Contents

Preface xvii
Acknowledgments xix
List of Abbreviations xxi
About the Companion Website xxvii

Part I INTRODUCTION

1 Introduction 3
1.1 Industrial Power Electronics 3
 1.1.1 Medium-Voltage, Variable-Speed Drives 3
 1.1.2 Market Trends 5
 1.1.3 Technology Trends 6
1.2 Control and Modulation Schemes 7
 1.2.1 Requirements 7
 1.2.2 State-of-the-Art Schemes 8
 1.2.3 Challenges 9
1.3 Model Predictive Control 11
 1.3.1 Control Problem 11
 1.3.2 Control Principle 12
 1.3.3 Advantages and Challenges 16
1.4 Research Vision and Motivation 19
1.5 Main Results 19
1.6 Summary of this Book 21
1.7 Prerequisites 25
References 26

2 Industrial Power Electronics 29
2.1 Preliminaries 29
 2.1.1 Three-Phase Systems 29
 2.1.2 Per Unit System 31
2.1.3 Stationary Reference Frame
2.1.4 Rotating Reference Frame
2.1.5 Space Vectors

2.2 Induction Machines
2.2.1 Machine Model in Space Vector Notation
2.2.2 Machine Model in Matrix Notation
2.2.3 Machine Model in the Per Unit System
2.2.4 Machine Model in State-Space Representation
2.2.5 Harmonic Model of the Machine

2.3 Power Semiconductor Devices
2.3.1 Integrated-Gate-Commutated Thyristors
2.3.2 Power Diodes

2.4 Multilevel Voltage Source Inverters
2.4.1 NPC Inverter
2.4.2 Five-Level ANPC Inverter

2.5 Case Studies
2.5.1 NPC Inverter Drive System
2.5.2 NPC Inverter Drive System with Snubber Restrictions
2.5.3 Five-Level ANPC Inverter Drive System
2.5.4 Grid-Connected NPC Converter System

3 Classic Control and Modulation Schemes
3.1 Requirements of Control and Modulation Schemes
3.1.1 Requirements Relating to the Electrical Machine
3.1.2 Requirements Relating to the Grid
3.1.3 Requirements Relating to the Converter
3.1.4 Summary

3.2 Structure of Control and Modulation Schemes

3.3 Carrier-Based Pulse Width Modulation
3.3.1 Single-Phase Carrier-Based Pulse Width Modulation
3.3.2 Three-Phase Carrier-Based Pulse Width Modulation
3.3.3 Summary and Properties

3.4 Optimized Pulse Patterns
3.4.1 Pulse Pattern and Harmonic Analysis
3.4.2 Optimization Problem for Three-Level Converters
3.4.3 Optimization Problem for Five-Level Converters
3.4.4 Summary and Properties

3.5 Performance Trade-Off for Pulse Width Modulation
3.5.1 Current TDD versus Switching Losses
3.5.2 Torque TDD versus Switching Losses

3.6 Control Schemes for Induction Machine Drives
3.6.1 Scalar Control
3.6.2 Field-Oriented Control
3.6.3 Direct Torque Control
6.B.3 Step 3: Output Reference Vector 250
References 251

Part III DIRECT MODEL PREDICTIVE CONTROL WITH BOUNDS

7 Model Predictive Direct Torque Control 255
7.1 Introduction 255
7.2 Preliminaries 257
 7.2.1 Case Study 257
 7.2.2 Control Problem 259
 7.2.3 Controller Model 259
 7.2.4 Switching Effort 262
7.3 Control Problem Formulation 263
 7.3.1 Naive Optimization Problem 263
 7.3.2 Constraints 264
 7.3.3 Cost Function 265
7.4 Model Predictive Direct Torque Control 266
 7.4.1 Definitions 267
 7.4.2 Simplified Optimization Problem 268
 7.4.3 Concept of the Switching Horizon 268
 7.4.4 Search Tree 274
 7.4.5 MPDTC Algorithm with Full Enumeration 275
7.5 Extension Methods 277
 7.5.1 Analysis of the State and Output Trajectories 278
 7.5.2 Linear Extrapolation 279
 7.5.3 Quadratic Extrapolation 280
 7.5.4 Quadratic Interpolation 282
7.6 Summary and Discussion 284
Appendix 7.A: Controller Model of the NPC Inverter Drive System 286
References 287

8 Performance Evaluation of Model Predictive Direct Torque Control 289
8.1 Performance Evaluation for the NPC Inverter Drive System 289
 8.1.1 Simulation Setup 290
 8.1.2 Steady-State Operation 290
 8.1.3 Operation during Transients 298
8.2 Performance Evaluation for the ANPC Inverter Drive System 300
 8.2.1 Controller Model 301
 8.2.2 Modified MPDTC Algorithm 303
 8.2.3 Simulation Setup 304
 8.2.4 Steady-State Operation 305
 8.2.5 Operation during Transients 312
8.3 Summary and Discussion 314
Appendix 8.A: Controller Model of the ANPC Inverter Drive System 315
References 316
9 Analysis and Feasibility of Model Predictive Direct Torque Control 318
 9.1 Target Set 319
 9.2 The State-Feedback Control Law 320
 9.2.1 Preliminaries 321
 9.2.2 Control Law for a Given Rotor Flux Vector 322
 9.2.3 Control Law along an Edge of the Target Set 331
 9.3 Analysis of the Deadlock Phenomena 331
 9.3.1 Root Cause Analysis of Deadlocks 332
 9.3.2 Location of Deadlocks 335
 9.4 Deadlock Resolution 337
 9.5 Deadlock Avoidance 340
 9.5.1 Deadlock Avoidance Strategies 340
 9.5.2 Performance Evaluation 343
 9.6 Summary and Discussion 347
 9.6.1 Derivation and Analysis of the State-Feedback Control Law 347
 9.6.2 Deadlock Analysis, Resolution, and Avoidance 347
 References 348

10 Computationally Efficient Model Predictive Direct Torque Control 350
 10.1 Preliminaries 351
 10.2 MPDTC with Branch-and-Bound 352
 10.2.1 Principle and Concept 352
 10.2.2 Properties of Branch-and-Bound 354
 10.2.3 Limiting the Maximum Number of Computations 356
 10.2.4 Computationally Efficient MPDTC Algorithm 357
 10.3 Performance Evaluation 359
 10.3.1 Case Study 359
 10.3.2 Performance Metrics during Steady-State Operation 359
 10.3.3 Computational Metrics during Steady-State Operation 363
 10.4 Summary and Discussion 367
 References 368

11 Derivatives of Model Predictive Direct Torque Control 369
 11.1 Model Predictive Direct Current Control 370
 11.1.1 Case Study 370
 11.1.2 Control Problem 372
 11.1.3 Formulation of the Stator Current Bounds 373
 11.1.4 Controller Model 376
 11.1.5 Control Problem Formulation 378
 11.1.6 MPDCC Algorithm 379
 11.1.7 Performance Evaluation 380
 11.1.8 Tuning 388
 11.2 Model Predictive Direct Power Control 389
 11.2.1 Case Study 391
 11.2.2 Control Problem 392
 11.2.3 Controller Model 393
Contents

11.2.4 Control Problem Formulation 394
11.2.5 Performance Evaluation 395

11.3 Summary and Discussion 401
11.3.1 Model Predictive Direct Current Control 401
11.3.2 Model Predictive Direct Power Control 403
11.3.3 Target Sets 403

Appendix 11.A: Controller Model used in MPDCC 405
Appendix 11.B: Real and Reactive Power 407
Appendix 11.C: Controller Model used in MPDPC 409

References 410

Part IV MODEL PREDICTIVE CONTROL BASED ON PULSE WIDTH MODULATION

12 Model Predictive Pulse Pattern Control 415

12.1 State-of-the-Art Control Methods 415

12.2 Optimized Pulse Patterns 416
12.2.1 Summary, Properties, and Computation 416
12.2.2 Relationship between Flux Magnitude and Modulation Index 418
12.2.3 Relationship between Time and Angle 419
12.2.4 Stator Flux Reference Trajectory 420
12.2.5 Look-Up Table 422

12.3 Stator Flux Control 422
12.3.1 Control Objectives 422
12.3.2 Control Principle 422
12.3.3 Control Problem 423
12.3.4 Control Approach 424

12.4 MP³C Algorithm 425
12.4.1 Observer 426
12.4.2 Speed Controller 428
12.4.3 Torque Controller 428
12.4.4 Flux Controller 428
12.4.5 Pulse Pattern Loader 429
12.4.6 Flux Reference 429
12.4.7 Pulse Pattern Controller 429

12.5 Computational Variants of MP³C 433
12.5.1 MP³C based on Quadratic Program 433
12.5.2 MP³C based on Deadbeat Control 437

12.6 Pulse Insertion 438
12.6.1 Definitions 439
12.6.2 Algorithm 439

Appendix 12.A: Quadratic Program 443
Appendix 12.B: Unconstrained Solution 444
Appendix 12.C: Transformations for Deadbeat MP³C 445

References 446
13 Performance Evaluation of Model Predictive Pulse Pattern Control

13.1 Performance Evaluation for the NPC Inverter Drive System

13.1.1 Simulation Setup

13.1.2 Steady-State Operation

13.1.3 Operation during Transients

13.2 Experimental Results for the ANPC Inverter Drive System

13.3 Summary and Discussion

13.3.1 Differences to the State of the Art

13.3.2 Discussion

References

14 Model Predictive Control of a Modular Multilevel Converter

14.1 Introduction

14.2 Preliminaries

14.2.1 Topology

14.2.2 Nonlinear Converter Model

14.3 Model Predictive Control

14.3.1 Control Problem

14.3.2 Controller Structure

14.3.3 Linearized Prediction Model

14.3.4 Cost Function

14.3.5 Hard and Soft Constraints

14.3.6 Optimization Problem

14.3.7 Multilevel Carrier-Based Pulse Width Modulation

14.3.8 Balancing Control

14.4 Performance Evaluation

14.4.1 System and Control Parameters

14.4.2 Steady-State Operation

14.4.3 Operation during Transients

14.5 Design Parameters

14.5.1 Open-Loop Prediction Errors

14.5.2 Closed-Loop Performance

14.6 Summary and Discussion

Appendix 14.B: Controller Model of the Converter System

References

Part V SUMMARY

15 Summary and Conclusion

15.1 Performance Comparison of Direct Model Predictive Control Schemes

15.1.1 Case Study