Index

Alfonsi scheme for variance, 161–165, 302–303
Alternating Direction Implicit (ADI) schemes, 251–255
American options, Heston model for, 169–208
Beliaeva-Nawalkha bivariate tree, 178–190
combining trinomial trees, 182
implementation in VBA, 182–190
trinomial tree for stock price, 180–181
trinomial tree for variance, 179–180
Chiarella and Ziogas American call pricing method, 200–207
American call price, 200–204
early exercise boundary approximation, 200
estimating early exercise boundary, 204–207
Chiarella and Ziogas American call pricing method, 200–207
American call price, 200–204
early exercise boundary approximation, 200
estimating early exercise boundary, 204–207
Christoffersen, Heston, and Jacobs (CHJ) loss function, 119
Contour variations and call price, 72–75
Craig-Sneyd scheme, 252
modified, 252–253
Crank-Nicolson scheme, 242
Damping factor
optimal, 51–52
and optimal value, bounds on, 50–51
Delta, 258–260
Density, effect of correlation on, 20
Derivation of Gatheral, 46
Differential Evolution (DE), 128–132
Dividend yield and put price, 8
Double Heston model, 287–308
American options in, 306–308
call price, 288–292
Greeks, 292–297
multidimensional Feynman-Kac theorem, 288
parameter estimation, 297–300
simulation in, 301–306
Alfonsi scheme for variance, 302–303
Euler scheme for variance, 301–302
quadratic-exponential scheme, 304–306
stock price, 301
Zhu scheme for transformed variance, 303–304
Douglas scheme, 252
Dupire local volatility, 29–34
Elices model, 219–223
implied volatility from, 224
Euler scheme, 146, 152, 301–302
European Greeks, analytic expressions for, 258–263
delta, gamma, rho, theta, and vega, 258–260
vanna, volga, and other Greeks, 260–263
European options, Heston model for, 1–12
Black-Scholes as a special case, 10–12
consolidating integrals, 9–10
dividend yield and put price, 8

319
European options, Heston model for (Continued)
Heston European call price, 2–8
model dynamics, 1–2
Explicit method, 174–178, 248–251
American Greeks using, 281–283
call price using, 251
Fast Fourier transform (FFT), 84, 106–108, 119
Greeks using, 276–279
Fat tails, xiii
Feynman-Kac theorem, multidimensional, 288
Finite differences, methods for, 235–236
Alternating Direction Implicit (ADI) schemes, 251–255
boundary conditions for PDE, 240–241
building grids, 236–238
explicit scheme, 248–251
finite difference approximation of derivatives, 239–240
PDE in terms of an operator, 236
weighted method, 241–248
Fourier transform, derivations using, 45–61. See also Fast Fourier transform (FFT);
Fractional fast Fourier transform (FRFT);
Numerical integration schemes
Attari representation, 47–49
Carr and Madan representation, 49–61
damping factor and optimal value, bounds on, 50–51
numerical implementation and illustration, 52–54
optimal damping factor, 51–52
OTM options, representation for, 57–58
OTM representation, generalization of, 59–61
puts, representation for, 54–57
derivation of Gatheral, 46
Fractional fast Fourier transform (FRFT), 108–113, 119
Greeks using, 276–279
Fundamental Theorem of Calculus, 83
Fundamental transform for pricing options, 63–61
Gauss-Laguerre integration, 6–7, 56, 75, 95, 217, 265, 274
Gaussian quadrature, 84, 90–98
for double integrals, 97–98
Gauss-Laguerre quadrature, 91–93, 201, 292
Gauss-Legendre quadrature, 93–95, 201, 203
Gauss-Lobatto quadrature, 96–97
Greeks, 257–286, 292–297
American
from Medvedev and Scaillet, 284–285
using the explicit method, 281–283
using simulation, 279–281
double Heston model, 292–297
European, analytic expressions for, 258–263
delta, gamma, rho, theta, and vega, 258–260
vanna, volga, and other Greeks, 260–263
finite differences for, 263–264
numerical implementation of, 264–267
under the Artari and Carr-Madan formulations, 267–273
under the Lewis formulations, 273–276
using the FFT and FFRT, 276–279
Heston integrand and maturity, 8
Heston model
for American options, 169–208
Beliaeva-Nawalkha bivariate tree, 178–190
Chiarella and Ziogas American call pricing method, 200–207
explicit method, 174–178
Least-Squares Monte Carlo (LSM) algorithm, 169–174
Medvedev-Scaillet expansion, 191–199
for European options, 1–12
Black-Scholes as a special case, 10–12
consolidating integrals, 9–10
dividend yield and put price, 8
Heston European call price, 2–8
model dynamics, 1–2
simulation in, 143–167
Alfonsi scheme for variance, 161–165
balanced, pathwise, and IJK schemes, 155–157
Euler scheme, 146, 152
general setup, 144–146
Implicit Milstein scheme, 149–152
Milstein scheme, 147–149
moment-matched discretization scheme, 165–167
quadratic-exponential (QE) discretization scheme, 157–161
transformed volatility scheme, 152–155
time-dependent, 209–233
Benhamou-Miri-Gobet model, 223–231
bivariate characteristic function, 210–211
Black-Scholes derivatives, 231–232
Elices model, 219–223
volatility of volatility series expansion, 75–80
Gamma, 258–260, 264, 268, 292
Gatheral, derivation of, 46
linking the bivariate CF and general Riccati equation, 212–214
Mikhailov and Nögel model, 214–219
Riccati equation, generalization of, 209–210
Heston parameters, effect of, 20–26
Black-Scholes prices, comparison with, 21–24
correlation and volatility of variance, effect of, 20–21
implied volatility, 24–26
terminal spot price, 20
Heston terminal spot price, 20
Hundsdorfer-Verwer scheme, 253
IJK schemes, 155–157
Implied volatility mean error sum of squares (IVMSE), 117, 119, 128
Implied volatility root mean squared error (IVRMSE), 139–140, 297, 298
Implied volatility slope, bounds on, 40–42
Integrals, consolidating, 9–10
Integration
contours of, 73
limits, 98
multidomain, 99–101
Integration issues, parameter effects, and variance modeling, 13–43
characteristic functions, 14–16
Heston parameters, effect of, 20–26
Black-Scholes prices, comparison with, 21–24
correlation and volatility of variance, effect of, 20–21
implied volatility, 24–26
terminal spot price, 20
implied volatility slope, bounds on, 40–42
integrand, problems with, 16–18
discontinuities in, 17
oscillations in, 17
“Little Trap” formulation, 13, 18–20
moment explosions, 38–40
variance modeling, 26–38
approximate local volatility, 35–36
Dupire local volatility, 29–34
local volatility with finite differences, 34–35
numerical illustration of local volatility, 36–37
variance swap, 26–29
Kahl and Jackel transformation, 101–103, 104
Kurtosis, xiii, 20, 23
Legendre polynomials, 94
Lewis formulations, Greeks under, 273–276
“Little Trap” formulation, 13, 18–20, 31–32, 46, 290
Lord and Kahl optimal alpha function, 55
Loss functions, parameter estimation using, 116–120
Nelder-Mead algorithm in VBA, 120–122
starting values, 122–126
Maximum likelihood estimation, 132–135
Mean error sum of squares (MSE), 116, 298
Medvedev-Scaillet expansion, 191–199
American Greeks from, 284–285
for Black-Scholes, 191–195
for Heston, 196–199
Mikhailov and Nögel model, 214–219
Milstein scheme, 147–149
implicit, 149–152
Moment explosions, 38–40
Multidomain integration, 99–101
Nelder-Mead algorithm in VBA, 120–122
Newton-Cotes formulas, 84, 85–90
midpoint rule, 85–86
Simpson’s rule, 88
Simpson’s three-eighths rule, 88–90
trapezoidal rule, 86–88
for double integrals, 87–88
Numerical integration schemes, 83–114
fast Fourier transform (FFT), 84, 106–108
fractional fast Fourier transform (FRFT), 108–113
Gaussian quadrature, 90–98
for double integrals, 97–98
Gauss-Laguerre quadrature, 91–93
Gauss-Legendre quadrature, 93–95
Gauss-Lobatto quadrature, 96–97
illustration of, 103–106
integrand in, 84–85
integration limits, 98
Kahl and Jackel transformation, 101–103, 104
multidomain integration, 99–101
Newton-Cotes formulas, 84, 85–90
midpoint rule, 85–86
Simpson’s rule, 88
Simpson’s three-eighths rule, 88–90
trapezoidal rule, 86–88
Parameter estimation, 115–141, 297–300
Differential Evolution (DE), 128–132
in the double Heston model, 297–300
maximum likelihood estimation, 132–135
risk-neutral density (RND) and arbitrage-free volatility surface, 135–140
speeding up, 126–128
using loss functions, 116–126
Nelder-Mead algorithm in VBA, 120–122
starting values, 122–126
Parseval’s identity, option prices using, 70–75
contour variations and call price, 72–75
for the Heston model, 71–72
Partial differential equation (PDE) in terms of an operator, 236
Pathwise adapted linearization quadratic method, 155–157
Payoff transform, 64–69
Payoff transform using fundamental transform, 67–69
fundamental transform for Heston model, 66–67
Payoff transform and option price, 65–66
Puts, representation for, 54–57
Quadratic-exponential (QE) discretization scheme, 157–161, 304–306
Relative mean error sum of squares (RMSE), 116–117, 127–128, 298
Rho, 258–260
Riccati equation, generalization of, 209–210
linking with bivariate CF, 212–214
Risk-neutral density (RND) and arbitrage-free volatility surface, 135–140
from double Heston model, 300
Simpson’s rule, 88
Simpson’s three-eighths rule, 88–90
Simulation in the Heston model, 143–167
Alfonsi scheme for variance, 161–165
balanced, pathwise, and IJK schemes, 155–157
Euler scheme, 146, 152
general setup, 144–146
Implicit Milstein scheme, 149–152
Milstein scheme, 147–149
moment-matched discretization scheme, 165–167
quadratic-exponential (QE) discretization scheme, 157–161
transformed volatility scheme, 152–155
Skewness, xiii, 20
Stochastic differential equations (SDEs), 144, 288
Stochastic volatility models, xiii
Theta, 258–260, 264, 268, 293
Time-dependent Heston models, 209–233
Benhamou-Miri-Gobet model, 223–231
constant parameters, 225–227
piecewise constant parameters, 228–231
bivariate characteristic function, 210–211
Black-Scholes derivatives, 231–232
Elices model, 219–223
linking the bivariate CF and general Riccati equation, 212–214
Mikhailov and Nögel model, 214–219
Riccati equation, generalization of, 209–210
Transformed volatility scheme, 152–153
Trapezoidal integration rule, 5, 9, 86–88, 201, 203, 274
Vanna, 260–263, 294, 296–297
Variance modeling, 26–38
approximate local volatility, 35–36
Dupire local volatility, 29–34
local volatility with finite differences, 34–35
numerical illustration of local volatility, 36–37
variance swap, 26–29
VBA code, xvii
VBA library for complex numbers, xix–xxiii
Vega, 258–260, 265, 285, 293, 296–297
Black-Scholes, 298
Volatility, xiii
approximate local, 35–36
Dupire local, 29–34
implied, 24–26
from double Heston model, 300
at extreme strikes, 43
local with finite differences, 34–35
numerical illustration of, 36–37
of volatility series expansion, 75–80
Volga, 260–263, 265, 293–294, 296–297
Weighted method, 241–248
call prices using, 248
Zhu scheme for transformed variance, 303–304