INDEX

A
Absolute risk, 2–3
Actual default estimates, risk-neutral
default estimates (contrast), 169–170
Alpha, 104
Anchoring, 243–244
Annualization, 46–47
Artzner, Philippe, 73
Autoregressive conditional
heteroskedasticity (ARCH) model, 37
Availability bias, 242–243
Averages, 16–21

B
Backtesting, 65–68, 79
Bayesian analysis, 205–229
Bayesian networks, 222–223, 224–227
Bayesians, frequentists (contrast), 213–214
Bayes, Thomas, 207
Bayes theorem, 208–213
Behavioral economics, risk
(relationship), 231
Bernoulli, Daniel/Nicolas, 109
Beta distribution, 221f, 222
Beta, regression analysis 97
Biases
and heuristics, 241–245
Bid-ask spread, 189, 197–198
Bid-offer spread, 189
Binomial distribution, 65, 68, 180, 216,
221
Black Monday, 11–12, 18, 110
Bonds
covenants, 184–185
default, 170, 180
default probability, sample problem,
181–182
expected value, determination (sample
problem), 23–24
five-year corporate bond default rate,
173t
Monte Carlo simulation, 182–183
plain-vanilla bonds, 168
portfolio, sample problem, 19
pricing, 167–168
ratings, 172t
value, 168, 170–171
zero-coupon bonds, 169
Bootstrapping, 60

C
Cash-flow uses, 190
Cash flow value at risk (CF VaR), 191
Causal reasoning, 223
CDF. See Cumulative distribution function
Central moments, 62
Cholesky decomposition, 113–116
 sample problem, 116
Clayton copulas, 253
Clearinghouse 186
Coefficient of determination, 103
Coherent risk measures, 73–78
Coin flip, expected value, 25
Cokurtosis, 119–123
Concordance, 142
Conditional probability,
 78, 205–207
Conditional risk, 2–3
Conditional VaR (cVaR), 78
Confidence interval, construction, 81
Confidence level, 65
Conjugate distributions, 222
Continuous distributions, 125–126,
 218–222
 sample problem, 126, 219–220,
 221–222
Continuous joint distribution, 124
Continuous random variables,
 19–20
 median, 20
 mode, 20
Contour graph, usage, 127
Copulas, 132–146, 253–255
 Clayton copulas, 133f, 253
data sets, comparison, 141t
 defining, 132–137
density function, 136
Farlie-Gumbel-Morgenstern (FGM)
copula, 140, 253
Frank’s copula, 134, 138f, 254
 graphing, 137–139
Gumbel copula, 133–134, 254
 independent copula, 150, 255, 278
Joe copula, 255
 parameterization, 140–146
 sample problems, 134–136
Cornish-Fisher VaR, 61–64, 81
 sample problem, 63–64
Corporate bond default rate,
 173t. 173f
Correlation, 91, 92–92, 112, 119,
 128–130
 matrices, Bayesian networks (contrast),
 224–227
 sample problem, 93
Coskewness, 119–123
Counterparty credit risk, 7
Counterparty risk, 7
Country risk, 151
Covariance, 91–92
 calculation, 92, 115
 defining, 91, 112
 matrices, 113, 226f
Crash of 1929, 11
Credit risk, 7–8, 167–188
Cross-central moments, 119
Cumulative distribution function (CDF),
 82, 86, 125, 131, 136–138
 marginal CDF, calculation, 139
Cumulative distributions, 134

D
Data-generation process, constancy, 87
Decay factor, 29–36
Default
 Merton model, 177f
 modeling, 183
 n defaults, probability, 179–182
 ratings approach, 171–174
 recovery, relationship, 168–169
Default probability
 application, 174–175
 calculation, sample problem, 178
 determination, 171–179
 quantitative approach, 175–179
 sample problem, 181–182
Default risk, 7, 169–171
Delta, 63
Delta-gamma approximation, accuracy, 64
Delta-normal approach. See Delta-normal VaR
Delta-normal VaR, 55–58, 112–113
 sample problem, 56
Density function, 129
 calculation, 136–137
De Ratiociniis in Ludo Aleae (Huygens), 10, 22
Diagnostic reasoning, 223
Discordance, 141
Discount rate, 168
Discrete distributions, 123–125
Discrete random variables, 18–19
Distance-to-default model, 175–177
Distributions
 beta distribution, 221f
 continuous distributions, 125–126, 218–222
 cumulative distributions, 134
 discrete distributions, 123–125
 extreme value theory distributions, 83t, 85f
 Fréchet distribution, 83
 generalized Pareto distribution, 83t
 joint standard normal distribution, 129f, 130
 marginal distributions, 129–132
 multivariate distributions, 123–132
 posterior distributions, 220f
 prior distributions, 220f
 univariate distributions, 133–134
 Weibull distribution, 84
Disturbance terms, 37–38
Diversification, 96, 151, 158–161, 169–170
diworsification, contrast, 159f
 index, 161
 score, 160–161
Diworsification, 159–160
Dollar standard deviation, 44–46
 sample problem, 45–46

E
Economic agents, utility maximizers, 231
Elasticity, equation, 198
Endogenous liquidity models, 198–200
Endowment effect, 244
Enterprise risk, 8–9
Enterprise value, 177–178
Equities
 index, expected return, 29
 market risk, 151
Equity premium puzzle, 237–238
ESS. See Explained sum of squares
Evidence, term (usage), 213
EVT. See Extreme value theory
Exceedances, 66–67
Excess kurtosis, 43
Exogenous liquidity models, 197–198
Expectations, 21–26
 operator, usage, 23–24
Expected shortfall, 73, 78–81
 example, 80f
 sample problem, 79
Expected value, sample problem, 25–26
Explained sum of squares (ESS), 103
calculation, 108–109
Exponentially weighted moving average
(EWMA), 31–32
characterization, half-life (usage), 33
rectangular window, contrast, 32f, 33f
weights, example, 32t
Exposure-adjusted Black-Scholes-Merton
Greeks, 62
Extreme values, distributions, 82f
Extreme value theory (EVT), 73, 81–88,
164
distributions, 82, 83t, 85f
results, interpretation, 86
sample problem, 85–86
Extrinsic risk, 3–4

G
Generalized autoregressive conditional
heteroskedasticity (GARCH),
36–38, 123
model, 43–44, 100
Generalized Pareto distribution, 83t
Global Association of Risk Professionals
(GARP), founding, 13
Goodwill, 175–176
Great Depression, 11
Great Recession, 11
Gumbel copula, 84f, 133–134, 254

H
Half-life, usage, 33
Hedged portfolio, variance, 95
Hedge ratio, 95
Hedging, 93–96, 169–170
Heuristic biases, 241–245
Higher-order cross moments, 119, 123
Historical simulation, 81
Historical VaR, 56–58
Huygens, Christiaan, 10
Hybrid VaR, 58–59

I
Idiosyncratic risk, 98, 105
Incremental VaR (iVaR), 155–158
Independence, testing, 131
Independent and identically distributed
(i.i.d.) random variables, 47, 95,
147–148
Independent copula, 150, 255, 278
Infinite series, weight, 34
Interest-rate risk, 151
Intrinsic risk, 3–4
Isolines/isoquants, 128
Index

J
- Joe copula, 255
- Joint cumulative distribution, 125
 - function, 132
- Joint distribution, shape, 164
- Joint probabilities, 124
 - matrix, 125
- Joint probability density function (joint PDF), 275f
 - defining, 126
 - sample problem, 131–132
- Joint standard normal distribution
 - negative correlation, combination, 130f
 - positive correlation, combination, 129f
- Joint uniform probability density function (joint uniform PDF), 127f

K
- Kendall’s tau, 141
 - calculation, 142–143
 - sample problem, 145–146
- KMV, history, 179
- Kurtosis, 41–43
 - excess kurtosis, 43

L
- Likelihood. See Maximum likelihood estimation
- Likelihood, Bayesian, 213, 215
- Linear regression analysis. See Regression analysis
- Liquidity
 - cost models, 196–200
 - demand, 190–191
- endogenous liquidity models, 198–200
- exogenous liquidity models, 197–198
- internal demand, 190
- measures, 192–196
- schedule, 196
- sources, modeling difficulty, 191–192
- supply, 191–192
- Liquidity-adjusted value at risk (LVaR), 196, 197
- Liquidity at risk (LaR), 196
- Liquidity risk. See liquidity.
- London Interbank Offered Rate (LIBOR), 110, 168
- Long-Term Capital Management (LTCM), 12
- Loss aversion, 234–235, 235f
- Loss given default (LGD), 169, 171
- Low-probability events, perception, 238–239
- LVaR. See Liquidity-adjusted value at risk

M
- Marginal CDF, calculation, 139
- Marginal distributions, 129–132
- Marginal PDF, calculation, 131
- Marginal utility, 233
- Marked to model assets, 6
- Market portfolio theory (MPT), 15
- Market risk, 6–7, 15–150, 196
 - correlation, 91, 119
 - expected shortfall, 73
 - extreme value theory, 73
 - portfolios, 91
 - risk attribution, 151
 - standard deviation, 15
 - stress testing, 73
 - value at risk, 51
Markowitz, Harry, 11, 15
Maxima, and extreme value theory, 87
Maximum likelihood estimation (MLE),
83, 140, 247–251
Mean
calculation, 17
estimation, refinement, 34
estimator, 35
Median, calculation, 17
Meriwether, John, 12
Merton distance to default model.
See Distance to default model
Merton, Robert, 12, 175, 177, 184
Mode, 17, 20
Modern Portfolio Theory (MPT), 11
Moments, 38
Momentum, 151
Monotonicity, 73–75
sample problem, 74–75
Monte Carlo simulation, 59–61, 78,
113–116, 182–183
creation, 113–114
power, 609
reduction, 61
sample problem, 116
Moody’s (rating agency), 172
Motorola, Six Sigma usage, 5
Multicollinearity, 106–108
Multi-period returns, generation, 60
Multivariate distributions, 123–132
Multivariate linear regression, 106–110
evaluation, 108–110
parameters, estimation, 108
Multivariate regression, 106
analysis, usage, 154
Multivariate regressors, 97
Municipal bonds, 167

N
Negative correlation, joint standard normal
distribution (combination), 130f
Negative skewness, 39f
Networks. See Bayesian networks
Non-parametric distribution, 197
Non-stationary variables, 46
Nontrivial covariances, calculation, 113
Nontrivial cross moments, 123t
Normal variables, uniform variables
transformation (correlation), 184f
NORM.S.DIST function, usage, 138

O
OLS. See Ordinary least squares
One-year ratings transition matrix, 174t
Operational risk, 8
Optimal hedging, example, 101
Optimal liquidation, 200–202, 201f
Options
Black-Scholes-Merton option pricing
formula, usage, 177
exposure-adjusted Black-Scholes-Merton
Greeks, 62
option-implied standard deviation,
quoting, 47
Ordinary least squares (OLS), 98–102
assumptions, 106–108, 112
Osband, Kent, 159
Outlier, inclusion, 30f, 31f

P
Parametric distribution, 87, 197
 Parsimony, 109
Partial supply and demand curves, 199f
Peaks-over-threshold (POT) approach,
81, 85
Pearson’s correlation, 142
Plateauing, EWMA (usage), 33–34
Population
data, 16–18
standard deviation, 43
Portfolios, 91
credit risk, 179–184
diversification, 78, 160
factor exposures, addition, 153t
hedged portfolio, variance, 95
managers, performance, 242
risk, coskewness/cokurtosis (impact), 133
total VaR, 156
variance/hedging, 93–96
VaR measurement, sample
problem, 155
volatility, reduction, 96
Positive homogeneity, 73, 75–76
Posterior distributions, 218, 219, 220f
Posterior probabilities, 216
POT. See Peaks-over-threshold
Prior distributions, 220f
Probability density function (PDF), 19–20, 21f, 181, 248
binomial probability density function, 182f
bivariate standard normal PDF, 127f, 128f, 133f, 138f
Frank’s joint standard uniform PDF, 135f
Fréchet probability density functions (Fréchet PDFs), 83f
Gumbel probability density functions, 84f
joint uniform probability density function, 127f
marginal PDF, calculation, 131
sample problem, 20–21, 53–54
triangular PDF, 53f, 80f
Weibull probability density functions (Weibull PDFs), 84f
R
RAND function, 183
Rating agencies, 171–172
Ratings approach, 171–174
Recovery, default, 168–169
Rectangular weights, EWMA (contrast), 32f
Rectangular window, EWMA (contrast), 33f
Regression analysis, 96–110
Relative risk, 2–3
Relative utility, 239–241
Representativeness, 241–242
Residual sum of squares (RSS), 102, 108–109
RiskMetrics, 12–13
R-squared, 103, 105–106, 109
RSS. See Residual sum of squares
S
Sample data, 16–18
Sampling, with replacement, 60
Scholes, Myron, 12
Securities and Exchange Commission (SEC), establishment, 11
Settlement risk, 8
Sharpe ratio, 162–163
Sharpe, William, 162
Skewness, 38–41
Sovereign bonds, default risk, 167
Spearman’s rho, 141, 146
Square-root rule, 94–95
Standard deviation, 4, 15–16, 26–28, 58
decay, impact, 29–36
dollar standard deviation, 44–46
Standard & Poor’s (rating agency), 172
Stationary variables, usage, 46
Stock-specific risk, 154
Stress testing, 73, 110–112
Student’s t-distribution, 83–84
Style risk, 151
Subadditive risk measures, 77
Subadditivity, 73, 77–78
sample problem, 77–78
Sum of squared residuals, 102

T
Theta, 55, 63
Total sum of squares (TSS), 103
calculation, 108–109
Transition matrices, 174–175
five-year ratings transition matrix, 175t
one-year ratings transition matrix, 174t
Translation invariance, 73, 76–77
Triangular PDF, 53f, 80f
TSS. See Total sum of squares
t-statistics, usage, 104–105
Twain, Mark, 111

U
Uniform variables, correlation, 184f
Univariate distributions, 133–134
Univariate linear regression, 96–106
parameters, estimation, 102–103
regression, evaluation, 103–106
Utility functions, 231–235, 232f
loss aversion, 234–235
sample problem, 233–234
Utility under uncertainty, 236–241
sample problem, 236–237

V
Value at risk (VaR), 51, 80f
95% historical VaR, example, 57t
95% hybrid VaR, example, 59t
95% VaR, example, 52f
backtesting, 87
calculation, 74
conditional VaR (cVaR), 78
Cornish-Fisher VaR, 61–64
defining, 51–54
delta-normal VaR, 55–56
estimation, 113
exceedance, probability, 68
historical VaR, 56–58
hybrid VaR, 58–59
incremental VaR, 155–158
measurement, sample problem, 155
models, 67, 68
Variables
continuous random variables, 19–20
discrete random variables, 18–19
distributions, 34–35
joint distribution, 225
linear combination, 108
product, expected value, 25
Variance
calculation/equation, 28
long-run variance, 37
standard deviation, relationship, 26–28
standard estimator, 35
Vitruvius, 1
Index

Volatility (vol), 15–16, 44
 low level, 61
 reduction, 96
Volume-weighted average price (VWAP), 200

W
 Weibull distribution, 84
 Weibull probability density functions (Weibull PDFs), 84f

Y
 Yield, 170–171

Z
 Zero-coupon bonds, 169, 171

Weighted less squares (WLS) regression, 112
Window length, 31