<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achromobacter, 288</td>
</tr>
<tr>
<td>Acinetobacter, 290</td>
</tr>
<tr>
<td>active packaging, 251–62</td>
</tr>
<tr>
<td>carbon dioxide scavengers/emitters, 254, 255</td>
</tr>
<tr>
<td>definition, 251</td>
</tr>
<tr>
<td>flavour/odour absorbers, 258, 259</td>
</tr>
<tr>
<td>food applications, 252</td>
</tr>
<tr>
<td>food safety, consumer and regulatory issues, 260, 261</td>
</tr>
<tr>
<td>adhesive lamination, plastics, 185, 186</td>
</tr>
<tr>
<td>Advisory Committee on the Microbiological Safety of Food (ACMSF), 291</td>
</tr>
<tr>
<td>aerobes, 266, 290</td>
</tr>
<tr>
<td>Aeromonas hydrophila, 266</td>
</tr>
<tr>
<td>American Society of Testing and Materials (ASTM), 97–9</td>
</tr>
<tr>
<td>anaerobic digestion (AD), 314, 315</td>
</tr>
<tr>
<td>anaerobic respiration, 292</td>
</tr>
<tr>
<td>antifogging properties, 276</td>
</tr>
<tr>
<td>argon, 264, 265</td>
</tr>
<tr>
<td>biodegradable plastics, 209</td>
</tr>
<tr>
<td>biodeterioration, agents of bacteria, 33–6</td>
</tr>
<tr>
<td>enzymes, 32, 33</td>
</tr>
<tr>
<td>fungi, 36–8</td>
</tr>
<tr>
<td>non-enzymic biodeterioration, 38</td>
</tr>
<tr>
<td>bioplastics, 295–319</td>
</tr>
<tr>
<td>definitions, 209, 297</td>
</tr>
<tr>
<td>genetic modification (GM), 306, 316</td>
</tr>
<tr>
<td>life cycle model, 296</td>
</tr>
<tr>
<td>market drivers, 295, 296</td>
</tr>
<tr>
<td>market challenges, 316</td>
</tr>
<tr>
<td>bioplastics, materials, 298</td>
</tr>
<tr>
<td>aliphatic polyesters and derivatives, 306, 307</td>
</tr>
<tr>
<td>aromatic co-polyesters, 307</td>
</tr>
<tr>
<td>biocomposites, 308, 309</td>
</tr>
<tr>
<td>casein, 304</td>
</tr>
<tr>
<td>cellulose, fibre-based & derivatives, 302, 303</td>
</tr>
<tr>
<td>chitin & chitosan, 304</td>
</tr>
<tr>
<td>collagen, 304</td>
</tr>
<tr>
<td>gluten, 304</td>
</tr>
<tr>
<td>lignocelluloses, 303</td>
</tr>
<tr>
<td>natural fibre bio-composites, 303</td>
</tr>
<tr>
<td>polybutylene succinate (PBS), 307</td>
</tr>
<tr>
<td>polybutylene succinate adipate (BSA), 307</td>
</tr>
<tr>
<td>polybutylene succinate terephthalate (PBST), 307</td>
</tr>
<tr>
<td>polybutyrate adipate terephthalate (PBAT), 307</td>
</tr>
<tr>
<td>polycaprolactone (PCL), 307</td>
</tr>
<tr>
<td>polyester amide (PEA), 307</td>
</tr>
<tr>
<td>polyethylene from bio-ethanol (Bio-PE), 306</td>
</tr>
<tr>
<td>polyethylene terephthalate (PET), modified, 307</td>
</tr>
<tr>
<td>poly (ethylene vinyl alcohol) (EVOH), 307, 308</td>
</tr>
<tr>
<td>polyglycolic acid (PGA), 306</td>
</tr>
<tr>
<td>polyhydroxyalkanoate (PHA), 308</td>
</tr>
<tr>
<td>polyhydroxybutyrate (PHB), 308</td>
</tr>
<tr>
<td>polyhydroxyhexanoate (PHH), 308</td>
</tr>
<tr>
<td>polyhydroxyvalerate (PHV), 308</td>
</tr>
<tr>
<td>polylactic acid or polylactide (PLA), 305, 306</td>
</tr>
<tr>
<td>polysaccharides, 300</td>
</tr>
<tr>
<td>polytetramethylene adipate terephthalate (PTMAT), 307</td>
</tr>
<tr>
<td>polyurethane (PU), 304</td>
</tr>
<tr>
<td>plant fibres, 300</td>
</tr>
<tr>
<td>polyvinyl alcohol (PVOH), 307, 308</td>
</tr>
<tr>
<td>proteins, animal-based & plant-based, 304</td>
</tr>
<tr>
<td>regenerated cellulose film (RCF), 302, 303</td>
</tr>
<tr>
<td>starch, starch blends, starch-based, 300, 301</td>
</tr>
<tr>
<td>starch complex (starch blends with other bioplastics), 301, 302</td>
</tr>
<tr>
<td>starch nano-composites, 301</td>
</tr>
<tr>
<td>thermoplastic Starch (TPS), 301</td>
</tr>
<tr>
<td>blanching, 39</td>
</tr>
<tr>
<td>bleaching of cellulose fibre, 215, 216</td>
</tr>
<tr>
<td>blow and blow process, glass container making, 142</td>
</tr>
<tr>
<td>blown plastic film, 161, 162</td>
</tr>
<tr>
<td>Botrytis cinerea, 292</td>
</tr>
<tr>
<td>brands, 1, 5, 6, 22, 23, 26</td>
</tr>
<tr>
<td>bread, modified atmosphere packaging of, 264</td>
</tr>
<tr>
<td>British Standards Institute (BSI), 100</td>
</tr>
<tr>
<td>Campylobacter jejuni, 266</td>
</tr>
<tr>
<td>cans, see metal cans</td>
</tr>
<tr>
<td>carbon dioxide scavengers/emitters, 254, 255</td>
</tr>
<tr>
<td>effect on foods, 266, 267</td>
</tr>
<tr>
<td>carbon cycling & footprint, 26, 298, 299</td>
</tr>
<tr>
<td>classification, 299, 300</td>
</tr>
<tr>
<td>composting, 311–4</td>
</tr>
</tbody>
</table>

Food and Beverage Packaging Technology, Second Edition. Edited by Richard Coles and Mark Kirwan. © 2011 by Blackwell Publishing Ltd. Published 2011 by Blackwell Publishing Ltd.
carbon cycling & footprint (Cont.)
home (or domestic/garden/backyard) composting, 313, 314
industrial (municipal) composting, 311–3
Carbon Trust, 26
carbon monoxide
effect on foods, 269
cast plastic film, 161–3
chemically separated cellulose fibre, 215, 216
climate change & greenhouse gas emissions, 6–9
cling film wrapping, 177
Clostridium botulinum, 35, 36, 40, 44, 266, 267, 290, 291, 292
coating of plastics, 182–5
acrylic coatings, 182
DLC (diamond-like coating), 184
extrusion coating with PE, 184, 185
low-temperature sealing coatings (LTSC), 183
metallising with aluminium, 183, 184
PVdC coatings, 183
PVOH coatings, 183
SiOx coatings, 184
cold seal, 195
cold chain, 96
Conité Européen de Normalisation (CEN)
see also distribution performance tests
communication, reference logistics, 88, 89
compression strength, 93
compression testing, 98, 99
consumer needs, 18–21
controlled atmosphere storage (CAS), 263, 264
definition, 263
Corporate social responsibility (CSR), 2, 25, 26
corrugated fibreboard, 98–101, 237–9
crips, modified atmosphere packaging of, 264

cube utilisation, 88, 91
Cytophaga, 290
dairy products, modified atmosphere
packaging of, 293
data matrix bar code, 5
diamond-like-carbon (DLC) coating, 184, 273
distribution centres, 93
distribution costs, 11, 23, 24
distribution needs & hazards, 13–16, 26, 27
distribution performance testing, 97
compression testing, 98, 99
equipment, 97–9
impact, shock, vibration testing, 97, 98
standards, see ASTM; ISO; ISTA
see also transit testing
efficient consumer response (ECR), 95
electronic data interchange (EDI), 23, 88
environmental management systems, 26
environmental performance of packaging, 24–6, 153–5, 205–9, 243–9
environmental impact of bioplastics, 298, 299
environmental policy, 8, 26
equilibrium modified atmosphere, 292
equilibrium relative humidity (ERH), 50
ergonomic standard, 88
Escherichia coli, 35, 36, 49, 266, 288, 292
ethanol emitters, 256
ethylene, 255, 256, 268, 291, 292
scavengers, 255, 256
EU Directives
Packaging & Packaging Waste, 2
Packaging and Landfill, 2, 296, 310, 311
Plastics, 157
Renewable Energy, 2
EU Regulations
Animal By-Products (ABPR), 313
extrusion blow moulding, 167
extrusion lamination, plastics, 186, 187
facultative anaerobes, definition, 266
fat, see lipid
fish modified atmosphere packaging of, 290, 291
Flavobacterium, 290
flavour/odour adsorbers, 258, 259
food
biodeterioration, 31–58
contact approval (packaging materials), 273
distribution systems, 6
poisoning, 288
quality, 263
shelf life, see shelf life
food contact issues for plastics, 189, 190
food preservation methods, 31–58
blanching, 39
chilling and cooling, 48, 49
continuous thermal processing (aseptic), 44–6
curing, 51, 52
drying and water activity control, 49–51
fermentation, 53
freezing, 47, 48
high pressure processing, 55
irradiation, 55, 56
membrane processing, 56
microwave processing, 56
modification of atmosphere (MAP), 53, 54
ohmic heating, 55
pasteurisation, 46, 47
pickling, 52
pulsed light, 55, 56
smoking, 52, 53
thermal processing, 40–46, 125, 126, 148, 149, 202–4
food product quality, factors affecting
enzyme activity, 66, 67
flavour scalping (loss), 73
ingress of off-flavours, prevention thereof, 73
insect damage, 71
microbiological processes, 67–70
moisture changes in food, 71, 72
oxidation, 63–6
physical damage, 70
food spoilage
enzyme, 203
gas, see carbon dioxide and oxygen effect on foods
microbiological, 288–93
physical, 270
fruit
modified atmosphere packaging of, 291–3
respiration, 292
gas permeation
definition, 274
gas exchange, 263
gas transmission rate
definition, 274
measurement, 286–8
gas barrier properties, 274, 275
flushing, 281
flushing, compensated vacuum, 281
headspace composition determination, 288
gaseous composition of air, 263
measurement of transmission rate, 286–8
properties, 264, 265
glass composition, 138, 139
amber (brown), 139
blue, 139
dark green, 139
pale green (half white), 130
white flint (clear glass), 138, 139
glass container closure selection, 147, 148
normal seals, 147, 148
pressure seals, 147, 148
vacuum seals, 147, 148
glass container manufacture, 141–6
cold end treatment, 144
container forming, 141–4
design parameters, 142–4
furnace (melting), 141, 142
hot end treatment, 142–4
inspection and quality, 145, 146
low-cost production tooling, 144, 145
surface treatments, 142–4
glass container usage
cleaning, 152
customer acceptability, 141
due diligence in the use of, 152, 153
food market sectors, 138
labelling and decoration, 149
marketing benefit, 139–41
pack design and specification, 150–52
pack integrity, 141
pack safety, 141
glass
attributes of packaging in, 139, 140
definition, 137
packaging, 137, 138, 137–56
strength in theory and practice, 149, 150
hard sizing of paper and board, 225
hazard analysis critical control point (HACCP), 90, 96
heat sealing, 192–5, 201, 202
importance in MAP, 276
integrity, 202, 285, 286
measurement, 285, 286
helium, 265
inert gases, see noble gases
injection blow moulding, 168
injection moulding, 169
injection stretch blow moulding, 168
intelligent packaging, 251
International Organization for Standardization (ISO), 98, 99, 104
International Safe Transit Association (ISTA), 98
labelling of rigid plastic containers, 188, 189
Lactobacilli, 266, 290
lamb (red meat), modified atmosphere packaging of, 264, 268, 288
levels of packaging, primary, secondary etc., 15
life cycle assessment (LCA), 8
life cycle model for bioplastics, 296
lipid, oxidation, 268
Listeria monocytogenes, 35, 36, 49, 266, 292
logistical packaging issues, 89–97
packaging issues in food processing, 89, 90
retail customer service, 94, 95
supply chain integration, 97
transport, 90–93
warehousing, 93, 94
waste management, 95, 96
logistical packaging, functions, 86–9
communication, 88, 89
food marketing systems, 85–106
protection, 76–87
productivity, 87, 88
utility, 87, 88
logistics packaging materials and systems, 99–104
corrugated fibreboard boxes, 99–101
reusable totes, 101, 102
shrink bundles/wrapping, 101
unitisation, 102–4
meat
modified atmosphere packaging of, 264, 267, 268, 269, 289, 290
oxygen, its effect on pigments, 268, 269
mechanical properties of packaging, 276
mechanically separated cellulose fibre, 215
mesophilic microorganisms, 33
metal can manufacture
coatings, film laminates and inks, 120
easy-open can ends, 119, 120
plain food can ends, 118, 119
Index

metal can manufacture (Cont.)
three-piece welded cans, 114, 115
two-piece drawn and ironed (DWI), 116–8
two-piece single drawn and multiple drawn (DRD), 115, 116
metal can packaging issues
can reception at packer, 121, 122
filling and exhausting, 122–32
handling, 126, 127
heat processing, 125, 126
post processing, cooling, drying and labelling, 126
seaming, 123, 124
storage and distribution, 127
metal can shelf life issues
aluminium, 132
dissolution of tin, 130, 131
environmental stress cracking aluminium ends, 133, 134
external corrosion, 134, 135
function of tin, 129, 130
interactions between can and contents, 128
internal corrosion, 138
iron, 131, 132
lacquers, 132
stress corrosion cracking, 133
sulphur staining, 134
tin toxicity, 130
metal cans
container designs, 108–10
packaging overview, 107
performance requirements, 107
raw materials, aluminium, 111
raw materials, steel, 110, 111
recycling, 112, 113
metallising of plastic films (OPP, PET, PA), 164, 183, 184, 198, 273
metal packaging, 107–36
microaerophiles, definition, 266
migration
avoiding migration and taint, 79
factors affecting, 78, 79
from other packaging materials, 77
from plastics, 74
issues for plastics, 189, 190
monitoring and measuring, 80
Mitsubishi Gas Chemical Company, 253, 255
modified atmosphere packaging machinery
chamber, 277
compensated vacuum gas flushing, 281
form-fill-seal, 277–9
gas flushing, 281
negative forming, 278, 279
negative forming with plug, 278, 279
positive forming with plug, 279
snorkel, 277
modified atmosphere packaging, 263–94
carbon dioxide scavengers/emitters, 254, 255
carbon dioxide headspace determination, 288
definition, 263
ethylene scavengers, 255, 256
MAP gases, 264–6
MAP packaging materials, 270–73
market for foods, 263
measurement of carbon dioxide transmission rate, 287
measurement of oxygen transmission rate, 287
measurement of transmission/permeability rates, 287
oxygen headspace determination, 288
oxygen scavengers, 252–4
water vapour transmission rate, 286
modified atmosphere packaging, food applications
cooked, cured and processed meat products, 289, 290
dairy products, 293
fish and fish products, 290, 291
fruits and vegetables, 291, 292
raw poultry, 288, 289
raw red meat, 288
moisture absorbers, 257
moisture spoilage of food, 263
Moraxella, 290
narrow neck press process, glass container manufacture, 142
neon, 265
nitrogen
effect on foods, 267
effect on microbial growth, 287
gaseous composition of air, 263
properties, 265
noble gases
properties, 265, 305
use in modified atmosphere packaging of foods, 264, 265
nylon, see plastics in food packaging, polyamide
oil, 2
optical properties of packaging, 164, 266
oriented plastic film, 161–4
oxygen
effect on microbial growth, 266
effect on foods, 263, 268
gaseous composition of air, 263
headspace composition measurement, 288
properties, 265
transmission rate, measurement, 287
oxygen scavengers, 252–4
Ageless™ 253
beer, 252, 254
food applications, 252–4
iron based scavengers, 252
market, 252
non-metallic scavengers, 253
ZrO₂™, 254
plastic packaging, 157–212, 295–319
packaging papers and paperboards
bag papers, 221
folding boxboard (FBB), 222
glassine, 220
greaseproof, 220
impregnated papers, 221
microcreping, 220
paper labels, 221
sack kraft, 221
solid bleached board (SBB), 221
solid unbleached board (SUB), 222
tissues, 220
vegetable parchment, 220
wet strength paper, 220
white lined chipboard (WLC), 228
packaging specifications and standards, 26, 27
packaging
definition, 9, 11
design and development, 1–3, 11, 13–27
functions of, 9, 10
historical perspective, 3–5
machinery & production processes, 16–18
material properties, 16–18
optimisation, 11, 12
product quality and shelf life, 59–84
recovery, 154, 206–8, 215, 216, 245, 246
recycling, 95, 96, 154, 206–8, 214–6, 237, 245–7
reduction, 95, 96, 154, 155, 205, 206
reuse, 95, 96, 154, 206, 207
strategy, 10
supplier selection, 26
total quality management (TQM), 26, 27
pallet, 102–4
construction, 103
plastic, 102
wood, 102
paper and paperboard-based systems, 243
paper and paperboard environmental profile, 243
paper and board types of packaging, 242, 243
cap liners and diaphragms, 242, 243
composite containers, 236
corrugated fibreboard packaging, 237–9
fibre drums, 236
folding cartons, 231–3
induction sealed disc, 242, 243
interlocking dividers, 242
labels, 240, 241
liquid packaging cartons, 233–5
moulded pulp cushioning 242
moulded pulp containers, 239
multiwall sacks, 230
paper bags and wrapping paper, 228, 229
pulpboard disc, 242
rigid cartons or boxes, 235
sachets/pouches/overwraps, 229
sealing tapes, 241, 242
shredded paper, 242
tea and coffee bags, 228
tubes, 235
tubs, 235
paper and paperboard
acrylic dispersion coating, 225
added processes, 225–8
fluorocarbon dispersion coating, 225
hard sizing, 225
lamination, 225, 226
plastic extrusion/laminating, 226
printing and varnishing, 227
vanning/ coating/laminating, 227, 228
wax sizing, 225
paper and paperboard, fibre sources and pulping, 215, 216
paper and paperboard manufacture
coating, 219
drying, 218
finishing, 219
pressing, 218
reel-up, 219
sheet forming, 217
stock preparation, 217
paper and paperboard packaging, 213–50
design 228
paper and paperboard properties, 223–5
pasteurisation, see thermal processing
pathogens, 31, 35, 36, 60, 61, 68
permeability coefficient, 274, 275
permeability issues for plastics, 190, 191
permeation, see gas permeation
pest control, 93
plastic packaging manufacture, 161
packs based on plastic films laminates, 165–7
plastic film and sheet for packaging, 161–5
rigid plastic packaging, 167–70
plastics environmental issues, 205
plastics in food packaging
acrylonitrile butadiene styrene (ABS), 179
cellulose based materials, 181
ethylene vinyl acetate (EVA), 176
ethylene vinyl alcohol (EVOH), 179, 271
fluoropolymers, 180, 181
gas and water vapour barrier properties, 15
high nitrile polymers (HN), 180
ionomers, 175, 176, 271
polyamide (PA), 176, 177, 271
polycarbonate (PC), 175
polyethylene (PE), 101, 170, 171, 271
polyethylene naphthalene dicarboxylate (PEN), 174, 175
polyethylene terephthalate (PET or PETE), 173, 174, 272
polymethylpentene (TPX), 180
polypropylene (PP), 171–3, 272
polystyrene (PS), 178, 179, 272
polyvinyl acetate (PVA), 182
plastics in food packaging (Cont.)
polyvinyl chloride (PVC), 177, 272
polyvinylidene chloride (PVdC), 178, 272
styrene butadiene (SB), 179
plastics waste management, 206–8
plastics, sealing and closing, 192–5
plastic packaging, 157–212, 295–310
pork, modified atmosphere packaging of, 264, 288
poultry, modified atmosphere packaging of, 264, 288, 289
press and blow, glass container manufacture, 142
printing of plastic films
digital, 188
flexographic, 188
gravure, 187, 188
printing of rigid plastic containers
dry offset printing, 189
heat transfer printing, 189
product packaging needs, 13, 14
properties of paper and board, 223–5
appearance, 224
performance, 224, 225
protection, reference logistics, 86, 87
Pseudomonas, 266, 288, 290, 293
psychrotrophic, 33
radio frequency identification (RFID), 89, 94
recovered (secondary) cellulose fibre, 215, 216
retail distribution centre (RDC), 85, 93, 94
retail market needs, 21
retail logistics, 23, 24
retort pouch, 198–205
reusable totes, 101, 102
Salmonella, 36, 49, 56, 266, 292
self-cooling cans, 259, 260
self-heating cans, 259, 260
shelf life, 20, 59, 59–84, 204, 205, 263, 264
factors affecting, 62, 63
shock testing, 97, 98
shrink bundles, 101
shrink sleeving (labels), 149, 159
shrink wrapping, 101, 104, 159, 166, 177
silicon oxide (SiOx) coating, 273
silk screen printing, 189
slip sheet (logistics), 103, 104
Staphylococcus, 35, 266
stock keeping units (SKU), 88, 94
stretch blow moulding, plastics, 168
stretch wrapping, 104, 177
sustainable packaging, 7
sustainable sourcing of packaging materials, 7, 25
tea packaging innovation, 10–12
temperature controlled packaging, 259, 260
thermal lamination, plastics, 186
thermal processing, 39–47
aseptic, 44–6, 169, 180, 234
canned foods, 40–43, 125, 126
glass packed foods, 148, 149
pasteurisation, 46, 47
total packaging system cost, 12
total product concept, 11, 13
total product cost, 7
total systems approach to packaging optimisation, 13
thermoduric, 33
thermofoming, 166, 169, 277–9
thermophilic, 33
transit issues, 90–93
see also distribution performance tests
transit testing, 90, 97–9
transmission rate, definition, 274, 275
see also CO₂, O₂ and water vapour transport
air, 91, 92
rail, 91
road, 90–91
sea, 92
US Fibre Box Association, 100
US Occupational Safety and Health Administration (OSHA), 88
vacuum packaging, 290
value of packaging to society, 7, 8
vegetables
modified atmosphere packaging of, 264, 291–3
respiration, 291, 292
vibration testing, 97, 98
Vibrio parahaemolyticus, 266
virgin (primary) cellulose fibre, 215, 216
warehouse issues, 93, 94
waste management issues, 6–8, 95, 96, 153, 154, 205–9, 245, 246, 299, 310, 311
waste treatments, biological, 311–6
water activity (aw), 35
water management, 6–8
water vapour transmission rate (WVTR)
definition, 274, 275
effect of relative humidity (RH), 274, 275
measurement of, 286, 287
test standard ASTM E96, 286
test standard ASTM F 1249, 286
zenon, 265