CONTENTS

Preface
Akira Hirose
vi

1 **Application Fields and Fundamental Merits**
Akira Hirose
1

1.1 **Introduction**
1

1.2 **Applications of Complex-Valued Neural Networks**
2
1.2.1 **Antenna Design**
2
1.2.2 **Estimation of Direction of Arrival and Beamforming**
3
1.2.3 **Radar Imaging**
3
1.2.4 **Acoustic Signal Processing and Ultrasonic Imaging**
3
1.2.5 **Communications Signal Processing**
3
1.2.6 **Image Processing**
4
1.2.7 **Social Systems Such as Traffic and Power Systems**
4
1.2.8 **Quantum Devices Such as Superconductive Devices**
4
1.2.9 **Optical/Lightwave Information Processing Including Carrier-Frequency Multiplexing**
4
1.2.10 Hypercomplex-Valued Neural Networks

1.3 What is a complex number?
 1.3.1 Geometric and Intuitive Definition
 1.3.2 Definition as Ordered Pair of Real Numbers
 1.3.3 Real 2×2 Matrix Representation

1.4 Complex numbers in feedforward neural networks
 1.4.1 Synapse and Network Function in Layered Feedforward Neural Networks
 1.4.2 Circularity

1.5 Metric in complex domain
 1.5.1 Metric in Complex-Valued Self-Organizing Map
 1.5.2 Euclidean Metric
 1.5.3 Complex Inner-Product Metric
 1.5.4 Comparison Between Complex Inner Product and Euclidean Distance
 1.5.5 Metric in Correlation Learning

1.6 Experiments to elucidate the generalization characteristics
 1.6.1 Forward Processing and Learning Dynamics
 1.6.2 Experimental Setup
 1.6.3 Results

1.7 Conclusions

References

2 Neural System Learning on Complex-Valued Manifolds

Simone Fiori

2.1 Introduction

2.2 Learning Averages over the Lie Group of Unitary Matrices
 2.2.1 Differential-Geometric Setting
 2.2.2 An Averaging Procedure over the Lie Group of Unitary Matrices

2.3 Riemannian-Gradient-Based Learning on the Complex Matrix-Hypersphere
 2.3.1 Geometric Characterization of the Matrix Hypersphere
 2.3.2 Geodesic-Stepping Optimization Method
 2.3.3 Application to Optimal Precoding in MIMO Broadcast Channels

2.4 Complex ICA Applied to Telecommunications
2.4.1 Complex-Weighted Rigid-Body Learning Equations for ICA 51
2.4.2 Application to the Blind Separation of QAM/PSK Signals 53
2.5 Conclusion 53
References 55

3 N-Dimensional Vector Neuron and Its Application to the N-Bit Parity Problem 59
Tohru Nitta
3.1 Introduction 59
3.2 Neuron Models with High-Dimensional Parameters 60
3.2.1 Complex-Valued Neuron 60
3.2.2 Hyperbolic Neuron 61
3.2.3 Three-Dimensional Vector Neuron 61
3.2.4 Three-Dimensional Vector Product Neuron 62
3.2.5 Quaternary Neuron 63
3.2.6 Clifford Neuron 63
3.3 N-Dimensional Vector Neuron 65
3.3.1 N-Dimensional Vector Neuron Model 65
3.3.2 Decision Boundary 65
3.3.3 N-Bit Parity Problem 67
3.3.4 A Solution 67
3.4 Discussion 69
3.5 Conclusion 70
References 71

4 Learning Algorithms in Complex-Valued Neural Networks using Wirtinger Calculus 75
Md. Faizul Amin and Kazuyuki Murase
4.1 Introduction 76
4.2 Derivatives in Wirtinger Calculus 78
4.3 Complex Gradient 80
4.4 Learning Algorithms for Feedforward CVNNs 82
4.4.1 Complex Gradient Descent Algorithm 82
4.4.2 Complex Levenberg–Marquardt Algorithm 86
4.4.3 Computer Simulations 89
4.5 Learning Algorithms for Recurrent CVNNs 91
5 Quaternionic Neural Networks for Associative Memories
Teijiro Isokawa, Haruhiko Nishimura, and Nobuyuki Matsui

5.1 Introduction
5.2 Quaternionic Algebra
 5.2.1 Definition of Quaternion
 5.2.2 Phase Representation of Quaternion
 5.2.3 Quaternionic Analyticity
5.3 Stability of Quaternionic Neural Networks
 5.3.1 Network with Bipolar State Neurons
 5.3.2 Network with Continuous State Neurons
 5.3.3 Network with Continuous State Neurons Having
 Local Analytic Activation Function
 5.3.4 Network with Multistate Neurons
5.4 Learning Schemes for Embedding Patterns
 5.4.1 Hebbian Rule
 5.4.2 Projection Rule
 5.4.3 Iterative Learning for Quaternionic Multistate
 Neural Network
5.5 Conclusion

6 Models of Recurrent Clifford Neural Networks and Their Dynamics
Yasuaki Kuroe

6.1 Introduction
6.2 Clifford Algebra
 6.2.1 Definition
 6.2.2 Basic Properties and Algebraic Basis
6.3 Hopfield-Type Neural Networks and Their Energy
 Functions
6.4 Models of Hopfield-Type Clifford Neural Networks
6.5 Definition of Energy Functions
7 Meta-cognitive Complex-valued Relaxation Network and its Sequential Learning Algorithm
Ramasamy Savitha, Sundaram Suresh, and Narasimhan Sundararajan

7.1 Meta-cognition in Machine Learning
7.1.1 Models of Meta-cognition
7.1.2 Meta-cognitive Neural Networks

7.2 Meta-cognition in Complex-valued Neural Networks
7.2.1 Problem Definition
7.2.2 Meta-cognitive Fully Complex-valued Radial Basis Function Network
7.2.3 Complex-Valued Self-Regulatory Resource Allocation Network
7.2.4 Issues in Mc-FCRBF and CSRAN

7.3 Meta-cognitive Fully Complex-valued Relaxation Network
7.3.1 Cognitive Component: A Fully Complex-valued Relaxation Network (FCRN)
7.3.2 Meta-cognitive Component: A Self-regulatory Learning Mechanism

7.4 Performance Evaluation of McFCRN: Synthetic Complex-valued Function Approximation Problem

7.5 Performance Evaluation of McFCRN: Real-valued Classification Problems
7.5.1 Real-valued Classification Problem in the Complex Domain
7.5.2 Data Sets
7.5.3 Modifications in McFCRN Learning Algorithm to Solve Real-Valued Classification Problems
7.5.4 Performance Measures
7.5.5 Multi-category Benchmark Classification Problems
8 Multilayer Feedforward Neural Network with Multi-Valued Neurons for Brain–Computer Interfacing

Nikolay V. Manyakov, Igor Aizenberg, Nikolay Chumerin, and Marc M. Van Hulle

8.1 Brain–Computer Interface (BCI) 185
 8.1.1 Invasive BCI 187
 8.1.2 Noninvasive BCI 188

8.2 BCI Based on Steady-State Visual Evoked Potentials 188
 8.2.1 Frequency-Coded SSVEP BCI 190
 8.2.2 Phase-Coded SSVEP BCI 191

8.3 EEG Signal Preprocessing 192
 8.3.1 EEG Data Acquisition 192
 8.3.2 Experiment Description 192
 8.3.3 Feature Selection 194

8.4 Decoding Based on MLMVN for Phase-Coded SSVEP BCI 196
 8.4.1 Multi-Valued Neuron 196
 8.4.2 Multilayer Feedforward Neural Network with Multi-Valued Neurons (MLMVN) 198
 8.4.3 MLMVN for Phase-Coded SSVEP BCI 200

8.5 System Validation 201
8.6 Discussion 203

Appendix: Decoding Methods 204
 A.1 Method of Jia and Co-workers 204
 A.2 Method of Lee and Co-workers 204
 References 205

9 Complex-Valued B-Spline Neural Networks for Modeling and Inverse of Wiener Systems 209

Xia Hong, Sheng Chen and Chris J. Harris

9.1 Introduction 210
9.2 Identification and Inverse of Complex-Valued Wiener Systems 211
 9.2.1 The Complex-Valued Wiener System 212
10 Quaternionic Fuzzy Neural Network for View-invariant Color Face Image Recognition

Wai Kit Wong, Gin Chong Lee, Chu Kiong Loo, Way Soong Lim, and Raymond Lock

10.1 Introduction

10.2 Face Recognition System
10.2.1 Principal Component Analysis (PCA) Method
10.2.2 Non-negative Matrix Factorization (NMF) Method
10.2.3 Block Diagonal Non-negative Matrix Factorization (BDNMF) Method

10.3 Quaternion-Based View-invariant Color Face Image Recognition
10.3.1 Quaternion
10.3.2 Quaternion Fourier Transform
10.3.3 Quaternion-Based View-Invariant Color Face Image Recognition System Model

10.4 Enrollment Stage and Recognition Stage for Quaternion-Based Color Face Image Correlator
10.4.1 Enrollment Stage
10.4.2 Recognition Stage

10.5 Max-Product Fuzzy Neural Network Classifier
10.5.1 Fuzzy Neural Network System
10.5.2 Max-Product Fuzzy Neural Network Classification

10.6 Experimental Results
10.6.1 Database of Reference Face Images for 200 Persons
10.6.2 Quaternion-Based Face Image Correlation Using Unconstrained Optimal Tradeoff Synthetic Discriminant Filter (UOTSDF)
10.6.3 Efficiency of the View-invariant Color Face Image Recognition System 269
10.6.4 Comparative Study with the Parallel Method 271
10.7 Conclusion and Future Research Directions References 274
Index 279