CONTENTS

PREFACE XV

ACKNOWLEDGMENTS XVII

LIST OF FIGURES XIX

NOMENCLATURE XXVII

CHAPTER 1 CATALYST FUNDAMENTALS OF INDUSTRIAL CATALYSIS 1

1.1 Introduction 1

1.2 Catalyzed versus Noncatalyzed Reactions 1

1.2.1 Example Reaction: Liquid-Phase Redox Reaction 2

1.2.2 Example Reaction: Gas-Phase Oxidation Reaction 4

1.3 Physical Structure of a Heterogeneous Catalyst 6

1.3.1 Active Catalytic Species 7

1.3.2 Chemical and Textural Promoters 7

1.3.3 Carrier Materials 8

1.3.4 Structure of the Catalyst and Catalytic Reactor 8

1.4 Adsorption and Kinetically Controlled Models for Heterogeneous Catalysis 10

1.4.1 Langmuir Isotherm 11

1.4.2 Reaction Kinetic Models 13

1.4.2.1 Langmuir–Hinshelwood Kinetics for CO Oxidation on Pt 14

1.4.2.2 Mars–van Krevelen Kinetic Mechanism 17

1.4.2.3 Eley–Rideal (E–R) Kinetic Mechanism 18

1.4.2.4 Kinetic versus Empirical Rate Models 18

1.5 Supported Catalysts: Dispersed Model 19

1.5.1 Chemical and Physical Steps Occurring during Heterogeneous Catalysis 19

1.5.2 Reactant Concentration Gradients within the Catalyzed Material 22

1.5.3 The Rate-Limiting Step 22

1.6 Selectivity 24

1.6.1 Examples of Selectivity Calculations for Reactions with Multiple Products 25

1.6.2 Carbon Balance 26

1.6.3 Experimental Methods for Measuring Carbon Balance 27

Questions 27

Bibliography 29

CHAPTER 2 THE PREPARATION OF CATALYTIC MATERIALS 31

2.1 Introduction 31

2.2 Carrier Materials 32
CHAPTER 3 CATALYST CHARACTERIZATION

3.1 Introduction 48
3.2 Physical Properties of Catalysts 49
 3.2.1 Surface Area and Pore Size 49
 3.2.1.1 Nitrogen Porosimetry 49
 3.2.1.2 Pore Size by Mercury Intrusion 51
 3.2.2 Particle Size Distribution of Particulate Catalyst 51
 3.2.2.1 Particle Size Distribution 51
 3.2.2.2 Mechanical Strength 53
 3.2.3 Physical Properties of Environmental Washcoated Monolith Catalysts 54
 3.2.3.1 Washcoat Thickness 54
 3.2.3.2 Washcoat Adhesion 54
3.3 Chemical and Physical Morphology Structures of Catalytic Materials 54
 3.3.1 Elemental Analysis 54
 3.3.2 Thermal Gravimetric Analysis and Differential Thermal Analysis 55
 3.3.3 The Morphology of Catalytic Materials by Scanning Electron Microscopy 56
 3.3.4 Structural Analysis by X-Ray Diffraction 57
 3.3.5 Structure and Morphology of Al₂O₃ Carriers 58
 3.3.6 Dispersion or Crystallite Size of Catalytic Species 58
 3.3.6.1 Chemisorption 58
 3.3.6.2 Transmission Electron Microscopy 61
 3.3.7 X-Ray Diffraction 62
CHAPTER 4 REACTION RATE IN CATALYTIC REACTORS

4.1 Introduction 69
4.2 Space Velocity, Space Time, and Residence Time 69
4.3 Definition of Reaction Rate 71
4.4 Rate of Surface Kinetics 72
 4.4.1 Empirical Power Rate Expressions 72
 4.4.2 Experimental Measurement of Empirical Kinetic Parameters 73
 4.4.3 Accounting for Chemical Equilibrium in Empirical Rate Expression 77
 4.4.4 Special Case for First-Order Isothermal Reaction 77
4.5 Rate of Bulk Mass Transfer 78
 4.5.1 Overview of Bulk Mass Transfer Rate 78
 4.5.2 Origin of Bulk Mass Transfer Rate Expression 79
4.6 Rate of Pore Diffusion 80
 4.6.1 Overview of Pore Diffusion 80
 4.6.2 Pore Diffusion Theory 81
4.7 Apparent Activation Energy and the Rate-Limiting Process 82
4.8 Reactor Bed Pressure Drop 83
4.9 Summary 84
Questions 84
Bibliography 87

CHAPTER 5 CATALYST DEACTIVATION

5.1 Introduction 88
5.2 Thermally Induced Deactivation 88
 5.2.1 Sintering of the Catalytic Species 89
 5.2.2 Sintering of Carrier 92
 5.2.3 Catalytic Species–Carrier Interactions 95
5.3 Poisoning 96
 5.3.1 Selective Poisoning 96
 5.3.2 Nonselective Poisoning or Masking 97
5.4 Coke Formation and Catalyst Regeneration 99
Questions 101
Bibliography 103

CHAPTER 6 GENERATING HYDROGEN AND SYNTHESIS GAS BY CATALYTIC HYDROCARBON STEAM REFORMING

6.1 Introduction 104
 6.1.1 Why Steam Reforming with Hydrocarbons? 104
6.2 Large-Scale Industrial Process for Hydrogen Generation 105
 6.2.1 General Overview 105
6.2.2 Hydrodesulfurization 106
6.2.3 Hydrogen via Steam Reforming and Partial Oxidation 106
 6.2.3.1 Steam Reforming 106
 6.2.3.2 Deactivation of Steam Reforming Catalyst 110
 6.2.3.3 Pre-reforming 111
 6.2.3.4 Partial Oxidation and Autothermal Reforming 111
6.2.4 Water Gas Shift 112
 6.2.4.1 Deactivation of Water Gas Shift Catalyst 116
6.2.5 Safety Considerations During Catalyst Removal 116
6.2.6 Other CO Removal Methods 116
 6.2.6.1 Pressure Swing Absorption 116
 6.2.6.2 Methanation 117
 6.2.6.3 Preferential Oxidation of CO 117
6.2.7 Hydrogen Generation for Ammonia Synthesis 119
6.2.8 Hydrogen Generation for Methanol Synthesis 120
6.2.9 Synthesis Gas for Fischer–Tropsch Synthesis 120

6.3 Hydrogen Generation for Fuel Cells 121
 6.3.1 New Catalyst and Reactor Designs for the Hydrogen Economy 122
 6.3.2 Steam Reforming 123
 6.3.3 Water Gas Shift 124
 6.3.4 Preferential Oxidation 125
 6.3.5 Combustion 125
 6.3.6 Autothermal Reforming for Complicated Fuels 126
 6.3.7 Steam Reforming of Methanol: Portable Power Applications 126

6.4 Summary 126
Questions 127
Bibliography 128

CHAPTER 7 AMMONIA, METHANOL, FISCHER–TROPSCH PRODUCTION 129

7.1 Ammonia Synthesis 129
 7.1.1 Thermodynamics 129
 7.1.2 Reaction Chemistry and Catalyst Design 130
 7.1.3 Process Design 132
 7.1.4 Catalyst Deactivation 134
7.2 Methanol Synthesis 134
 7.2.1 Process Design 136
 7.2.1.1 Quench Reactor 136
 7.2.1.2 Staged Cooling Reactor 137
 7.2.1.3 Tube-Cooled Reactor 137
 7.2.1.4 Shell-Cooled Reactor 138
 7.2.2 Catalyst Deactivation 139
7.3 Fischer–Tropsch Synthesis 140
 7.3.1 Process Design 142
 7.3.1.1 Bubble/Slurry-Phase Process 142
 7.3.1.2 Packed Bed Process 143
 7.3.1.3 Slurry/Loop Reactor (Synthol Process) 143
 7.3.2 Catalyst Deactivation 143

Questions 144
Bibliography 145
CHAPTER 8 SELECTIVE OXIDATIONS 146

8.1 Nitric Acid 146
 8.1.1 Reaction Chemistry and Catalyst Design 146
 8.1.1.1 The Importance of Catalyst Selectivity 147
 8.1.1.2 The PtRh Alloy Catalyst 147
 8.1.2 Nitric Acid Production Process 148
 8.1.3 Catalyst Deactivation 150

8.2 Hydrogen Cyanide 151
 8.2.1 HCN Production Process 152
 8.2.2 Deactivation 152

8.3 The Claus Process: Oxidation of H2S 154
 8.3.1 Clause Process Description 154
 8.3.2 Catalyst Deactivation 155

8.4 Sulfuric Acid 155
 8.4.1 Sulfuric Acid Production Process 155
 8.4.2 Catalyst Deactivation 158

8.5 Ethylene Oxide 159
 8.5.1 Catalyst 159
 8.5.2 Catalyst Deactivation 160
 8.5.3 Ethylene Oxide Production Process 160

8.6 Formaldehyde 160
 8.6.1 Low-Methanol Production Process 162
 8.6.1.1 Fe + Mo Catalyst 162
 8.6.2 High-Methanol Production Process 163
 8.6.2.1 Ag Catalyst 164

8.7 Acrylic Acid 164
 8.7.1 Acrylic Acid Production Process 164
 8.7.2 Acrylic Acid Catalyst 165
 8.7.3 Catalyst Deactivation 166

8.8 Maleic Anhydride 166
 8.8.1 Catalyst Deactivation 166

8.9 Acrylonitrile 166
 8.9.1 Acrylonitrile Production Process 167
 8.9.2 Catalyst 168
 8.9.3 Deactivation 168

Questions 168
Bibliography 169

CHAPTER 9 HYDROGENATION, DEHYDROGENATION, AND ALKYLATION 171

9.1 Introduction 171

9.2 Hydrogenation 171
 9.2.1 Hydrogenation in Stirred Tank Reactors 171
 9.2.2 Kinetics of a Slurry-Phase Hydrogenation Reaction 174
 9.2.3 Design Equation for the Continuous Stirred Tank Reactor 176

9.3 Hydrogenation Reactions and Catalysts 177
 9.3.1 Hydrogenation of Vegetable Oils for Edible Food Products 177
 9.3.2 Hydrogenation of Functional Groups 180
 9.3.3 Biomass (Corn Husks) to a Polymer 183
CHAPTER 13 CATALYTIC ABATEMENT OF GASOLINE ENGINE EMISSIONS 235

13.1 Emissions and Regulations 235
 13.1.1 Origins of Emissions 235
 13.1.2 Regulations in the United States 236
 13.1.3 The Federal Test Procedure for the United States 238
13.2 Catalytic Reactions Occurring During Catalytic Abatement 238
13.3 First-Generation Converters: Oxidation Catalyst 239
13.4 The Failure of Nonprecious Metals: A Summary of Catalyst History 240
 13.4.1 Deactivation and Stabilization of Precious Metal Oxidation Catalysts 241
13.5 Supporting the Catalyst in the Exhaust 242
 13.5.1 Ceramic Monoliths 242
 13.5.2 Metal Monoliths 245
13.6 Preparing the Monolith Catalyst 246
13.7 Rate Control Regimes in Automotive Catalysts 247
13.8 Catalyzed Monolith Nomenclature 248
13.9 Precious Metal Recovery from Catalytic Converters 248
13.10 Monitoring Catalytic Activity in a Monolith 248
13.11 The Failure of the Traditional Beaded (Particulate) Catalysts for Automotive Applications 250
13.12 NOx, CO and HC Reduction: The Three-Way Catalyst 251
13.13 Simulated Aging Methods 255
13.14 Close-Coupled Catalyst 256
13.15 Final Comments 258
Questions 259
Bibliography 261

CHAPTER 14 DIESEL ENGINE EMISSION ABATEMENT 262

14.1 Introduction 262
 14.1.1 Emissions from Diesel Engines 262
 14.1.2 Analytical Procedures for Particulates 264
14.2 Catalytic Technology for Reducing Emissions from Diesel Engines 265
 14.2.1 Diesel Oxidation Catalyst 265
 14.2.2 Diesel Soot Abatement 266
 14.2.3 Controlling NOx in Diesel Engine Exhaust 267
Questions 272
Bibliography 273

CHAPTER 15 ALTERNATIVE ENERGY SOURCES USING CATALYSIS: BIOETHANOL BY FERMENTATION, BIODIESEL BY TRANSESTERIFICATION, AND H2-BASED FUEL CELLS 274

15.1 Introduction: Sources of Non-Fossil Fuel Energy 274
15.2 Sources of Non-Fossil Fuels 276
 15.2.1 Biodiesel 276
 15.2.1.1 Production Process 276
 15.2.2 Bioethanol 277
 15.2.2.1 Process for Bioethanol from Corn 278
 15.2.3 Lignocellulose Biomass 278