack kraft 221
 8.4.10 Impregnated papers 221
 8.4.11 Laminating papers 221
 8.4.12 Solid bleached board (SBB) 221
 8.4.13 Solid unbleached board (SUB) 222
 8.4.14 Folding boxboard (FBB) 222
 8.4.15 White lined chipboard (WLC) 223
8.5 Properties of paper and paperboard 223
 8.5.1 Appearance 224
 8.5.2 Performance 224
8.6 Additional functional properties of paper and paperboard 225
 8.6.1 Treatment during manufacture 225
 8.6.2 Lamination 225
 8.6.3 Plastic extrusion coating and laminating 226
 8.6.4 Printing and varnishing 227
 8.6.5 Post-printing roller varnishing/coating/laminating 227
8.7 Design for paper and paperboard packaging 228
8.8 Package types 228
 8.8.1 Tea and coffee bags 228
 8.8.2 Paper bags and wrapping paper 228
 8.8.3 Sachets/pouches/overwraps 229
 8.8.4 Multiwall paper sacks 229
 8.8.5 Folding cartons 231
 8.8.6 Liquid packaging cartons 233
 8.8.7 Rigid cartons or boxes 235
 8.8.8 Paper-based tubes, tubs and composite containers 235
 8.8.9 Fibre drums 236
 8.8.10 Corrugated fibreboard packaging 237
 8.8.11 Moulded pulp containers 239
 8.8.12 Labels 240
 8.8.13 Sealing tapes 241
 8.8.14 Cushioning materials 242
 8.8.15 Cap liners (wads) and diaphragms 242
8.9 Systems 243
8.10 Environmental profile 243
8.11 Carbon footprint 247
 8.11.1 Carbon sequestration in forests 247
 8.11.2 Carbon stored in forest products 248
 8.11.3 Greenhouse gas emissions from forest product manufacturing facilities 248
 8.11.4 Greenhouse gas emissions associated with producing fibre 248
 8.11.5 Greenhouse gas emissions associated with producing other raw materials/fuels 248
 8.11.6 Greenhouse gas emissions associated with purchased electricity, steam and heat, and hot and cold water 248
 8.11.7 Transport-related greenhouse gas emissions 249
 8.11.8 Emissions associated with product use 249
 8.11.9 Emissions associated with product end-of-life 249
 8.11.10 Avoided emissions and offsets 249
References 249
Further reading 249
Websites 250

9 Active Packaging 251
B.P.F. Day and L. Potter
 9.1 Introduction 251
 9.2 Oxygen scavengers 252
 9.3 Carbon dioxide scavenger and emitters 254
 9.4 Ethylene scavengers 255
 9.5 Ethanol emitters 256
 9.6 Moisture absorbers 257
 9.7 Flavour/odour absorbers 258
 9.8 Lactose and cholesterol removers 259
 9.9 Anti-oxidant release 259
 9.10 Temperature-controlled packaging 259
 9.11 Regulatory issues, consumer acceptability and equipment considerations 260
 9.12 Conclusion 261
References 261

10 Modified Atmosphere Packaging 263
Michael Mullan and Derek McDowell
 Section A: Map gases packaging materials and equipment 263
 10.A1 Introduction 263
 10.A1.1 Historical development 264
 10.A2 Gaseous environment 264
 10.A2.1 Gases used in MAP 264
 10.A2.2 Effect of the gaseous environment on the activity of bacteria, yeasts and moulds 265
10.A2.3 Effect of the gaseous environment on the chemical biochemical and physical properties of foods 267
10.A2.4 Physical spoilage 270
10.A3 Packaging materials 270
10.A3.1 Main plastics used in MAP 270
10.A3.2 Selection of plastic packaging materials 273
10.A4 Modified packaging atmosphere machines 276
10.A4.1 Chamber machines 277
10.A4.2 Snorkel machines 277
10.A4.3 Form-fill-seal machines 277
10.A4.4 Preformed trays 279
10.A4.5 Modification of the pack atmosphere 281
10.A4.6 Sealing 281
10.A4.7 Cutting 282
10.A4.8 Additional operations 283
10.A5 Quality assurance of map 283
10.A5.1 Heat seal integrity 285
10.A5.2 Measurement of transmission rate and permeability in packaging films 286
10.A5.3 Determination of headspace gas composition 288

Section B: Main food types 288
10.B1 Raw red meat 288
10.B2 Raw poultry 288
10.B3 Cooked, cured and processed meat products 289
10.B4 Fish and fish products 290
10.B5 Fruits and vegetables 291
10.B6 Dairy products 293
References 293

11 Bioplastics 295
Jim Song, Martin Kay and Richard Coles

11.1 Introduction 295
11.2 Definitions 297
11.2.1 Plastics based on renewable resources 297
11.2.2 Biodegradable and compostable plastics according to EN13432 or similar standards 297
11.3 Bioplastics and carbon 298
11.4 Bioplastics – overview of material types 299
11.4.1 Classification of bioplastics 299
11.4.2 Bioplastics directly extracted from biomass 300
11.4.3 Bioplastics synthesised from bio-derived monomers 305
11.4.4 Biodegradable polymers from petrochemicals 306
11.4.5 Polyesters directly produced from natural organisms 308
Contents

11.4.6 Biocomposites 308
11.5 Waste management options for bioplastics 310
 11.5.1 Conventional waste management options 310
 11.5.2 Biological waste treatments of bioplastics 311
 11.5.3 Summary 315
11.6 Bioplastics – challenges for a growing market 316
11.7 Conclusion 317
References 317
Websites 319

Index

A colour plate section falls between pages 32 and 33.