CONTENTS

Preface xiv
Acknowledgments xv
About the Author xvi

1 Energy Resources, Greenhouse Gases, and Materials 1
 1.1 Energy Supply and Consumption, 1
 1.2 Energy Problems and Challenges, 3
 1.3 Current State of Improving Energy Efficiency, 5
 1.4 Inseparable Links between Energy and Materials, 7
 1.5 Terms Related to Energy and Power, 9
 1.6 Outline of this Book, 9
 References, 10

2 Fossil Energy and Materials 11
 2.1 Fossil Fuels, 11
 2.2 Existing Coal-Fired Power Plants, 13
 2.3 Materials for Existing Coal-Fired Power Plants, 17
 2.3.1 Material Issues, 17
 2.3.1.1 Fatigue and Creep, 17
 2.3.1.2 Corrosion, 18
 2.3.2 Material Development, 19
 2.4 Integrated Gasification Combined Cycle Plants, 22
 2.5 Materials for Integrated Gasification Combined Cycle Plants, 23
2.6 Oxy-Fuel Combustion Plants and Material Needs, 25
- **2.6.1 Oxy-fuel Combustion**, 25
- **2.6.2 Material Needs**, 26
- **2.6.3 Thermal Barrier Coatings**, 28
 - **2.6.3.1 Thermal Barrier Coating Compositions**, 28
 - **2.6.3.2 Thermal Barrier Coating Processing**, 30
 - **2.6.3.3 Thermal Barrier Coating Defects**, 31

2.7 Materials in Oil and Gas Energy Conversion, 33

2.8 Carbon Capture and Storage, 34
- **2.8.1 Carbon Capture**, 35
 - **2.8.1.1 Carbon Capture Methods**, 36
 - **2.8.1.2 Carbon Separation Methods**, 39
- **2.8.2 Carbon Storage**, 44
 - **2.8.2.1 Carbon Storage in Geological Formations**, 45
 - **2.8.2.2 Carbon Storage in Ocean**, 46
 - **2.8.2.3 Carbon Storage Concerns**, 47

2.9 Summary, 49

References, 49

3 Nuclear Energy Conversion and Materials, 54

3.1 State of Nuclear Energy, 54
3.2 Advantages and Disadvantages of Nuclear Energy, 56
3.3 Nuclear Fission and Fusion, 57
3.4 Fission Process for Nuclear Energy Generation, 60
3.5 Two Different Fuel Cycles, 62
3.6 Nuclear Fuel Supply, 64
 - **3.6.1 Uranium and Plutonium**, 64
 - **3.6.2 Thorium**, 66
3.7 Classification of Nuclear Fission Reactors, 67
 - **3.7.1 Generation Classification**, 67
 - **3.7.2 Coolant-Based Classification**, 69
3.8 Commercial Reactors, 70
3.9 Future Reactors, 71
3.10 Nuclear Materials, 73
 - **3.10.1 Core Components**, 74
 - **3.10.1.1 Nuclear Fuels**, 74
 - **3.10.1.2 Cladding Materials**, 78
 - **3.10.2 Out-of-Core Materials**, 85
 - **3.10.3 Balance-of-Plant Materials**, 85
3.11 Nuclear Waste Management, 86
 - **3.11.1 Waste Types**, 86
 - **3.11.2 Waste Storage**, 87
 - **3.11.3 Geologic Disposal**, 92
3.12 Fusion Reactors and Material Issues, 93
 - **3.12.1 Fusion Reactors**, 93
 - **3.12.2 Fusion Materials**, 93
 - **3.12.3 Fusion Wastes**, 98
3.13 Summary, 99
References, 99

4 Solar Energy and Materials
4.1 Solar Energy, 104
4.2 Photovoltaic Cell Fundamentals, 107
4.3 First-Generation Solar Cells, 108
4.4 Second-Generation Solar Cells, 111
 4.4.1 Crystalline Silicon Thin-Film Cells, 112
 4.4.2 Amorphous Silicon Thin-Film Cells, 115
 4.4.3 CdTe and CuInGaSe₂ Thin-Film Cells, 117
4.5 Third-Generation Solar Cells, 120
 4.5.1 Tandem and Multijunction Cells, 120
 4.5.2 Impurity- and Intermediate-Band Solar Cells, 123
 4.5.3 Multiple Carrier and Hot Carrier Cells, 126
4.6 Dye-Sensitized Solar Cells, 128
 4.6.1 Working Principles, 128
 4.6.2 Anode, 129
 4.6.3 Counter Electrode, 130
 4.6.4 Sensitizers, 131
 4.6.5 Solid State Electrolytes, 134
4.7 Organic Photovoltaics, 135
 4.7.1 Working Principles, 135
 4.7.2 Differences between Conventional and Organic Solar Cells, 138
 4.7.3 Advantages and Challenges of Organic Photovoltaics, 139
4.8 High-Efficiency Concentrator Photovoltaics, 140
4.9 Summary, 142
References, 142

5 Bioenergy Conversion and Materials
5.1 Bioenergy, 147
5.2 Biomass and Thermal Conversion, 149
 5.2.1 Biomass Resources, 149
 5.2.2 Biomass Thermal Conversion, 150
 5.2.2.1 Biomass Combustion, 154
 5.2.2.2 Biomass Gasification, 163
 5.2.2.3 Biomass Pyrolysis, 166
5.3 Biofuel, 167
 5.3.1 Existing Fuels, 168
 5.3.2 Cellulosic Biomass, 170
 5.3.3 Algae and Microalgae, 173
 5.3.4 Biofuel Efficiency, 176
 5.3.5 Advantages and Disadvantages of Biofuels, 177
5.4 Bioenergy Sustainability, 178
5.5 Summary, 180
References, 180
6 Wind Energy Conversion and Materials 183

6.1 Wind Energy Resources, 183
6.2 Advantages and Issues of Wind Energy Generation, 185
6.3 Wind Turbines, 186
6.4 Material Issues, 187
6.5 Wind Turbine Failures, 189
6.6 Summary, 190
References, 191

7 Hydro, Geothermal, Ocean Energy and Materials 192

7.1 Hydropower, 192
 7.1.1 Hydropower Capacity, 192
 7.1.2 Material Challenges in Hydropower Conversion, 194
7.2 Geothermal Energy, 195
 7.2.1 Geothermal Resources and Capabilities, 195
 7.2.2 Material Challenges in Geothermal Energy Production, 197
7.3 Ocean Energy, 199
 7.3.1 Ocean Energy Resources and Potentials, 199
 7.3.2 Material Challenges in Ocean Energy Conversion, 199
7.4 Summary, 202
References, 202

8 Fuel Cells and Materials 204

8.1 What is a Fuel Cell?, 204
8.2 Applications and Characteristics of Fuel Cells, 208
8.3 Alkaline Fuel Cells, 209
 8.3.1 Constructions of Alkaline Electrolyte Fuel Cells, 209
 8.3.1.1 Electrolytes, 211
 8.3.1.2 Electrodes, 211
 8.3.1.3 Binders, 212
 8.3.1.4 Catalysts, 212
 8.3.1.5 Monopolar and Bipolar Designs, 212
 8.3.2 Advantages of Alkaline Electrolyte Fuel Cells, 213
 8.3.3 CO₂ Sensitivity, 213
 8.3.4 Solid Polymer Anion Exchange Membrane Electrolytes, 214
 8.3.5 Current State of Alkaline Fuel Cells, 216
8.4 Proton Exchange Membrane Fuel Cells, 217
 8.4.1 Constructions and Characteristics of Proton Exchange Membrane Fuel Cells, 217
 8.4.2 Gas Diffusion Layers, 220
 8.4.3 Catalysts, 220
 8.4.4 Polymer Electrolytes, 222
 8.4.5 Bipolar Plates, 224
 8.4.5.1 Metal Bipolar Plates, 225
 8.4.5.2 Bipolar Plate Coatings, 226
8.4.5.3 Carbonaceous Material Bipolar Plates, 228
8.4.5.4 Carbon Composite Bipolar Plates, 229
8.4.6 Water Management, 230
8.4.7 Advantages of Proton Exchange Membrane Fuel Cells, 233
8.5 Direct Methanol Fuel Cells, 233
 8.5.1 Fundamental Principles, 233
 8.5.2 Direct Methanol Fuel Cell Components, 234
 8.5.2.1 Catalysts, 234
 8.5.2.2 Electrolyte Membranes, 236
 8.5.2.3 Bipolar Plates, 237
 8.5.3 Direct Methanol Fuel Cell Advantages and Challenges, 237
8.6 Phosphoric Acid Fuel Cells, 241
 8.6.1 Phosphoric Acid Fuel Cell Development, 241
 8.6.2 Phosphoric Acid Fuel Cell Mechanisms and Characteristics, 242
 8.6.3 Phosphoric Acid Electrolytes, 243
 8.6.4 Catalysts, 244
 8.6.5 Electrodes, 244
8.7 Molten Carbonate Fuel Cells, 245
 8.7.1 Cell Construction, 245
 8.7.2 General Features, 246
 8.7.3 Cathodes, 248
 8.7.4 Anodes, 251
 8.7.5 Electrolytes, 251
 8.7.6 Separator Plates, 253
8.8 Solid Oxide Fuel Cells, 255
 8.8.1 Basics, 255
 8.8.2 Constructions of Different Solid Oxide Fuel Cells, 257
 8.8.3 Materials in Solid Oxide Fuel Cells, 257
 8.8.3.1 Cathodes, 258
 8.8.3.2 Anodes, 260
 8.8.3.3 Electrolytes, 263
 8.8.3.4 Interconnects, 264
 8.8.3.5 Sealants, 266
 8.8.4 Intermediate- and Low-Temperature Solid Oxide Fuel Cells, 269
 8.8.4.1 Cathodes, 270
 8.8.4.2 Electrolytes, 271
 8.8.4.3 Anodes, 274
 8.8.4.4 Interconnects, 274
8.9 Summary, 275
References, 275

9 Mechanoelectric Energy Harvesting and Materials

9.1 Energy Harvesting for Low-Power Applications, 285
9.2 Fundamental Mechanisms of Mechanoelectric Energy Conversion, 287
9.3 Mechanoelectric Energy Harvesting Materials, 290
9.4 Sources of Mechanoelectric Energy, 294
9.5 Different Energy Harvesting Methods, 295
 9.5.1 Nonresonant Devices, 295
 9.5.1.1 Impact-Coupled Devices, 295
 9.5.1.2 Human-Based Devices, 296
 9.5.1.3 Ambient Fluid Flows, 298
 9.5.2 Resonant Devices, 299

9.6 Summary, 300
References, 300

10 Thermoelectric Energy Conversion and Materials 303

 10.1 Thermoelectric Energy Conversion Principles, 303
 10.2 Thermoelectric Energy Potentials and Applications, 308
 10.3 Thermoelectric Materials, 310
 10.3.1 Low-Temperature Materials, 310
 10.3.2 Moderate-Temperature Materials, 313
 10.3.3 High-Temperature Materials, 315
 10.3.4 Different Temperature Thermoelectric Material Comparison, 317
 10.4 Thermoelectric Material Processing Methods, 317
 10.5 Summary, 319
References, 320

11 Energy Storage and Materials 323

 11.1 Energy Storage, 323
 11.1.1 Stationary Power Storage, 323
 11.1.2 Mobile Power Storage, 325
 11.1.3 Energy Storage Range, 325
 11.1.4 Energy Storage Options, 326
 11.2 Battery, 327
 11.2.1 General State and Characteristics, 327
 11.2.2 Lead–Acid Battery, 328
 11.2.3 Na–S Battery, 332
 11.2.4 Ni–Cd Battery, 334
 11.2.5 Ni–MH Battery, 335
 11.2.6 Li-Ion Battery, 336
 11.2.6.1 Fundamental Principles, 336
 11.2.6.2 Current State, 337
 11.2.6.3 Cathodes, 339
 11.2.6.4 Anodes, 341
 11.2.6.5 Electrolytes, 345
 11.2.6.6 Separators, 347
 11.2.6.7 Thin-Film Li-Ion Battery, 348
 11.2.6.8 Challenges, 348
 11.2.7 Redox Flow Battery, 351
 11.2.7.1 Fundamental Principles, 351
 11.2.7.2 Electrodes, 352