Contents

List of Figures xiii
List of Tables xxv
About the Editors xxvii
Preface xxix

PART I INTRODUCTION

1 Introduction to Cognitive Communications 3
 David Grace
 1.1 Introduction 3
 1.2 A New Way of Thinking 4
 1.3 History of Cognitive Communications 6
 1.4 Key Components of Cognitive Communications 8
 1.5 Overview of the Rest of the Book 10
 1.5.1 Part 2: Wireless Communications 10
 1.5.2 Part 3: Application of Distributed Artificial Intelligence 11
 1.5.3 Part 4: Regulatory Policy and Economics 12
 1.5.4 Part 5: Implementation 13
 1.6 Summary and Conclusion 14
 References 14

PART II WIRELESS COMMUNICATIONS

2 Cognitive Radio and Networks for Heterogeneous Networking 19
 Haesik Kim and Aarne Mämmelä
 2.1 Introduction 19
 2.1.1 Historical Sketch 19
 2.1.2 Cognitive Radio and Networks 21
 2.1.3 Heterogeneous Networks 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Cognitive Radio for Heterogeneous Networks</td>
<td>26</td>
</tr>
<tr>
<td>2.2.1 Channel Sensing and Network Sensing</td>
<td>26</td>
</tr>
<tr>
<td>2.2.2 Interference Mitigation</td>
<td>27</td>
</tr>
<tr>
<td>2.2.3 Power Control</td>
<td>31</td>
</tr>
<tr>
<td>2.3 Applying Cognitive Networks to Heterogeneous Networks</td>
<td>37</td>
</tr>
<tr>
<td>2.3.1 Network Policy for Coexistence of Different Networks</td>
<td>37</td>
</tr>
<tr>
<td>2.3.2 Cooperation Mechanisms</td>
<td>39</td>
</tr>
<tr>
<td>2.3.3 Network Resource Allocation</td>
<td>41</td>
</tr>
<tr>
<td>2.3.4 Self-Organization Mechanisms</td>
<td>44</td>
</tr>
<tr>
<td>2.3.5 Handover Mechanisms</td>
<td>45</td>
</tr>
<tr>
<td>2.4 Performance Evaluation</td>
<td>47</td>
</tr>
<tr>
<td>2.5 Conclusion</td>
<td>50</td>
</tr>
<tr>
<td>References</td>
<td>50</td>
</tr>
</tbody>
</table>

3 Channel Assignment and Power Allocation Algorithms in Multi-Carrier-Based Cognitive Radio Environments 53

Mushbah Shaat and Faouzi Bader

3.1 Introduction 53

3.2 The Orthogonal Frequency-Division Multiplexing (OFDM) Transmission Scheme 54

3.2.1 Why OFDM is Appropriate for CR 55

3.3 Resource Management in Non-Cognitive OFDM Environments 56

3.3.1 Single User OFDM Systems 56

3.3.2 Multiple User OFDM Systems (OFDMA) 57

3.3.3 Resource Allocation Algorithms in Non-Cognitive OFDM Systems 58

3.4 Resource Management in OFDM-Based Cognitive Radio Systems 58

3.4.1 Algorithms Dealing with In-Band Interference 59

3.4.2 Algorithms Dealing with Mutual Interference 60

3.4.3 System Model 61

3.4.4 Problem Formulation 63

3.4.5 Resource Management in Downlink OFDM-Based CR Systems 64

3.4.6 Resource Management in Uplink OFDM-Based CR Systems 76

3.5 Conclusions 88

References 89

4 Filter Bank Techniques for Multi-Carrier Cognitive Radio Systems 93

Yun Cui, Zhifeng Zhao, Rongpeng Li, Guangchao Zhang and Honggang Zhang

4.1 Introduction 93

4.2 Basic Features of Filter Banks-Based Multi-Carrier Techniques 94

4.2.1 Introduction to the Filter Bank System 95

4.2.2 The Polyphase Structure of Filter Banks 96

4.2.3 Basic Structure of Filter Banks-Based Multi-Carrier Systems 97
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Adaptive Threshold Enhanced Filter Bank for Spectrum Detection in IEEE 802.22</td>
<td>98</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Multi-Stage Analysis Filter Banks for Spectrum Detection</td>
<td>99</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Complexity and Detection Precision Analysis</td>
<td>101</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Spectrum Detection in IEEE 802.22</td>
<td>103</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Power Estimation with Adaptive Threshold</td>
<td>106</td>
</tr>
<tr>
<td>4.4</td>
<td>Transform Decomposition for Spectrum Interleaving in Multi-Carrier Cognitive Radio Systems</td>
<td>108</td>
</tr>
<tr>
<td>4.4.1</td>
<td>FFT Pruning in Cognitive Radio Systems</td>
<td>108</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Transform Decomposition for General DFT</td>
<td>110</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Improved Transform Decomposition Method for DFT with Sparse Input Points</td>
<td>111</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Numerical Results and Computational Complexity Analysis</td>
<td>114</td>
</tr>
<tr>
<td>4.5</td>
<td>Remaining Problems in Filter Banks-Based Multi-Carrier Systems</td>
<td>115</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary and Conclusion</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>117</td>
</tr>
</tbody>
</table>

5 Distributed Clustering of Cognitive Radio Networks: A Message-Passing Approach | 119

Kareem E. Baddour, Oktay Ureten and Tricia J. Willink

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>119</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Inter-Node Collaboration in Decentralized Cognitive Networks</td>
<td>119</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Scalability Issues and Overhead Costs</td>
<td>120</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Self-Organization Based on Distributed Clustering</td>
<td>120</td>
</tr>
<tr>
<td>5.2</td>
<td>Clustering Techniques for Cognitive Radio Networks</td>
<td>122</td>
</tr>
<tr>
<td>5.3</td>
<td>A Message-Passing Clustering Approach Based on Affinity Propagation</td>
<td>124</td>
</tr>
<tr>
<td>5.4</td>
<td>Case Studies</td>
<td>126</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Clustering Based on Local Spectrum Availability</td>
<td>127</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Sensor Selection for Cooperative Spectrum Sensing</td>
<td>132</td>
</tr>
<tr>
<td>5.5</td>
<td>Implementation Challenges</td>
<td>138</td>
</tr>
<tr>
<td>5.6</td>
<td>Conclusions</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>140</td>
</tr>
</tbody>
</table>

PART III APPLICATION OF DISTRIBUTED ARTIFICIAL INTELLIGENCE

6 Machine Learning Applied to Cognitive Communications | 145

Aimilia Bantouna, Kostas Tsagkaris, Vera Stavroulaki, Panagiotis Demestichas and Giorgos Poulis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>145</td>
</tr>
<tr>
<td>6.2</td>
<td>State of the Art</td>
<td>146</td>
</tr>
</tbody>
</table>
6.3 Learning Techniques

6.3.1 Bayesian Statistics

6.3.2 Supervised Neural Networks (NNs)

6.3.3 Self-Organizing Maps (SOMs): An Unsupervised Neural Network

6.3.4 Reinforcement Learning

6.4 Advantages and Disadvantages of Applying Machine Learning to Cognitive Radio Networks

6.5 Conclusions

Acknowledgement

References

7 Reinforcement Learning for Distributed Power Control and Channel Access in Cognitive Wireless Mesh Networks

Xianfu Chen, Zhifeng Zhao and Honggang Zhang

7.1 Introduction

7.2 Applying Reinforcement Learning to Distributed Power Control and Channel Access

7.2.1 Conjecture-Based Multi-Agent Q-Learning for Distributed Power Control in CogMesh

7.2.2 Learning with Dynamic Conjectures for Opportunistic Spectrum Access in CogMesh

7.3 Future Challenges

7.4 Conclusions

References

8 Reinforcement Learning-Based Cognitive Radio for Open Spectrum Access

Tao Jiang and David Grace

8.1 Open Spectrum Access

8.2 Reinforcement Learning-Based Spectrum Sharing in Open Spectrum Bands

8.2.1 Learning Model

8.2.2 Basic Algorithms

8.2.3 Performance

8.3 Exploration Control and Efficient Exploration for Reinforcement Learning-Based Cognitive Radio

8.3.1 Exploration Control Techniques for Cognitive Radios

8.3.2 Efficient Exploration Techniques and Learning Efficiency for Cognitive Radios

8.4 Conclusion

References
9 Learning Techniques for Context Diagnosis and Prediction in Cognitive Communications 231
Aimilia Bantouna, Kostas Tsagkaris, Vera Stavroulaki, Giorgos Poulis and Panagiotis Demestichas

9.1 Introduction 231
9.2 Prediction 232
9.2.1 Building Knowledge: Learning Network Capabilities and User Preferences/Behaviours 232
9.2.2 Application to Context Diagnosis and Prediction: The Case of Congestion 248
9.3 Future Problems 253
9.4 Conclusions 254
References 255

10 Social Behaviour in Cognitive Radio 257
Husheng Li

10.1 Introduction 257
10.2 Social Behaviour in Cognitive Radio 258
10.2.1 Cooperation Formation 258
10.2.2 Channel Recommendations 261
10.3 Social Network Analysis 267
10.3.1 Model of Recommendation Mechanism 267
10.3.2 Interacting Particles 268
10.3.3 Epidemic Propagation 273
10.4 Conclusions 281
References 281

PART IV REGULATORY POLICY AND ECONOMICS

Maziar Nekovee and Peter Anker

11.1 Introduction 285
11.2 Spectrum Regulations: Why and How? 286
11.3 Overview of Regulatory Bodies and Their Inter-Relation 287
11.3.1 ITU 287
11.3.2 CEPT/ECC 288
11.3.3 European Union 289
11.3.4 ETSI 290
11.3.5 National Spectrum Management Authority 291
13 Cognitive Femtocell Networks 359
Faisal Tariq and Laurence S. Dooley

13.1 Introduction 359
13.2 Femtocell Network Architecture 361
 13.2.1 Underlay and Overlay Architectures for Femtocell Networks 362
 13.2.2 Home Femtocell and Enterprise Femtocell 366
 13.2.3 Access Mechanism: Closed, Open and Hybrid Access 369
 13.2.4 Possible Operating Spectrum 371
13.3 Interference Management Strategies 372
 13.3.1 Cross-Tier Interference Management 373
 13.3.2 Intra-Tier Interference Management 376
13.4 Self Organized Femtocell Networks (SOFN) 381
 13.4.1 Self-Configuration 383
 13.4.2 Self-Optimization 383
 13.4.3 Self-Healing and Self-Protection 388
13.5 Future Research Directions 388
 13.5.1 Green Femtocell Networks 388
 13.5.2 Communication Hub for Smart Homes 389
 13.5.3 MIMO-Based Interference Alignment for Femtocell Networks 389
 13.5.4 Enhanced FFR 390
 13.5.5 CoMP-Based Femtocell Network 391
 13.5.6 Holistic Approach to SOFN 391
13.6 Conclusion 391
References 391

14 Cognitive Acoustics: A Way to Extend the Lifetime of Underwater Acoustic Sensor Networks 395
Lu Jin, Defeng (David) Huang, Lin Zou and Angela Ying Jun Zhang

14.1 The Concept of Cognitive Acoustics 395
14.2 Underwater Acoustic Communication Channel 397
 14.2.1 Propagation Delay 397
 14.2.2 Severe Attenuation 397
 14.2.3 Ambient Noise 398
14.3 Some Distinct Features of Cognitive Acoustics 401
 14.3.1 Purposes of Deployment 401
 14.3.2 Grey Space 402
 14.3.3 Cost of Field Measurement and System Deployment 402
14.4 Fundamentals of Reinforcement Learning 402
 14.4.1 Markov Decision Process 402
 14.4.2 Reinforcement Learning 403
 14.4.3 Q-Learning 403
14.5 An Application Scenario: Underwater Acoustic Sensor Networks 404
14.5.1 System Description
14.5.2 State Space, Action Set and Transition Probabilities
14.5.3 Reward Function
14.5.4 Routing Protocol Discussion
14.6 Numerical Results
14.7 Conclusion
Acknowledgements References

15 CMOS RF Transceiver Considerations for DSA
Mark S. Oude Alink, Eric A.M. Klumperink, André B.J. Kokkeler, Gerard J.M. Smit and Bram Nauta
15.1 Introduction
15.1.1 Terminology
15.1.2 Transceivers for DSA: More than an ADC and DAC
15.1.3 Flexible Software-Defined Transceiver
15.1.4 Why CMOS Transceivers?
15.2 DSA Transceiver Requirements
15.3 Mathematical Abstraction
15.4 Filters
15.4.1 Integrated Filters
15.4.2 External Filters
15.5 Receiver Considerations and Implementation
15.5.1 Sub-Sampling Receiver
15.5.2 Heterodyne Receivers
15.5.3 Direct-Conversion Receivers
15.6 Cognitive Radio Receivers
15.6.1 Wideband RF-Section
15.6.2 No External RF-Filterbank
15.6.3 Wideband Frequency Generation
15.7 Transmitter Considerations and Implementation
15.8 Cognitive Radio Transmitters
15.8.1 Improving Transmitter Linearity
15.8.2 Reducing Harmonic Components
15.8.3 The Polyphase Multipath Technique
15.9 Spectrum Sensing
15.9.1 Analogue Windowing
15.9.2 Channelized Receiver
15.9.3 Crosscorrelation Spectrum Sensing
15.9.4 Improved Image and Harmonic Rejection Using Crosscorrelation
15.10 Summary and Conclusions
References

Index