Contents

Preface xix
Acknowledgments xxi

PART 1 BASIC PRINCIPLES 1

1. Thermodynamics 3
 1.1 Introduction / 3
 1.2 The fundamental postulates or Laws of thermodynamics / 4
 1.3 Other useful quantities and concepts / 14
 1.4 Thermodynamics of the ideal gas / 19
 1.5 Thermodynamics of solutions / 20
 1.6 Phase equilibria / 25
 1.7 Chemical equilibria / 29
 1.8 Temperature dependence of chemical equilibria: The van’t Hoff equation / 31
 1.9 Microcalorimetry / 31
 Notes / 33
2. Four Basic Quantum Mechanical Models of Nuclear and Electronic Motion: A Synopsis 35

2.1 Introduction / 35
2.2 Fundamental hypotheses of quantum theory / 36
2.3 Three simple models of nuclear motion / 38
2.4 Hydrogen atomic orbitals: A simple model of electronic motion in atoms / 44
2.5 Many electron atoms / 47
 Notes / 49
 Suggested reading / 49

3. Molecular Structure and Interactions 51

3.1 Introduction / 51
3.2 Chemical bonding: Electronic structure of molecules / 51
3.3 Empirical classical energy expressions / 58
3.4 Noncovalent forces between atoms and molecules / 62
3.5 Molecular mechanics / 70
 Notes / 75
 Suggested reading / 76

4. Water and the Hydrophobic Effect 77

4.1 Introduction / 77
4.2 Structure of liquid water / 78
4.3 The hydrophobic effect / 84
 Notes / 89
 Suggested reading / 89

PART 2 STATISTICAL MECHANICS: THE MOLECULAR BASIS OF THERMODYNAMICS 91

5. The Molecular Partition Function 93

5.1 Introduction / 93
5.2 The Maxwell–Boltzmann distribution / 93
5.3 The molecular partition function and thermodynamic functions / 99

5.4 Application to macromolecules / 101

Notes / 108

Suggested reading / 110

6. System Ensembles and Partition Functions 111

6.1 Introduction / 111

6.2 Closed systems: The canonical ensemble / 112

6.3 The canonical partition function of systems with continuous energy distributions: The phase-space integral / 119

6.4 Application: Relation between binding and molecular interaction energy / 123

6.5 Application: Binding of ligand to a macromolecule / 125

6.6 Open systems: The grand canonical ensemble or grand ensemble / 127

6.7 Fluctuations / 131

6.8 Application: Light scattering as a measure of fluctuations of concentration / 134

Notes / 135

Suggested reading / 136

7. Sampling Molecular Systems with Simulations 137

7.1 Introduction / 137

7.2 Background / 138

7.3 Molecular dynamics / 139

7.4 Metropolis Monte Carlo / 142

7.5 Simulation of a condensed system / 143

7.6 Connecting microscopic and macroscopic system properties / 144

7.7 An example: Dynamics of Ace-Ala-Nme in solution / 146

7.8 Forced transitions / 149

7.9 Potential of mean force for changes of chemistry: “Computer Alchemy” / 152
10.4 Formulation of molecular binding interactions in terms of a partition function: Empirical approach based on thermodynamics / 202
10.5 A purely statistical mechanical formulation of molecular binding interactions / 204
10.6 Statistical mechanical models of nonideal solutions and liquids / 208
 Notes / 211
 Suggested reading / 211

11. Analysis of Binding Equilibria in Terms of Partition Functions / 213
 11.1 Alternate equivalent representations of the partition function / 213
 11.2 General implications / 215
 11.3 Site-specific binding: General formulation / 216
 11.4 Use of single-site binding constants / 218
 11.5 Partition function for site binding: One type of ligand, independent multiple sites / 220
 11.6 Site binding to interdependent or coupled sites / 221
 Suggested reading / 222

12. Coupled Equilibria / 223
 12.1 Introduction / 223
 12.2 Simple case: Coupling of binding (one site) and conformation change / 224
 12.3 Coupling of binding to multiple sites and conformation change / 225
 12.4 Free energy of binding can “drive” conformation change / 230
 12.5 Formation of oligomers and polymers / 232
 12.6 Coupled polymerization and ligand binding / 237
 Notes / 238
 Suggested reading / 238

13. Allosteric Function / 239
 13.1 Introduction / 239
CONTENTS

14.13 Numerical treatment via finite differences / 268
14.14 Strengths and limitations of the continuum dielectric model / 269
14.15 Applications of the continuum dielectric model to macromolecules / 270

Notes / 273
Suggested reading / 275

PART 4 CONFORMATIONAL STABILITY AND CONFORMATION CHANGE 277

15. Some Elements of Polymer Physics 279
15.1 Introduction / 279
15.2 Conformational variation in small molecules / 280
15.3 Conformational variation in chain molecules / 280
15.4 The ideal random coil and the characteristic ratio / 281
15.5 The persistence length as a measure of chain flexibility / 282
15.6 Conformation of self-avoiding chains / 283
15.7 Dependence of chain conformation on solvent conditions; “Theta” conditions / 284
15.8 Relating chain statistics to molecular structure / 286
15.9 Polyelectrolytes / 287

Notes / 288
Suggested reading / 289

16. Helix-Coil Equilibria 291
16.1 Introduction: Multistate transitions of helical polymers / 291
16.2 Single-stranded poly (A): A completely non-cooperative transition / 291
16.3 Synthetic polypeptides / 292
16.5 Solution of the partition function / 297
16.6 Experiments on synthetic homo-polypeptides and protein fragments / 299
16.7 Experimental determination of helix propensities in synthetic peptides / 299
16.8 Helix stabilization by salt bridges in oligomers containing Glu and Lys / 301
16.9 Helix stabilization by charged groups interacting with the helix dipole / 303
16.10 Helix-coil equilibria of nucleic acids / 303
16.11 Melting transition of DNA / 306
 Notes / 309

17. Protein Unfolding Equilibria
17.1 Introduction / 311
17.2 The two-state approximation / 312
17.3 Working with the two-state model / 314
17.4 Calorimetric measurements of the thermodynamics of protein unfolding / 316
17.5 Unfolding thermodynamics of ribonuclease / 318
17.6 Cold denaturation / 322
17.7 Solvent-induced unfolding: Guanidine hydrochloride and urea / 322
17.8 Mixed solvents: Denaturants and stabilizers / 324
17.9 Unfolding is not two-state under native conditions: Hydrogen exchange / 328
17.10 Nature of the two states / 332
17.11 A third state: The molten globule / 336
17.12 Range of stability / 338
17.13 Decomposition of the thermodynamic parameters for unfolding / 340
 Notes / 342
 Suggested reading / 345

18. Elasticity of Biological Materials
18.1 Background / 347
18.2 Rubber-like elasticity of polymer networks / 348
18.3 Theory of rubber elasticity / 349
18.4 Rubber-like elasticity of elastin / 351
18.5 Titin and tenascin: Elasticity based on transitions between conformation states / 352
18.6 Single-molecule force-extension measurement / 354
Notes / 355

PART 5 KINETICS AND IRREVERSIBLE PROCESSES 357

19. Kinetics 359

19.1 Introduction / 359
19.2 Measuring fast kinetics by rapid perturbation / 360
19.3 Fast rates from spectroscopic line shape and relaxation times / 362
19.4 Relaxation time in a unimolecular reaction / 364
19.5 Relaxation time in a bimolecular reaction / 365
19.6 Multiple reactions / 367
19.7 Numeric integration of the master equation / 367
19.8 Consecutive reactions cause delays / 368
19.9 Steady state assumption: Michaelis–Menten model, microscopic reversibility, and cyclic processes / 369
19.10 Nucleation and growth mechanisms in phase transitions and biopolymer folding reactions / 372
19.11 Kinetic theory and the transition state / 373
19.12 Transition state in catalysis / 375
19.13 Inhibitor design: Transition state analogs / 377
19.14 The diffusion-limited reaction / 379
19.15 Estimating reaction rates from simulations / 381

Notes / 386
Suggested reading / 387

20. Kinetics of Protein Folding 389

20.1 Introduction / 389
20. Folding Processes

20.2 Slow folding: Misfolding / 390
20.3 Slow folding: Cis–trans isomerization of proline / 391
20.4 Slow folding: Disulfide bond formation / 392
20.5 Two-state folding kinetics / 393
20.6 Folding rates of some peptides and proteins / 395
20.7 Probing the transition state: Tanford’s β value and Fersht’s ϕ value / 398
20.8 Early events in folding / 400
20.9 (Free) energy landscape for folding / 402
20.10 The “Levinthal Paradox” and the folding funnel / 403
20.11 Transition state(s), pathway(s), reaction coordinate(s) / 404
20.12 Computer simulations of protein folding and unfolding / 405
20.13 Conclusion / 410

Notes / 410

Suggested reading / 412

General references / 413

21. Irreversible and Stochastic Processes

21.1 Introduction / 415
21.2 Macroscopic treatment of diffusion / 416
21.3 Friction force opposes motion / 417
21.4 Random walk as a model diffusive process / 418
21.5 Equation of motion for stochastic processes: The Langevin equation / 419
21.6 Fluctuation–dissipation theorem / 420
21.7 Specific examples of fluctuating force / 421
21.8 Alternative form of the fluctuation–dissipation theorem / 422
21.9 Diffusive motion and the Langevin equation / 424
21.10 Smoluchowski and Fokker–Planck equations / 425
21.11 Transition state theory revisited / 429
21.12 Kramers’ theory of reaction rates / 432
APPENDICES

A. Probability
 A.1 Introduction / 439
 A.2 Sample statistics / 440
 A.3 Probability distributions / 440
 A.4 A few comments / 442
 A.5 Fitting theory to data: Computer-facilitated “Least Squares” / 442

B. Random Walk and Central Limit Theorem
 B.1 Introduction / 445
 B.2 Random selection / 445
 B.3 The central limit theorem / 446
 B.4 Simple random walk / 447

C. The Grand Partition Function: Derivation and Relation to Other Types of Partition Functions
 C.1 Introduction / 449
 C.2 Derivation / 450
 C.3 Connection with thermodynamic functions / 451
 C.4 Relation to other types of partition functions / 453

D. Methods to Compute a Potential of Mean Force
 D.1 Introduction / 457
 D.2 Thermodynamic integration / 458
 D.3 Slow growth / 458
 D.4 Thermodynamic perturbation / 459
 D.5 Umbrella sampling / 460
 D.6 Conclusion / 461