INDEX

A
abatement catalysts, 218
abatement system, 222
ABS. see acrylonitrile-butadiene-styrene (ABS)
acetic acid, 208
acid-based PEM fuel cell, 283
acrolein, 165
acrylic acid production, 164
catalysts, 164–165
deactivation, 166
process design, 164–165
reactor design, 165
acrylonitrile, 166
catalyst, 168
deactivation, 168
production, 167–168
acrylonitrile–butadiene–styrene (ABS), 166
activation barrier, 1, 5
activation energies, 1, 2, 3, 4, 5, 6
apparent, 82–83
Arrhenius plot for determining, 83
for non-catalytic thermal reaction of CO and O₂, 4
for Pt-catalyzed reaction, 5
active catalytic components, 9
materials, 31
species, 7
adsorption, models, 10–13
AES. see Auger electron spectroscopy (AES)

© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
ammonium nitrate, 146
AMOX. see ammonia oxidation (AMOX)
Anderson-Shultz-Flory, 141
anode reactions, 293
antioxidants, 213
Apollo space program, 290
apparent activation energy, 82
Arrhenius expression, 3
Arrhenius plot, for determining activation energies, 83
Arrhenius profile, 3
t-aspartic acid, 210
ATR. see autothermal reforming (ATR)
Auger electron spectroscopy (AES), 63
automobile engine, 237
automotive applications, traditional beaded (particulate) catalysts failure, 250, 251
automotive catalysts, 7
converter, 25
rate control regimes, 247
autothermal reforming (ATR), 111–112
B
base metals, 31, 183
catalysts, 240, 250
Bayerite, 33
benzene, 187
benzene oxidation to maleic anhydride, 166
BET. see Brunauer-Emmett-Teller (BET)
beta zeolite, 36, 37
biochemical approach, 278
biodegradable detergents, 186
biodiesel, 276
non-fossil fuels, sources of, 276
production process, 276–277
production from triglycerides, 276–277
bioethanol
from edible sources, 277–278
non-fossil fuels, sources of, 277, 278
from corn, 278
biofuels from lignocellulose biomass, 278
biomass
conversion of, 190
for energy production, 277
to fuels (alternative energy source), 274–275
BMT. see bulk mass transfer (BMT)
Boehmite, 33
Boltzmann distribution, 4
Brønsted acid sites, 33
Brunauer-Emmett-Teller (BET) equation, 49
surface, 240
area, 242
bubble/slurry-phase process, 142
bulk mass transfer (BMT), 21, 218, 219
coefficient, 78
control, conversion vs. temperature profile, 21
rate, 78
expression, origin of, 79, 80
as function of temperature, 22
bulk (film) mass transfer rate, 78–80, 220
butane oxidation to maleic anhydride, 166
C
calcinations, 32, 246
carbohydrates, 274
carbon balance, 26–27
experimental methods for measuring, 27
carbon-free energy, 230
carbon monoxide (CO), 4, 7, 216
catalyst deactivation, 222–224
catalytic incineration of, 216–224
catalyzed monolith/honeycomb structures, 219–220
cleanup reactor, 288
deadivated catalysts, regeneration of, 224
emissions, 215, 235
monolith/honeycomb structure, 218–219
reactor sizing, 220–222
reduction catalyst, 251–255
removal methods, 116
methanation, 117
preferential oxidation, 117
pressure swing absorption, 116
simultaneous conversion of, 252
carbon–sulfur polymers, 155
carboxylation
acetic acid from methanol, 208–209
acetic acid production, 208–209
carrier materials, 8
Al2O3, 32–34
carbons, 37
SiO2, 34
TiO2, 34, 35
zeolites, 34–36
carsuls, 155
catalysis, chemical and physical steps, 19–23
catalyst beds, 136
carrier/support, 8
chemical and physical properties, 6–10
chemical & structural properties, 54–65
in industrial applications, 6
measurement of particle size, 51–53
mechanical strength, 53–54
morphology, 56–58, 61–62
physical properties, 49–54
poisoning, 96–99

catalyst converter, in exhaust, 242
ceramic monoliths, 242–245
metal monoliths, 245, 246
catalyst deactivation, 134, 180
catalyst design, 130
catalyst deactivation, 134, 180
catalyst forming, 40–45
catalyst manufacturers, 257
catalyst preparation, 37–40
catalyst PtRe/γ-Al2O3, 8
adding Cl to a naphtha reforming, 8
catalyst regeneration, 99, 100, 224
TGA/DTA in air of coke burn-off from a catalyst, 100
TGA/DTA profile for desulfation of Pd on Al2O3 catalyst, 99, 100
catalyst removal, safety considerations, 116
catalyst selectivity, 147
catalytic abatement, 238
catalytic components, 8, 9
catalytic converters
for cooking emissions, 225
precious metal recovery, 248
catalytic cracking, 187
catalytic crystal size, 10
catalytic enzymes converts, 277
catalytic Fe–Ce redox reaction catalyzed by Mn, 3
catalytic materials, 54
active phases, 31
carrier or support, 31–35, 37
chemical and physical morphology structures, 54
elemental analysis, 54, 55
scanning electron microscopy, 56, 57
thermal gravimetric analysis (TGA), 55, 56
x-ray diffraction (XRD), 57

structure and morphology of Al2O3 carriers, 58
zeolites, 35–37
catalytic oxidation, 217
catalytic reactions, 1
during catalytic abatement, 238
fundamental steps, 19–10, 48
generic illustration, 248
catalytic reactor, 8
catalytic sites, 5, 19
catalytic species–carrier interactions, 95
catalytic surface area, 9, 10, 19
catalyzed carrier (Al2O3), 246
catalyzed coating, 243
catalyzed monolith nomenclature, 248
catalyzed reactions, 3
catalyzed soot filter (CSF), 267
catalyzed vs. noncatalyzed reactions, 1–4
Cativa™ process, 208
CATOFIN technology, 185
C12–C18 straight-chain paraffinic hydrocarbons, 276
cell density, 244, 245
ceramic monoliths, 219
ceria (CeO2), 37
chain-driven charbroiler, 226
chemical and energy synthesis, 6
chemical equilibrium constant, 77
catalytic surface area, 9, 10, 19
catalyzed carrier (Al2O3), 246
catalyzed coating, 243
catalyzed monolith nomenclature, 248
catalyzed reactions, 3
catalyzed soot filter (CSF), 267
catalyzed vs. noncatalyzed reactions, 1–4
Cativa™ process, 208
CATOFIN technology, 185
C12–C18 straight-chain paraffinic hydrocarbons, 276
cell density, 244, 245
ceramic monoliths, 219
ceria (CeO2), 37
chain-driven charbroiler, 226
chemical and energy synthesis, 6
chemical equilibrium constant, 77
chemical kinetics, 21, 23
conversion vs. temperature profile, 21
relative rates as a function of temperature, 22
chemical partial bond, 5
chemical promoters, 7
chemical reactions, 1
chemisorption, 5, 8, 58–61
isotherm for determining surface area of the catalytic component, 60
Chilean saltpeter (NaNO3), 129
chiral compound, 210
Claus process, 154
catalyst deactivation, 155
description, 154
for production of sulfur, 154–155
Clean Air Act, 239
Clean Air Amendment of 1990, 264
close-coupled catalyst, 256–258, 257
TWC catalyst, 258
CO2 abatement, 230–231
clean coal-fired power plants, 228, 280
cobalt carbonyl catalyst HCo(CO)_4, 206
cobalt carbonyls, 206
cobalt-containing catalysts, 240
cobalt homogeneous catalyst, hydroformylation process, 207
CO_2 emissions, 231, 281
coke formation, 99–100. see also catalyst regeneration
coke regeneration, 196
combustion, 125, 235
of coal, 279
commercial ceramic monoliths, 243
complicated fuels, autothermal reforming for, 126
constriction, 81
continuous stirred tank reactor (CSTR), 172, 207
control automobile emissions, 236
conversion of CO vs. temperature for a noncatalyzed (homogeneous) and catalyzed reaction, 5
cooled tube reactor design, illustration of, 138
CO oxidation, Pt catalyzed, 4–6
CO_2 reduction, 230–231
corn (starch), 274
bioethanol, 278
ethanol, 278
kernel, 277
corn kernel, 277
corrosion, 291
cracking, 31
hydrocarbons, 197–200
 crude oils, 8, 190
distillation, 191–193
origin and properties, 190–191
transformation of, 191
 crystalline materials, 58
 crystallite size of catalytic species, 58
CSF. see catalyzed soot filter (CSF)
CSTR. see continuous stirred tank reactor (CSTR)
 Cu-containing catalyst, 8
Cu/Cr catalyst, 240
CuCr_2O_4, 241
Cu zeolite SCR catalyst, 268
D
 deactivation, 48. see also thermally induced deactivation
coke formation, 99–100
cooking emissions catalyst, 226
masking (fouling), 97–99
metal-carrier interactions, 95
poisoning, 96–99
sintering, 89–95
steam reforming catalysts, 110–111
thermally induced, 88–89
VOC catalysts, 222
water-gas-shift catalyst, 116
dehchlorination, 181
dehydroaromatization, 201
dehydrocyclization reactions, 201
dehydrogenation, 185
 alkanes to alkenes, 185–187
alkyl benzenes, 185–187
catalytic, 177
deactivation & regeneration, 186
endothermic process, 185
gas-phase, 185
heterogeneous catalysts, 185
dehydroisomerization, 200
deoxygenation catalysis, 278
depending on the specific application, an oxidation catalyst (DOC), 269
desorption, 6
detergent alcohols (C_{12}–C_{18}), 207
diammonium phosphate, 152
diesel catalyzed soot filter (CSF), 266–267
diesel engines, 265
abatement, 262–272
emissions, 262–264
diesel exhaust aftertreatment system, 269
AMOX catalyst for removal of NH_3, 269
analysis, 264
lean NO_x trap (LNT), 270–271
reduction of NO_x, 267–271
SCR catalysts for NO_x reduction, 268–269
system, DOC, CSF, SCR, & AMOX, 269
diesel-fueled vehicles, 262
diesel oxidation catalyst (DOC), 265–266
diesel particulate filter (DPF), 266, 267
diesel reduction catalyst technology, 265–271
diesels, fuel economies, 262
differential porosimetry, for a porous catalyst, 52
differential thermal analysis (DTA), 55–56
decomposition of barium acetate on ceria, 55
mode, 55
dispersion, 58
model of supported catalyst, 17–19, 89
distillation, 191
double-layered washcoated ceramic monoliths, optical micrographs of, 243
DTA mode. see differential thermal analysis (DTA) mode

E
edible biomass, 275
effective diffusivity, 81
effectiveness factor, 22
EGO. see exhaust gas oxygen (EGO)
electro-catalyst, 281, 285
electrode assembly, 291
electrolyte, acidic solid polymer, 289
electron microprobe, 57
showing a two-washcoat-layer monolith catalyst, 57
electron transfer process, 3
electrostatic precipitator (ESP), 228
elemental analysis, 54–55
Eley-Rideal (E-R) mechanism, 18
kinetic mechanism, 18
reaction, 14
emission reducing, from diesel engines catalytic technology, 265–271
emission regulations, NO\textsubscript{x}–particulate trade-off, 263
emissions, 238
of CO, 215
from diesel engines, 262–264
standards, 264
empirical kinetic parameters, experimental measurement of, 73–76
Arrhenius expression, 75
conversion vs. temperature at different space velocities, 76
determining activation energy, 75
inhibition effects, 76
empirical power rate expressions, 72, 73
empirical rate expression accounting for chemical equilibrium in, 77
forward rate, 77
power rate law, 77
endothermic thermal reaction, 1, 9, 154
Enefarm, 282
energy barrier, 3
energy processes, 7
energy savings, 6
engine dynamometer aging cycles, 255
diesel exhaust, 251
enthalpy, 3
entropy, 6
environmental abatement reactor, 220
environmental emission control, 6
Environmental Protection Agency (EPA), 236
environmental washcoated monolith catalysts physical properties of, 54
washcoat adhesion, 54
washcoat thickness, 54
enzymatic catalysis, 209–210
enzymes, 209–210 bonded to porous glass, 210
catalyze reactions, 209
equilibrium constant, 3, 104
E-R mechanism. see Eley-Rideal (E-R) mechanism
ESP. see electrostatic precipitator (ESP)
ethanol, 237, 277
ethene oxidation to ethylene oxide, 160–164
ethyl benzene (EB), 186, 187
ethylene, 187
ethylene oxide, 159
catalyst, 159
catalyst deactivation, 160
production process, 160
ethylene oxide production catalyst deactivation, 164
catalyst design, 162, 164
process design, 160, 162–164
reactor design, 162, 164
excess slurry, 219
exhaust, 266
catalyst converter, 242
piping, 239
exhaust gas oxygen (EGO), 252
exothermic reactions, 1, 5, 9, 249
temperature profiles, 250
F
fatty acid methyl esters (FAMEs), 276
Faujasite Y zeolite, 197
FCC. see fluidized catalytic cracking (FCC)
INDEX

Fe–Cr–Al high-temperature alloy, 219
Federal Test Procedure (FTP), 237, 238
 particulates, 264
 for trucks, 264
 vehicle emissions, 237
feed temperature, 186
Fe zeolite SCR catalyst, 268
first-order isothermal reaction, 77
 special case for, 77, 78
Fischer-Tropsch synthesis, 140, 230
 bubble slurry reactor for, 142
 catalyst deactivation, 143
 catalyst design, 141–142
 gas for, 120
 loop reactor for, 144
 process design, 142–143
 bubble/slurry-phase process, 142
 packed bed process, 143
 slurry/loop reactor (synthol process), 143
 reaction chemistry, 140–141
 reactor design, 142–143
fixed bed reactor, 8
flammability, 217
fluid catalytic cracking (FCC), 197–199, 198
 catalysts, 197–199
 deactivation, 198–199
 regeneration, 199
 fluid bed reactor, 199
 process, 197–199
 schematic of, 199
fluidization, 168
fluidized gas-phase reactor, 213
fluorine-containing membranes, 289
food processing, 225
 catalyst abatement of, 225
 catalyst deactivation, 226
 fumes, catalyst abatement of, 225
 restaurant cooking, 225
formaldehyde, 160
 high-methanol production process, 163
 low-methanol production process, 162
fossil fuel-derived gasoline, 237
fouling, 222
fructose from glucose, via glucose isomerase, 210
FTP. see Federal Test Procedure (FTP)
fuel cells, 279–283
 alkaline, 290
 FuelCell Energy, 284
high efficiency energy conversion, 279–294
high-temperature solid oxide, 293
hydrogen for anode reactions, 280
markets, 281–284
 portable power applications, 282–283
 stationary applications, 282
 transportation applications, 281–282
molten carbonate with nickel anode, 291–293
phosphoric acid, 290–291
types of, 283–293
 alkaline fuel cell, 290
 H2-fueled systems, electrochemical reactions, 284–286
 membrane electrode assembly, 287, 288
 molten carbonate fuel cell, 291–293
 PEM fuel cells
 based on direct methanol, 289, 290
 low-temperature, 283
 mechanistic principles, 286, 287
 phosphoric acid fuel cell, 290, 291
 solid oxide fuel cell, 293
 solid polymer membrane, 288, 289
 vehicles, 230, 237
fuel economies, 262
fuel-rich operating conditions, 238
furfural, 183
G
galvanic cell, 284
gas diffusion layers (GDLs)
 anode and cathode gases, 287
gaseous ammonia, 227
gaseous pollutants, 264
gas hourly space velocity (GHSV), 71, 148
gas–liquid separator, 213
gasohol, 278
gasoline, 235
 close-coupled catalyst, 257
 close-coupled converter, 256–258
 emission control, 240
 engines, 262
 -fueled internal combustion engine, 200
 -relative engine emissions, 236
 spark-ignited engine, 262
gasoline converter
 catalyst deactivation, 255–256
 catalyst performance, 248–250
INDEX

failure of pellet catalyst, 250–251
precious metal recovery, 242–247
simulated aging, 255–256
three-way catalyst (TWC), 251–255
gasoline engine
converter design, 239–259
monolith converters, 242–247
octane rating (number), 237
gasoline engine cleanup
catalysts, 239–259
catalytic abatement, 238–259
chemistry, kinetics, 238, 247
gasoline engine emissions, regulations, 235–238
gasoline TWC
air/fuel ratio (AFR), λ, 235–236
exhaust gas oxygen sensor, 252–253
oxygen storage component, 253–254
gas-phase oxidation reaction, 4
gas-to-liquid (GTL) technology, 140
GDLs. see gas diffusion layers (GDLs)
gelation temperature, 276
geometric surface area (GSA), 218, 243
GHSV. see gas hourly space velocity (GHSV)
glucose from corn starch, via glycoamylase, 210
glycerol, 276
GTL. see gas-to-liquid (GTL) technology

H
Haber–Bosch ammonia synthesis, 113
HC emissions, 235
HCN. see hydrogen cyanide (HCN)
HC reduction catalyst, 251–255
HC, simultaneous conversion of, 252
HDS. see hydrodesulfurization (HDS)
heat management, 9
heat of reaction, 141
heat transfer limited reaction, 107
heat treatment, 33
heavy-duty trucks, 268
hemicellulose, 278
He–Ne laser beam, 53
Henry’s law constant, H_2, 175
heteroatom VOCs, 216
heterogeneous catalysis, 5, 10, 19
chemical and physical steps during, 19–21
sequence of, 20
importance of physical and chemical properties
fundamental steps involved in, 48, 49
mechanisms, 13, 14
processes limiting the reaction rate
during, 70
heterogeneous catalysts, 6, 31, 48, 205
materials, 19
supported on a high surface area carrier, 19
physical structure, 6, 7
heterogeneous CO oxidation
physical and chemical steps occurring during, 19, 20
H$_2$ fueling stations, 282
high-temperature shift (HTS), 113
homogeneous catalysis, 205–213
homogeneous catalysts, 205–209
HTS. see high-temperature shift (HTS)
hydrocarbons, 104, 193
catalytic incineration of, 216–224
combustion of, 274
cracking, 197
fluid catalytic cracking, 197
hydrocracking, 200
oxidations, 5
hydrocracking, 199–200
hydrometalization, 193
hydrodemetalization (HDM), 193–197
hydrodesulfurization (HDS), 8, 106, 154, 193–197
catalysts, 194–196
deactivation & regeneration, 194–196
porphyrin, 193–194
hydrodesulfurization (HDS), 8, 106, 154, 193–197
catalysts, 194–196
deactivation & regeneration, 194–196
thiophene, 193–194
hydrodynamics, 10
hydroformylation
aldehydes from olefins, 206–208
catalysts, 206, 208
process design, 206–208
hydroformylation, aldehydes from olefins, 206–208
hydrogenation, 171
of acetophenone, 183
base metal, 183
vs. noble metal catalysts, 183–184
biomass to polymer, 183
catalysts, 177
hydrogenation (Continued)
 deactivation, 180
 continuous stirred tank reactor, design
 equation for, 176
 of CO₂ to methane, 18
 design equation, CSTR, 176–177
 of functional groups, 180
 functional groups, catalysts, 180–183
 furfural, 183
 liquid phase, 171, 174–176
 reactors, 171–173
 mass transfer, 175–176
 organic functional groups, 8, 180–183
 of organic molecules, 171–184
 precious metal catalysts, 183
 reactions, 177
 and catalysts, 177–184
 kinetics, 174–176
 slurry-phase hydrogenation reaction, 174
 kinetics of, 174
 in stirred tank reactors, 171
 of vegetable oils, 177–180
 catalysts, 177–180
 for edible food products, 177
 hydrogen chemisorption, 242
 hydrogen cyanide (HCN), 151
 production, 152
 catalyst deactivation, 152
 catalyst design, 151–152
 process design, 151–153
 reaction chemistry, 151–152
 reactor design, 151–152
 production process, 152
 hydrogen economy, 293–294
 catalyst and reactor designs, 122
 hydrogen, for anode reactions, 280
 hydrogen generation
 for fuel cells, 121
 combustion, 125
 complicated fuels, autothermal
 reforming for, 126
 hydrogen economy, catalyst and reactor
 designs, 122
 methanol, steam reforming, 126
 preferential oxidation, 125
 steam reforming, 123
 water gas shift, 124
 industrial process, 105

ammonia synthesis, 119
 catalyst removal, safety
 considerations, 116
 CO removal methods, 116
 Fischer-Tropsch Synthesis, synthesis
 gas for, 120
 hydrodesulfurization, 106
 methanol synthesis, 120
 partial oxidation, 106
 steam reforming, 106
 water gas shift, 112
 hydrogen–oxygen (air) low-temperature fuel
 cell, 279

hydrogen production
 ammonia synthesis, 119–120
 CO removal, 116–119
 for fuel cells, 121–122
 new catalyst designs, 122–126
 new reactor designs, 122–126
 via steam reforming, 105–120
 hydrophobic Teflon® backbone, 288
 hydrolylating, 193
 petroleum fractions, 193–197
 hysteresis, 51

I
 IC engines, 280
 ideal H₂ economy, 294
 ideal hydrogen economy, 293–294
 industrial processes, 69, 104
 infrared–DRIFTS, 65, 66
 infrared spectroscopy (IR), 65–66
 inlet air containing pollutants, 222
 International Fuel Cells, 283
 intraparticle diffusion, 22
 irreversible phase transitions, 34
 isomerization, 31, 36, 179
 isoctane, 235
 isotactic polymer, 212–213

K
 Kelvin equation, 51
 kerosene, 282
 kinetically controlled models, 10
 kinetic parameters, 18
 determination, 73–77
 kinetic vs. empirical rate models, 18
 Knudsen diffusion coefficient, 81
L

lambda sensor, 252
Langmuir–Hinshelwood kinetics, 14
 applied to increasing P_{CO} at constant P_{O2}, 16
 for CO oxidation on Pt, 14–16
 ideal dispersion of Pt atoms on a high
 surface area Al_2O_3 carrier, 17
 reaction model, 247
Langmuir–Hinshelwood mechanism, 13, 148
Langmuir isotherm, 11–13
L-aspartic production
 catalyzed by L-aspartase, 210
lean NO$_x$ traps (LNT)
 driving profile, 271
 technology, 270
LHSV. see liquid hourly space velocity (LHSV)
lignocellulose biomass, 278, 279
linear plot of the BET equation for surface area measurement, 50
linear velocity, 83
liquid hourly space velocity (LHSV), 71, 194
liquid petroleum gas (LPG), 282
liquid-phase redox reaction, 2
lubricating oils, 263
 components, 229
 electron microprobe, 255

M
maleic anhydride, 166
 catalyst deactivation, 166
 production, 166
Mars-van Krevelen kinetic mechanism, 14, 17, 18
masking, 222. see also poisoning, nonselective
mass transfer, 23
 bulk (film), influence on rate, 19–23
 coefficient, 220
MCFCs. see molten carbonate fuel cells (MCFCs)
MEA. see monoethanolamine (MEA)
 measurement
catalyst chemical properties, 54–65
catalyst morphology, 56–58, 61–62
catalyst physical properties, 49–54
 crystallite size, 58–62
 metal dispersion, 58–61
 metal oxide bonding, 64–65
 reaction rate, 73–77
 surface composition, 62–64
 mechanical strength, 53, 54
mercury intrusion porosimetry, 51–52
mercury penetration as a function of pore size of catalyst, 52
metal dispersion and crystallite size, 58–61
metallic catalytic component, 8
metal oxides, 37, 240
metals substrates, 245
methane, 111, 216
methanol, 134, 276
crossover problem, 290
 quench reactor design, illustration of, 136
 -soluble CoI, 208
 steam reforming, 126
methanol synthesis, 120, 134
 catalyst deactivation, 139–140
 catalyst design, 135
 flow sheet for, 139
 process design, 136–139
 quench reactor, 136
 shell-cooled reactor, 138
 staged cooling reactor, 137
 tube-cooled reactor, 137
 reaction chemistry, 134–136
 reactor design, 136–139
mineral acids, 187
Mn catalyst, 3
mobile applications, 230
modern catalysts, 265
MOF materials. see molecular organic framework (MOF) materials
mole balance, 177
molecular dimensions, 10
molecular organic framework (MOF) materials, 282
molecular sieves or zeolites, 197
molten carbonate fuel cells (MCFCs), 282, 284
monitoring catalytic activity, in
 monolith, 248–250
monoethanolamine (MEA), 117
monohydrate (boehmite) alumina, 33
monolith catalyst, 239
 monitoring catalytic activity, 248–250
 preparation, 246, 247
 preparation, for gas engine, 246–247
Pt catalyst, 217, 218
monolith geometries, 220
monolithic catalyst
 cell density, gas engine, 244–245
monolithic catalysts
 preparation, VOCs, 219–220
 reactor sizing, 220–224
monolithic supports, 44–45
monolith properties
 gas engine, 244–245
 VOC incineration, 220–222
monolith reactors, VOC incineration, 218–220
monolith structures, 9
monolith vs. thermal combustion, 217
monsanto acetic acid process, 209
mordenite, 36
morphology, of carrier, 48

N
Nafion®, 281, 288
Nafion-based pem fuel cell system, 282
Nafion solution, 287
nanosized clusters, 19
naphtha reforming, 200–202
 catalyst, 200
 catalyst redispersion, 201–202
 catalyst regeneration, 201–202
 deactivation, 201
 process design, 201
 flow diagram for, 201
natural gas, new sources of, 279
natural oils, 177
nature’s catalysts, 209
negative catalysts, 34
net voltage of cell (E_{cell}), 285
Ni/Al_{2}O_{3} steam-reforming catalyst, 8
nitric acid, 146
 from ammonia oxidation, 146–151
 catalyst deactivation, 150
 catalyst design, 146
 production process, 148
 design, 148–150
 reaction chemistry, 146
nitric oxide (NO), 147
nitrobenzene, 180
nitrogen adsorption/desorption isotherm for
 pore size measurement, 50
nitrogen fixation, 129, 279
nitrogen oxide (NO\textsubscript{x}), 215
particulate trade-off, 263

reduction
 catalyst, 251–255
 deactivation, 229–230
 ozone abatement, in aircraft cabin
 air, 229
 selective catalytic reduction (SCR)
 technology, 227–229
 from stationary sources, 226–230
 in using BaO to capture NO\textsubscript{2}, 270
nitrogen porosimetry, 49–50, 49–51
NMHCs. see non-methane hydrocarbons
 (NMHCs)
NO. see nitric oxide (NO)
noncatalytic
 free radical reactions, 5
 gas-phase oxidation of CO, 5
 oxidation, 217
 reactions, 3, 5, 6
non-fossil fuels
 sources of, 274–275
non-methane hydrocarbons (NMHCs), 237
nonprecious metals, 31
 failure of, 240, 241
NO\textsubscript{x} emissions, 215, 226–227
nuclear magnetic resonance (NMR), 64–65, 94
nylon, 151

O
octane, 237
octane number, 200
oil sands
 new sources of, 279
olefins, 185, 206
ONSI, 283
open frontal area (OFA), 244
organic functional groups
 hydrogenation, 180–183
O\textsubscript{2} storage component (OSC), 253
overall particle porosity, 81
oxidation catalysts, 239
 first-generation, 239, 242
 converters, 239, 240
 nonprecious metals, failure of, 240, 241
precious metal, deactivation/stabilization
 of, 241, 242
oxidation, of hydrocarbons, 7
oxidation reactor, 167
oxide-based washcoat, adhesion of, 246
oxides, 31
oxygenates, 237
oxygen sensor, 253
oxygen storage component, 253–254
ozone abatement
 in aircrafts, 229–230
 Pd catalyst, deactivation, 229–230
 reactor design, 229–230
ozone-containing makeup air, 229

P
packed bed process, 143
PAFC systems. see phosphoric acid fuel cell (PAFC) systems
palladium, 217
palm kernel, 178
partial oxidation (PO), 106
 of methane, 111–112
particle size, 23
 distribution, 51–53
 measurement using laser light scattering analysis, 53
particulates (PM), 263
 analytical procedures for, 264
 catalysts for fixed bed reactors, 9
PEM fuel cell
 electrochemical reactions, 285–287
 electrode polarization, 286–287
 Faraday equation, 285
 low temperature, 284–290
 membrane electrode assembly, 287–289
 methanol operation, 289–290
 Pt electrode catalysts, 285
 voltage-current profile, 286
petroleum refinery, 191
phase transformation, 35
Phillips loop reactor, 211
phosphine ligands, 208
phosphoric acid fuel cell (PAFC) systems, 282
photocatalytic reactions, 35
photosynthesis process, 274
 hydrocarbon-containing fuels, 274
physical properties of catalysts, 48, 49
 nitrogen porosimetry, 49–51
 pore size, 49
 by mercury intrusion, 51
 surface area, 49
plant-derived oils, 177
 canola, 177
 corn, 177
cottonseed, 177
peanut, 177
soy, 177
PO. see partial oxidation (PO)
poisoning, 96
 catalysts, 96–99
 nonselective, 97–99
 selective, 96–97
polybenzimidazole (PBI), 289
polyethylene
 Phillips process, 210–211
 production, 210–212
 TiCl₄/MgCl₂ process, 210–212
 TiCl₄ Ziegler-Natta catalyst, 211–212
polymerization of olefins, 210–213
polyolefins
 polyethylene, 210–212
 polypropylene, 212–213
polyperfluorosulfonic acid (PFSA), 288
polypropylene, 210, 212
 production, 212–213
 Ziegler-Natta catalyst, 212
polytetrafluoroethylene (PTFE), 290
pore channel tortuosity, 81
pore diffusion, 21, 22, 23
 bulk, 81
 conversion vs. temperature profile, 21
 influence on rate, 19–23
 Knudsen, 81
 rate, 80–82
 relative rates as a function of temperature, 22
 theory, 81, 82
pore size, 48
 distribution, 49, 51
 by mercury intrusion, 51
 and volume, measurement, 49–51
porous network, of carrier, 19
precious metal, 183
 -containing DOCs, 267
 deactivation/stabilization of, 241, 242
 oxidation catalyst, 241
 recovery, 248
 recovery, from catalytic converters, 248
 salts, 250
precipitating agents, 219
pre-exponential factor, 3
preferential oxidation (PROX), 117, 125
pre-reforming of light hydrocarbons, 111
pressure, 4
INDEX

pressures, packed bed, 83–84
pressure swing adsorption (PSA), 106
process design, 132
promoters, 7
propene & NH₃ oxidation to acrylonitrile, 167–168
propene oxidation to acrolein to acrylic acid, 164–65
propylene, 165
propylene glycol, 166
proton-exchange membrane (PEM) fuel cell, 281, 283, 285, 290
 single cell, 288
technology, 289
voltage-current profile, 286
PROX. see preferential oxidation (PROX)
PSA. see pressure swing adsorption (PSA)
pseudo-boehmite, 32
Pt atoms, 19
Pt catalyst, 5
electrocatalyst, 281, 286
Pt-Rh catalyst, 24
alloy catalyst, 147
Pt/Rh ratio, 254
purified oil, 276
pyrometallurgical method, 248

Q
quench reactor, 136
 design, 132
SO₂ production, 158

R
rate constant, 3
rate equation: approach to equilibrium, 77
rate expression, power law, 73
rate-limiting process (RLP), 82–83
rate-limiting step, 6, 22
reactant compositions, 4
reactant concentration gradients, 22
 within a spherical structured catalyst, 23
reactants, 1, 2, 3, 5, 10, 19
reaction chemistry, 130
reaction kinetic models, 13, 14
 first order, isothermal, 77–78
reaction rate, 3, 6
 definition of, 71, 72
 O₂ concentration, 247
reactive organic gases (ROGs), 215–216
reactor bed pressure drop, 83, 84
reactor engineering, 70
regeneration
 of catalyst species, 1
coked catalyst, 99–100
VOC catalysts, 224
regulations, in United States, 236–237
renewable fuel, 230
residence time, 69
Reynolds number, 218, 222
R groups, 276
Rh catalyst, 207, 208, 271
 TWC catalyst, 270
rhodium triphenylphosphine homogeneous catalysts, 206
ROGs. see reactive organic gases (ROGs)
Ru catalyst, 18
ruthenium, 131, 287

S
safety, removal of reduced Cu and Ni catalysts, 116
scanning electron micrograph (SEM), 32
 energy dispersive analyzer, 57
γ-Al₂O₃ and α-Al₂O₃, 33, 58
 morphology of catalytic materials by, 56, 57
scanning electron microscopy (SEM), 56–57
Schmidt number, 79, 80
SCR. see selective catalytic reduction (SCR)
 secondary ion mass spectroscopy (SIMS), 63
selective catalytic reduction (SCR), 36
 with Cu and Fe zeolites, 268
NH₃ reduction reactions, 269
 catalysts, 227–229
 chemistry, 227–228
 coal power plants, 227–229
 reactor design, 228–229
of NOₓ, 227–229
reactor schematic, 229
SCR systems, 228
technology, 227–229
selectivity, 24–26, 25
 calculations for reactions with multiple products, 25, 26
 general equation for, 24, 25
SEM. see scanning electron micrograph (SEM)
sequential reactions, 179
shell-cooled reactor, 138
design, illustration of, 138
Sherwood number, 80
silicon carbide (SiC), 266
simulated aging methods, 255–256
sintering, 33, 186
of carrier, 92–95
of catalytic species, 89–91
metal crystallites, 89–91
support, 92–95
SiO₂-Al₂O₃
carrier material, 19
ratio, 36
slipstream testing, 224
slurry/loop reactor (synthol process), 143
slurry-phase hydrogenation reaction, 174
slurry-phase process, 210
sodium methoxide (NaOCH₃), 276
solar energy, 104
solid catalyst, 4, 5
solid oxide fuel cells (SOFCs), 282, 284, 293
soluble organic fraction (SOF), 263
space time, 69, 70
space velocity (SV), 69, 70
spark-ignited engine, 236
spectroscopy, in situ and ex situ, 65–66
SR. see steam reforming (SR)
staged cooling design, illustration of, 137
staged cooling reactor, 137
standard cubic feet per minute (SCFM), 245
standard performance tests, 238
starchy mash, 278
stationary source catalyst technology, 227
steam reforming (SR), 104, 106, 123
catalysts, 108–109, 140, 292
deactivation, 110–111
of hydrocarbons, 104–112
pre-reforming, 111
process, 106–111
reactor, 108
stirred tank reactors, 172
stoichiometric point, 235
structure of catalyst, 8
sulfur-containing chemicals, 155, 222
sulfuric acid production, 34, 155
catalyst deactivation, 158–159
catalyst design, 156
process design, 155–158
reaction chemistry, 155–156
reactor design, 157–158
sulfur oxide (SO₂) compounds, 34
Sulfur oxide poisoning
NOₓ trap, deactivation of, 271
sulfur production via Claus process, 154–155
supported catalysts, 31
supporting catalytic component, 19
surface area, 48
measurement, 49–50
and pore size, 49
surface kinetics
rate of, 72
reaction, 69
surface, reaction models, 13–18
syndiotactic isomer, 212
syngas production
autothermal reforming, 111–112
Fischer-Tropsch synthesis, 120–121
methanol synthesis, 120
partial oxidation, 111–112
steam reforming, 111–112
synthesis gas, 105, 118, 140
synthetic cordierite, 244
T
tanks, high-pressure, 281
temperature, 4, 23
temperature-programmed oxidation (TPO), 56
temperature-programmed reduction (TPR), 56
terephthalic acid, 182
textural promoter, 7
thermal gravimetric analysis (TGA), 55–56
decomposition of barium acetate on ceria, 55
thermally induced deactivation, 88, 89
thermal stresses, 265
thermocouples, 9
thermodynamics, 129
equilibrium, 132
function, 1
properties, 3
thin-wall cordierite substrates
nominal properties, 221, 244, 245
three-way catalysts (TWCs)
exhaust system, 246
performance, 256
time–temperature relationships, 33
titania, 34, 35
toluene, 201
tortuosity, 81
total particulate matter (TPM), 263
total wall surface area (TSA)
of monolith, 218
TPO. see temperature-programmed oxidation (TPO)
TPR. see temperature-programmed reduction (TPR)
transition metals, 240
-exchanged zeolite-based catalyst, 268
transmission electron microscopy (TEM), 61–62
Pt on CeO2, 61
triglycerides (TRGs), 274
trihydrate (bayerite) alumina, 33
tube-cooled reactor, 137
tubular reactors, 8, 166

U
unburned diesel fuel, 263
unburned hydrocarbons (UHC), 235
United States
Federal Test Procedure, 238
regulations, 236–237
urea, 147

V
vacuum oils, 191
vanadia (V2O5) catalysts, 24, 25, 35, 227, 228
vegetable oils, 274
hydrogenation, 177–180
volatile organic compounds (VOCs), 215–224
abatement, 215
restaurant cooking, 225–226
applications, 222
CO, catalytic incineration of, 216–222
design, 224
process with heat integration, 223
technology, 225
volatilization, 159
voltage–current profile, 286
volume of reactor, 69
volumetric flow, 70, 71
Vulcan XC-72, 290

W
wall flow filter, 267
Washburn equation, 51
washcoat, 4, 243
electron microprobe scans of, 266
loss, 256
monolith, physical properties, 54
washing method, in-house, 226
wastewater treatment, 215
water gas shift (WGS), 112, 124
catalysts, 113–116
deactivation, 116
high & low temperature, 114–116
mechanism, 113
process, 112–116
water gas shift reaction (WGSR), 134
weight hourly space velocity (WHSV), 71
Weisz-Prater criterion, pore diffusion, 82
WGS. see water gas shift (WGS)
WGSR. see water gas shift reaction (WGSR)
wide-body aircraft fly, 229

X
x-ray diffraction (XRD), 57–58, 62
crystal size, 240
patterns of γ- and α-Al2O3, 59
studies, 242
x-ray photoelectron spectroscopy (XPS), 62–64, 99
spectrum of various oxidation states of
palladium on Al2O3, 64

Z
Zeigler–Natta catalyst, 212
zeolite (HZ), 8, 198
cage, 35
lose Si–O–Al bridges, 94
NMR profile of a thermally aged, 94
possess, 268
zeolites, 35–37
ZSM-5, 36