INDEX

ABL kinase, cancer drug development, 427
Acoustic neuroma, histopathology, 190
Active immunotherapy, mouse models, 331–332
Acute lymphoblastic leukemia (ALL):
  gain-of-function germline modification, knockin techniques, 48–49
  mouse models, 227
Acute myeloid leukemia (AML):
  classification and genetics, 217–220
  clinical features, 220
  cytogenetic risk groups, 220
  Flt-3 inhibitors, preclinical trials, mouse models for, 441
  gain-of-function germline modification, knockin techniques, 49
  genetic abnormalities table, 221
  hematopoiesis sites, 216–217
  mouse models, 222–227
    recurrent genetic abnormalities, 223–227
    therapeutic options, 220
Acute promyelocytic leukemia (APL):
  gain-of-function germline modification, 46
  genetics, 220
  mouse models, 223–227
  preclinical trials, mouse models for, 440–441
Adaptive immunity, tumor rejection mouse models, 326–327
Additive effect, cancer modifiers, 281
Adeno-associated viral (AAV) vectors, bioluminescent imaging, 366–367
Adenocarcinoma, prostate cancer mouse models:
  ARREPh-c-MYC mouse, 142–143
  BK5-IGF-1 mouse, 144
  C3(1) SV40 large-T antigen mouse, 141
  transgenic adenocarcinoma mouse prostate mouse, 140–141
Adnexal neoplasms, mouse models, 164–165
Adoptive immunotherapy, magnetic resonance imaging, liver cancer models, 354
Advanced intercrosses (AI), cancer modifier fine mapping, 277–278, 281
Advanced microscopy, cancer pathology in mouse models, investigator’s responsibilities, 21
Adverse drug reactions (ADRs), physiologically-based pharmacokinetics/pharmacodynamics, chemical interactive models, 396–397
Aiolos transcription factor, pre-B-LBL mouse models, 247
Akt oncogenes:
  human brain tumor genetics, 204
  mouse models, 206
  ovarian cancer, epithelial tumors, mouse models, 183
Allele, cancer modifier fine mapping, 281
Allele substitution effect, defined, 283
All-trans retinoic acid (ATRA):
  acute myeloid leukemia therapy, 220
  cancer drug development:
    genetic factors, 427
    stem cell properties, 426–427
  preclinical trials, mouse models for, 440–441
Alveologenesis, lung epithelial cell specialization, 88–89
AML1-ETO fusion gene:
  acute myeloid leukemia, mouse models, 226–227
  gain-of-function germline modification, knockin techniques, 49
AML1/MDS1/EVI1 fusion proteins, chronic myeloproliferative disease, mouse models, 228–229
Analysis of variance (ANOVA):
  dose-response relationships, 419–421
  factorial experimental design, 421
  randomized-block and within-subject designs, 419–420
  scale transformations, 420–421
  one-way ANOVA, completely randomized design, 417–418
Analysis of variance (ANOVA): (continued)
sample size estimation, 416
treatment response evaluation, log kill evaluation, 379–380
underlying assumptions, 418–419
Anaplastic PCT (PCT-A), mouse models, 250
Anatomic imaging, mammary gland cancer, human disease,
109–110
ANCA index, mammary gland cancer, mouse model–human
genomic comparisons, 119
Androgen receptor (AR):
cancer drug development, stem cell properties, 426–427
prostate cancer mouse models, Pb-mAR mice, 144
Androgen withdrawal, prostate cancer therapy:
cryptidin-2 SV40 TAg mouse model, 142
LADY transgenic mouse, 141
transgenic adenocarcinoma mouse prostate mouse model,
140–141
Anesthesia:
magnetic resonance imaging, oncologic mouse models, 353
micro-computed tomography monitoring, 340
Angiogenesis:
blood vessel formation control:
reproductive angiogenesis, 300–301
transcription factors, 296–297
dynamic contrast-enhanced magnetic resonance imaging,
tumor function, mouse cancer models, 357–359
inhibitors, preclinical trials, mouse models for, 441–442
integrins, 296
mammary gland cancer, 111
metastasis mouse models, 311
tumor angiogenesis markers and targets, 301
Angiopoietins (Ang 1–4):
blood vessel formation, mouse models, embryonic
development, 295–296
postnatal blood formation models, wound healing, 300
Antiangiogenic compounds, mammary gland cancer, mouse
models, 123
Antibiotics, genetically engineered mice, breeding strategies, 9
Antibodies:
immunologic tumor research, mouse models, 330–331
tumor rejection mouse models, adaptive immunity,
326–327
APAF-1 markers, malignant melanoma genetics, 153–155
APC gene, loss-of-function germline modification, knockout
techniques, 56–58
API signaling, mammary gland cancer, retinoids, 111
Apoptosis, bioluminescent imaging, 386–387
Apparent diffusion coefficient (ADC):
diffusion-weighted magnetic resonance imaging, treatment
response evaluation, 380–384
diffusion-weighted MRI, tumor function, mouse cancer
models, 356–357
prostate cancer models, magnetic resonance imaging, 356
Aromatase inhibitors, mammary gland cancer, 110
Arotinoid Ro 40–8757, mammary gland cancer, mouse models
for prevention and therapy, 122
ARR2Pb-c-MYC mouse, prostate cancer models, 142–143
Arsenic trioxide:
acute promyelocytic leukemia therapy, 220
Acute promyelocytic leukemia, mouse models, 226
Artifacts:
fixation techniques, cancer pathology in mouse models,
19–21
magnetic resonance imaging, liver cancer models, 354
micro-computed tomography imaging, 341
Asialoglycoprotein (ASG) receptors, magnetic resonance
imaging, liver cancer models, 354
Association study design, defined, 283
Astrocytomas:
clinical aspects, 200–201
mouse models, 205–206
ATM gene, precursor T-cell lymphoblastic leukemia/lymphoma
mouse models, 250
Attrition rates, physiologically-based
pharmacokinetics/pharmacodynamics, 395
Autoimmune lymphoproliferative syndrome (ALPS), Fas/FasL
mutations, 244
Avian retroviruses, somatic cell gene transfer, murine cell
infection, 71–73
Avian sarcoma and leukosis virus (ASLV):
historical background, somatic gene cell transfer, 68–69
viral infection specificity, 70
Axonal structures, peripheral nerves, 189–190
B-1a B cells, B-chronic lymphocytic leukemia, 239
B-1 B cells, development in mice, 239
Backcross design:
cancer modifier analysis, 266–267
defined, 283
Background strain analysis, cancer pathology in mouse models,
investigator’s responsibilities, 16
Bacterial Artificial Chromosome (BAC) cloning vector,
defined, 283
BALB/c mouse models, bioluminescent imaging, biochemical
assays, 366–367
Basal cell carcinoma:
biochemistry, 163
cancer biology, 162–163
clinical features, 162–163
cancer cell biology, 164–165
pathology, 163
Basal cell nevus syndrome (BCNS), medulloblastoma genetics
and signaling, 204–205
Bayesian interference, defined, 283
B-cells:
cancer, mouse models, 244–250
Burkitt and Burkittlike lymphoma, 248–249
diffuse large-B-cell lymphoma, 249
follicular B-cell lymphoma, 248
plasma cytoma, 249–250
precursor B-cell lymphoblastic lymphoma/leukemia,
244–247
Aiolos system, 247
Blk tyrosine kinase, 246–247
c-myc, 247
IL-7, 247
p16(Ink-4a)/p19(Arf), 247
Philadelphia chromosome, 244–246
TEL/AML1 oncogene, 247
small B-cell leukemia/lymphoma, 247–248
spleen marginal zone lymphoma, 248
development in mice, 237–239
lymphoid malignancy classifications, 241
physiologically-based pharmacokinetics/pharmacodynamics
models, carcinogenesis-related clonal growth, 400
tumor rejection mouse models, adaptive immunity, 326–327
BCG therapy, mouse models, 332
B-chronic lymphocytic leukemia (B-CLL), B-1a B cell
development, 239
Bcl-2 protein:
- ovarian cancer models, germ cell tumors, 179–180
- plasmacytoma mouse models, 250

BCR/ABL gene expression:
cancer drug development:
cancer genetics, 429–430
- genetic factors, 427
chronic myeloproliferative disease, mouse models, 228–229
conditional gain-of-function germline modification, inducible
oncogenes, 50
farnesyl transferase inhibitors (FTIs), preclinical trials,
mouse models for, 442–443
gain-of-function germline modification:
- knockin techniques, 48–49
- transgenic techniques, 44–46
- nonlymphoid hematopoietic neoplasms, mouse models, 229
Philadelphia chromosome, mouse model, 244–246
Benign prostatic hyperplasia (BPH):
human disease:
- anatomy, 136–137
- clinical diagnosis, 133–134
- imaging studies, 134–136
- mouse models, 112
Bethesda classification table:
- lymphoid hematologic malignancies, 241–243
- nonlymphoid hematopoietic neoplasms, 223
Between-subjects experimental design, basic characteristics,
412
Bicistronic vectors, somatic cell gene transfer, 77–78
Binomial distribution, trial design data, 410–411
Biochemical assays, bioluminescent imaging, 365–367
Biochemical constants, physiologically-based
pharmacokinetics/pharmacodynamics, 396
Bioluminescence resonance energy transfer (BRET), reporter
gene strategies, 370
Bioluminescent imaging (BLI):
mouse cancer models:
- biochemical assays and validation of, 365–367
- hematopoietic stem cell engraftment and multilineage
  reconstitution, 369
- immune surveillance mechanisms and immunotherapy,
  368–369
- low-light imaging detector technologies, 365
reporter gene strategies, 369–370
research overview, 363–365
spontaneous tumor models, 367–368
treatment response evaluation:
apoptosis imaging, 386–387
RB pathway in Eflux transgenic mice, 387–388
tumor cell kill quantitation, 384–386

Biostatistics:
data categories, 410–411
frequency distribution, 410–411
measurement scale, 410
numerical data, 410
dose-response relationships, 419–421
ANOVA for randomized block and within-subject designs,
419–420
factorial experiment statistical analysis, 421
scale transformations, 420–421
experimental design, 412–415
completely randomized (between-subjects) design, 412
factorial design, 414–415
formal designs, 414
Latin square design, 413–414
randomized block design, 412–413
treatment selection, 412
within-subject/crossover design, 413
experimental/observational studies, 411–412
pilot studies, 411–412
randomization and blinding, 411
experimental unit features, 408
fixed-effect variation, 410
interindividual variation, 408–409
isogenic strains, 409
measurement error, 409
multiple characters or outcomes, 421–422
nonparametric methods, 422
populations and samples, 411
preclinical studies, 407–408
results presentation, 422–423
sample size estimation, 415–416
power analysis, 415–416
resource equation method, 416
statistical analysis, 416–419
- analysis of variance assumptions, 418–419
- data screening, 416–417
dedicated software, 417
nonparametric vs. parametric methods, 417
one-way ANOVA, completely randomized design,
417–418
- post hoc comparisons, 419
statistical inference, 408
temporal/spatial effects, 409–410
1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU), treatment
response evaluation:
diffusion-weighted magnetic resonance imaging,
381–384
magnetic resonance imaging, 378
BK5-IGF-1 mouse, prostate cancer models, 144
Bladder cancer, magnetic resonance imaging, oncologic mouse
models, 355
Blk tyrosine kinase, pre-B-LBL mouse models, 246–247
Blood collection protocols, laboratory mice, 5–6
Blood handling protocols, laboratory mice, 7–8
Blood vessel formation, mouse models:
  embryonic development, 293–297
  integrins, 296
  receptor tyrosine kinases and ligands, 294–296
  transcription factors, 296–297
  postnatal processes, 297–301
  bone marrow contribution to neoangiogenesis, 297–299
  reproductive angiogenesis, 300–301
  tumor angiogenesis markers and targets, 301
  wound healing, 299–300
“Blue cell tumors,” medulloblastomas as, 202–203
BM5def virus, diffuse large B-cell lymphoma mouse model, 249
Body fluid collection, laboratory mice, 5–6
Bone marrow reconstitution models:
  lymphoma/leukemia, 245
  postnatal blood vessel formation, 297–299
Bone marrow retroviral transduction, acute myeloid leukemia, mouse models, 226–227
Bone morphogenetic protein 4 (BMP-4):
  lung epithelial cell specialization, signaling and transcription, 86–87
  lung morphogenesis, 85
Bone scintigraphy, prostate cancer, human disease, 135
Bootstrap sampling, defined, 283
Brain tumors (see Central nervous system tumors)
Brca2 gene, precursor T-cell lymphoblastic leukemia/lymphoma mouse models, 252
BRCA gene family:
  mammary gland cancer:
    gene expression profiling, 107
    human disease, 104
    molecular changes, 107
    mouse models, 118
  ovarian cancer genetics, 178
Breast cancer. See Mammary gland cancer
Breeding strategies:
  cryopreservation techniques, mouse embryos, sperm, and molecular constructs, 10–12
  genetically engineered mice, 8–9
BRMS1 suppressor gene, metastasis mouse models, 312
Burkitt and Burkittlike lymphoma (BL,BLL), mouse models, 248–249
BXH-2 mice, acute myeloid leukemia models, 227
C. rodentium, carcinogenesis, 37
C3(1)-c-myc mouse, prostate cancer mouse models, 143
C3(1) prostate steroid, mammary gland cancer, SV40-TAg mouse models, 117–118
C3(1) SV40 large-T antigen mouse, prostate cancer model, 141
CA125 serum tumor marker, ovarian cancer screening, 175
Cadherins, metastasis detachment and motility models, 310–311
Canale-Smith syndrome, Fas/Fasl mutations, 244
Cancer cell properties, cancer drug development, 426–427
Cancer drug development:
  cancer cell properties, 426–427
  genetic disorders, 427
  hyperproliferative disease, 426
  stem cell disorders, 426–427
  clinical testing, 433
  current issues, 425–426
  cytotoxic chemotherapy, 427–428
  genetics, 429–430
  genomics, 428–429
  high-throughput screening, 430–431
    in silico lead discovery, 431
    lead optimization and medicinal chemistry, 431–432
    preclinical testing, 432–433
    human disease, mouse models, 437–438
    protocols, 428
    recessive genetics and target validation, 430
    target selection discovery and validation, 428
Cancer Genome Anatomy Project, defined, 283
Cancer pathology, mouse models:
  basic principles, 15–16
  communication of data, 27
  comparative pathology, 27–28
  imaging protocols, 26–27
  investigator’s responsibilities, 16–21
  documentation, 16–17
  laboratory preparations, 17–26
  fixatives, fixation and processing protocols, 19–21
  microscopy and image capture, 21
  necropsy protocols, 17–19
  pathologist’s responsibilities, 21–26
  documentation procedures, 26
  interpretation guidelines, 21–26
Carbon tetrachloride, physiologically-based pharmacokinetics/pharmacodynamics models, 397–398
Carcinogenesis models:
  infectious disease and, 36–37
  lung cancer, 89–92
    carcinogen evaluation applications, 89–90
    carcinogen metabolism mechanisms, 90–92
    chemopreventive agent applications, 92
    physiologically-based pharmacokinetics/pharmacodynamics models, clonal growth rates, 398–400
Cardiac puncture techniques, blood collection protocols using, 7
Caspase-3 (DEVD), bioluminescent imaging, apoptosis, 386–387
Cast/EiJ mice, genetically engineered mice, breeding strategies, 9
Categorical data, nonparametric study design, 422
Cathepsin G PML/RARA mice, acute promyelocytic leukemia, 223–227
CBFB/MYH11 fusion, acute myeloid leukemia, mouse models, 226–227
CCND1 gene, mammary gland cancer, mouse models, 106–107
CD-1 mouse, carcinogen-induced models:
  evaluation applications, 90
  metabolic activation mechanisms, 90–91
CDH1 gene, mammary gland cancer, molecular changes, 107
Cdkn2a gene, cancer modifier fine mapping, validation, 278
CDKN2A locus, malignant melanoma genetics, 153–155
Cell-based high-throughput screening (HTS), cancer drug development, 430
Cell-cell adhesion molecules (CAMs), metastasis detachment and motility models, 309–311
Cell cycle control, human brain tumor genetics, 204 mouse models, 206
Cell of origin identity:
- lung cancer, human disease, 84
- somatic cell gene transfer, 77
Cell signaling, metastasis mouse models, 312, 315
Centimorgan, defined, 283
Central nervous system (CNS) tumors:
- brain tumors:
  - astrocytomas and glioblastoma multiforme, 200–201
  - clinical aspects, 200–203
diagnosis, 203
gliomas, 200–202
- genetics, 203–204
- mouse models, 205
- imaging of mouse models, 208
- medulloblastomas, 202–203
- genetics, 204–205
- mouse models, 205, 207–208
- oligodendrogliomas, 201–202
mouse models, 206–207
incidence and epidemiology, 199–200
Charge-coupled device cameras, bioluminescent imaging, 365
Chemical interactions, physiologically-based pharmacokinetics/pharmacodynamics, 396–397
Chemically induced tumors, peripheral nerve sheath, mouse models, 193–194
Chemiluminescence resonance energy transfer (CRET), reporter gene strategies, 370
Chemokine receptors, mammary gland cancer, metastases, 109
Chemokines, postnatal blood formation models, bone marrow contribution, 298–299
Chemopreventive agents:
carcinogen-induced models, evaluation with, 92
mammary gland cancer, human disease, 110
Chemotherapeutic agents. See also Cancer drug development
cancer drug development, research background, 427–428
dosing schedules, physiologically-based pharmacokinetics/pharmacodynamics models, 397
preclinical trials, mouse models for, 443
Chi-squared statistic:
cancer modifier localization, 273–274
nonparametric study design, 422
Chromosome engineering, germ line modification, 54–56
Chromosome substitution (CS) strains:
cancer modifier fine mapping, congenic creation, 276
cancer modifier mapping, 270
defined, 283
Chronic idiopathic myelofibrosis (CIMF), mouse models, 229
Chronic myeloproliferative disease (CMD):
clinical features, 220
genetics, 220
hematopoiesis sites, 216–217
mouse models, 228–229
Circulating endothelial progenitor (CEP) cells, postnatal blood formation models, bone marrow contribution, 298–299
9-cis-retinoic acid, mammary gland cancer, mouse models for prevention and therapy, 122
Citrobacter, pseudocancer with, 36
Clara cell-specific protein (CCSP):
- lung epithelial cell specialization, alveologenesis, 88–89
transgenic lung cancer models, conventional mice, 93–95
Classification variables, treatment selection criteria and, 412
Clinical diagnosis, benign prostatic hyperplasia (BPH), 133–134
Clinical trials, cancer drug development, 433
Clonal growth rates, physiologically-based pharmacokinetics/pharmacodynamics models, carcinogenesis, 398–400
c-myc expression:
estrogen receptor fusion protein, squamous cell carcinoma mouse models, 160–162
lymphoid malignancies:
- Burkitt and Burkittlike lymphoma mouse models, 248–249
Fas/FasL mutations, 244
plasmacytoma mouse models, 250
pre-B-LBL mouse models, 246–247
mammary gland cancer:
- conditional oncogene expression, 117
- human disease, molecular changes, 106–107
mouse models, overexpression, 112, 115
ovarian cancer genetics, 178
epithelial tumors, mouse models, 183
prostate cancer mouse models:
ARR2Pb-c-MYC mouse, 142–143
C3(1)-c-Myc mouse, 143
transgenic lung cancer models, conventional mice, 94–95
Co-isogenic strain, defined, 283
COL1A1 gene, MMTV tumor formation, in vivo infection, 76–77
Communication protocols, cancer pathology in mouse models, 27
Comparative genomewide hybridization (CGH):
cancer modifier fine mapping, 277–278
defined, 283
mammary gland cancer:
- human disease, 104–106
- mouse model correlations to human disease, 118–119
Comparative pathology, cancer pathology in mouse models, 23 protocols for, 27–28
Complementary DNA (cDNA), mammary gland cancer, gene expression profiling, 107
Computationally randomized (between-subjects) experimental design:
- basic characteristics, 412
- one-way analysis of variance, 417–418
Complex Trait Consortium (CTC), cancer modifier fine mapping, validation, 278–279
Composite interval mapping (CIM):
cancer modifier localization and detection, 274–275
defined, 283
Compound models, germline modification strategies, 60–61
Compression algorithms, cancer pathology in mouse models, imaging protocols, 27
Computed tomography (CT). See also Micro-computed tomography
brain tumors, 203
mammary gland cancer:
  human disease, 109–110
  mouse models, 121–122
prostate cancer, human disease, 135
Computer modeling, future applications, 402–403
Conditional gene-targeted mouse models:
lung cancer, 96–97
mammary gland cancer, oncogene expression, 117
prostate cancer, Pten(-/-) mouse, 146
Conditional knockout, loss-of-function germline modification, 58–60
Conditional transgenic mice, lung cancer models, 95–96
Confidence intervals:
cancer modifier localization, 273–274
defined, 283
Congenic strain creation:
cancer modifier fine mapping and validation, 275–276
defined, 283
genetically engineered mice, breeding strategies, 9
Conplastic strain, defined, 283
Contingency tables, nonparametric study design, 422
Contrast-enhancing agents, micro-computed tomography, 341–346
hepatocyte-selective agent, 344–345
vascular agent, 345
water-soluble contrast agents, 345–346
Contrast formation, magnetic resonance imaging, 350–352
intrinsic formation, 350–352
Cowden syndrome, mammary gland cancer, human disease, 104
Cox inhibitors, mammary gland cancer:
mouse models for prevention and therapy, 123
prostaglandin inhibition, 111
Cre-loxP system:
  chromosome engineering, 54–56
  conditional/somatic oncogene activation, 51–53
  gain-of-function germline modification, knockin techniques, 47–49
  loss-of-function germline modification, conditional knockout techniques, 58–60
  lung cancer models, gene-targeted mouse models, 96–97
Cre recombinase, conditional/somatic oncogene activation, 50–53
Cross, defined, 283
Crossover experimental design, basic characteristics, 413
Cross-presentation, immunologic tumor research, mouse models, 329–330
CRSP3 suppressor gene, metastasis mouse models, 312
Cryopreservation techniques, mouse embryos, sperm, and molecular constructs, 10–12
Cryptidin-2 SV40 TAg mouse, prostate cancer models, 142
magnetic resonance imaging, 355–356
Crypt invasiveness, infectious agents, pseudocancer with, 36
CTLA-4 blockade, mouse models, 332
Cyclin D1:
malignant melanoma risk and, 155
mammary gland cancer:
molecular changes, 106–107
mouse models, 117
tyrosine kinase inhibitors, 111
Cyclin-dependent kinase 4 (Cdk4) gene:
astrocytomas and glioblastoma multiforme, 201
gain-of-function germline modification, knockin techniques, 48–49
Cyclin-dependent kinase inhibitors, mammary gland cancer, mouse models for prevention and therapy, 122
Cystic teratomas, ovarian cancer, 172, 174
Cytochrome P450 3A4 (CYP3A4), physiologically-based pharmacokinetics/pharmacodynamics models, validation, 400–401
Cytokeratin promoters, squamous cell carcinoma mouse models, 160–162
Cytokine-induced killer (CIK) cells, bioluminescent imaging, immune surveillance, 368–369
Cytotoxic agents:
cancer drug development:
  basic principles, 425–426
  research background, 427–428
  preclinical trials, mouse models for, 443
D. musculi, pathogen-free colonies, 33
Database distributors, laboratory mice, information table, 3–5
Data management:
  micro-computed tomography scanning, 343
  physiologically-based pharmacokinetics/pharmacodynamics, 396
  statistical analysis, data screening, 416–417
  trial design data, 410–411
  categorical data, 422
  frequency distribution, 410–411
  measurement scale, 410
  numerical data, 410
Decapitation, blood collection using, 7
Defect development, genetically engineered mice, breeding strategies, 8–9
Degrees of freedom (DF), one-way analysis of variance, completely randomized (between-subjects) experimental design, 417–418
Dendritic cells, development in mice, 240
Descriptive guidelines, cancer pathology in mouse models, 24–26
Desmoplastic/neurotropic melanoma, pathology, 153
Detachment mechanisms, metastasis models, 309–311
Detection in cancer modifier mapping, 271–275
  heritability, 272
  modifier combinations and interactions, 274–275
  modifier detection, 271–272
  modifier localization, 273–274
  modifier strength, 272
  number of mice for localization, 274
  number of mice progeny, 272–273
permutation test, 272–273
support for localization, 274
DHD/K12 rat colon tumor, magnetic resonance imaging, liver
cancer models, 354
Diagnostic markers, mammary cancer progression,
107–108
Diagnostic terminology, cancer pathology in mouse models,
23–24
1,4-Dichlorobenzene (DCB), physiologically-based
pharmacokinetics/pharmacodynamics models,
carcinogenesis-related clonal growth, 399–400
Diethylnitrosamine (DEN), physiologically-based
pharmacokinetics/pharmacodynamics models,
carcinogenesis-related clonal growth, 399–400
Differentiation:
cancer drug development, stem cell properties,
426–427
myeloid malignancies, hematopoiesis, 216
Differentiation antigens, immunologic mouse models, 324
Diffuse large B-cell lymphoma (DLBCL):
classification, 241–243
mouse models, 249
Diffuse neurofibromas, histopathology, 190–192
Diffusion contrast mechanisms, magnetic resonance imaging,
351–352
Diffusion-weighted magnetic resonance imaging (DW-MRI):
intrinsic contrast mechanisms, 352
treatment response evaluation, 380–384
tumor function, mouse cancer models, 356–357
Difluoromethylornithine (DFMO), mammary gland cancer:
human disease, 111
mouse models for prevention and therapy, 122
Digit amputation, individual mouse identification, 5
Dilute brown non-agouti (DBA) mouse:
development of, 31–32
epizootic disease and, 33
Direct angiogenesis inhibitors, preclinical trials, mouse models
for, 441–442
Direct gene transfer, RCAS vectors, in vivo transfers, 77
Distal lung morphogenesis, epithelial cell specialization, 86–89
DMBA/TPA protocol, squamous cell carcinoma mouse models,
161–162
DNA amplification, cancer modifier fine mapping, 277–278
DNA microarray technology:
cancer modifier fine mapping, 278–279
lymphoid malignancy classification, 241–243
mammary gland cancer, mouse model gene expression
profiling, 119
multiple character experiments, 421–422
ovarian cancer screening, 175
DNA tumor viruses, somatic gene cell transfer, 67–68
Documentation protocols, cancer pathology in mouse models:
is investigator’s responsibilities, 16–17
pathologists’ responsibilities, 26
Dominant allele, defined, 283
Dominant-negative proteins, mammary gland cancer, mouse
models, 112
Dose escalation experiments:
cancer drug development, 428
physiologically-based pharmacokinetics/pharmacodynamics
models, 397
treatment response evaluation, diffusion-weighted magnetic
resonance imaging, 382–384
Dose-limiting toxicity (DLT), cancer drug development, 433
Dose-response relationships, trial design criteria, 419–421
ANOVA for randomized block and within-subject designs,
419–420
factorial experiment statistical analysis, 421
scale transformations, 420–421
Double-replacement strategy, gain-of-function germline
modification, knockin techniques, 48–49
Double-stranded RNA (dsRNA):
germline modification strategies, RNA interference, 61–62
polyoma virus (PyV) development, 67–68
Drug administration, laboratory mice, 12–13
Ductal carcinoma in situ (DCIS):
mammary cancer progression, 108
mammary gland cancer, hormone responsiveness, 108
tyrosine kinase inhibitors, 111
Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI), mouse cancer models, 352
tumor function, 357–359
Dysplastic nevi, malignant melanoma, clinical features,
152–153
E2A proteins, precursor T-cell lymphoblastic
leukemia/lymphoma mouse models, 250
E2F1 promoter, bioluminescent imaging, Rb pathway activity,
387–388
Ear notching, individual mouse identification, 5
Ear tags, individual mouse identification, 5
E-cadherin protein, mammary gland cancer, molecular
changes, 107
Ectromelia virus, model applications, 33
Eflux transgenic mice, bioluminescent imaging, Rb pathway
activity, 387–388
Electronic chip implants, individual mouse identification, 5
“Electronic rats,” physiologically-based
pharmacokinetics/pharmacodynamics models, 397–398
Embryonic development, blood vessel formation, mouse
models, 293–297
integrins, 296
receptor tyrosine kinases and ligands, 294–296
transcription factors, 296–297
Embryonic stem (ES) cells. See also Hematopoietic stem cells
(HSCs)
chromosome engineering, 54–56
gain-of-function germline modification, transgenic
techniques, 46
loss-of-function germline modification, conditional knockout
techniques, 59–60
Embryos, cryopreservation techniques, 10–12
Endogenous proto-oncogene loci, conditional/somatic
oncogene activation, 53
Endo-phenotype, defined, 283
Enhanced green fluorescent protein (EGFP), Cre recombinase
monitoring, 53
Environmental factors, mammary gland cancer, human disease, 104

EP300 acetylase, mammary gland cancer, histone deacetylase inhibitors, 111

Ephrin receptor tyrosine kinases, blood vessel formation, mouse models, embryonic development, 295–296

Epidermal growth factor (EGF):
  human brain tumor genetics, 203–204
  transgenic lung cancer models, conventional mice, 94–95

Epidermal growth factor receptor (EGFR):
  astrocytomas and glioblastoma multiforme, 201
  human brain tumor genetics, 203–204
  mammary gland cancer, molecular changes, 106–107
  oligodendromas, mouse models, 207

Epigenetic effect, defined, 283

Epistasis, defined, 283

Epithelial cell differentiation:
  lung cancer:
    alveologenesis and, 88
    mesenchyme-based signaling and transcription, 87–88
    signaling and transcription, 86–87
  ovarian cancer etiology and, 176–177
  mouse models, 181–183
  tissue culture models, 178–179

ErbB-2/Her2, mammary gland cancer:
  gene expression profiling, 107
  molecular changes, 106–107

ErbB-2 overexpression, mammary gland cancer, mouse models, 117

ERKO mice, mammary gland cancer, estrogen receptor responsiveness, 121

Estrogen receptor (ER):
  cancer drug development, stem cell properties, 426–427
  fusion product, conditional gain-of-function germline modification, inducible oncogenes, 50
  mammary gland cancer:
    gene expression profiling, 107
    hormone responsiveness, 108
    mouse models, hormone responsiveness, 119–121
    signaling inhibitors, 110

Ethyl carbamate, carcinogen-induced models, metabolic activation mechanisms, 90–91

Ethylmethanesulfonate, random point mutagenesis, 3–5

Ethynitrosourea (ENU), random point mutagenesis, 3–5

N-Ethyl-N-nitrosourea (ENU):
  acute myeloid leukemia, mouse models, 226–227
  chemically induced schwannomas, 193–194

ETS transcription family, myelodysplastic/myeloproliferative disorders, mouse models, 229

Experimental studies:
  design categories, 412–415
  completely randomized (between-subjects) design, 412
  factorial design, 414–415
  formal designs, 414
  Latin square design, 413–414
  randomized block design, 412–413
  treatment selection, 412
  within-subject/crossover design, 413
  trial design criteria, 411–412

Experimental units, trial design criteria and, 408

Extracellular extravascular space (EES), dynamic contrast-enhanced magnetic resonance imaging, tumor function, mouse cancer models, 357–359

Extracellular growth factor signaling cascades, human brain tumors, 203–204

Extracellular matrix (ECM):
  lung metamorphogenesis, 85
  postnatal blood formation models, wound healing, 299–300

Extracellular proteases, metastasis detachment and motility models, 310–311

Extracellular matrix (ECM):
  lung metamorphogenesis, 85
  postnatal blood formation models, wound healing, 299–300

Extravasation mechanisms, metastasis mouse models, 311–312

Extrinsic contrast mechanisms, magnetic resonance imaging, 352

Extrinsic factors, defined, 283

F1 female progeny:
  defined, 283
  interspecific backcross and production of, 267–268
  recombinant inbred intercross/backcross derivatives, 269–270

F2 progeny, defined, 283

Factorial experimental design:
  basic characteristics, 414–415
  dose-response relationships, statistical analysis, 421
  treatment selection criteria and, 412

Farnesyl transferase inhibitors (FTIs):
  mammary gland cancer, mouse models for prevention and therapy, 122
  preclinical trials, mouse models for, 442–443

Fascicular organization, peripheral nerves, 189–190

Fas/FasL mutations:
  mouse models, 244
  plasmacytoma mouse models, 250

FcR-deficient mice, tumor rejection mouse models, adaptive immunity, 327

Feces collection protocols, laboratory mice, 8

Fetal cell transplantation, engineered retroviral infection, transfer models, 76

Fibroblast growth factors (FGFs):
  lung cancer models, conditional transgenic mice, 95–96
  lung epithelial cell specialization:
    alveologenesis, 88–89
    mesenchyme-based signaling and transcription, 87–88
    lung morphogenesis, 85
  mammary gland cancer, metalloprotease and angiogenesis inhibitors, 111

Field strength, magnetic resonance imaging, intrinsic contrast formation, 350–352

Fine mapping, cancer modifiers, 275–279
  advanced intercrosses and heterogeneous stocks, 277–278
  congenics, 275–276
  haplotype analysis, 276–277

Fine-needle aspiration biopsy (FNAB), mammary gland cancer, human disease, 109–110

Fixation techniques, cancer pathology in mouse models, investigator’s responsibilities for, 19–21
INDEX 455

Fixatives, cancer pathology in mouse models, investigator’s responsibilities for, 19–21
Fixed-effect variation, trial design criteria and, 410
Flavopiridol, mammary gland cancer, mouse models for prevention and therapy, 122
FLK-1 activity, mammary gland cancer, metalloprotease and angiogenesis inhibitors, 111
Flp-\textit{FRT} system:
  conditional/somatic oncogene activation, 51–53
  loss-of-function germline modification, conditional knockout techniques, 58–60
Flp recombinase, conditional/somatic oncogene activation, 50–53
Flt-3 inhibitors:
  lead optimization and medicinal chemistry, 432
  preclinical trials, mouse models for, 441
\textit{fluc} marker, bioluminescent imaging, spontaneous tumor models, 367–368
5-Fluorocytosine (5FC), treatment response evaluation, diffusion-weighted magnetic resonance imaging, 382–384
Fluorescence in situ hybridization (FISH):
  lymphoid malignancy classification, 241
  mammary gland cancer, human disease, 104–106
Fluorescence polarization, cancer drug development, high-throughput screening, 430
Fluoro-\textalpha-D-glucose (FDG):
  mammary gland cancer, imaging studies, 110
  prostate cancer, human disease, 136
5-Fluorouracil (5-FU) mouse, \textit{Philadelphia chromosome}, \textit{BCR-ABL} gene expression, 244–246
Follicle-stimulating hormone (FSH), ovarian cancer models, sex cord-stromal tumors, 180–181
Follicular B-cell lymphoma (FBL), mouse models, 248

Frequency distributions, trial design data, 410–411
Friedman test, experimental study design, 422

Gadolinium complex bound to polylysine, magnetic resonance imaging, liver cancer models, 354
Gadolinium diethylene triamine pentaacetic acid (Gd-DTPA):
  magnetic resonance imaging, 352
  bladder cancer, 355
oncologic mouse models, brain tumors, 353–354
Gain-of-function germline modification, 44–49
  conditional strategies, 50–54
  Cre or Flp-mediated recombination, 50–53
  inducible oncogenes, 51
  site-specific recombination, oncogene activation, 51–54
  spontaneous recombination, 53–54
  knockin approach, 46–47
  transgenic approach, 44–46
\gamma \textit{gene rearrangements}, lymphoid malignancy classifications, 241
GATA gene expression, lung epithelial cell specialization, 87
alveologenesis, 89
Gaussian distribution, trial design data, 411
Gene, defined, 283
Gene expression profiling:
  B-cell development in mice, 237–239

mammary gland cancer:
  human disease, 107
  mouse models, 119
Generalized lymphoproliferative disease (\textit{gld}) mice, \textit{Fas/FasL} mutations, 244
Gene switching, mouse model engineering, 3–5
Gene-targeted mouse models, lung cancer, 96–97
Genetically engineered mice (GEM):
  breeding strategies, 8–9
  database information on, 3–5
  genotyping procedures, 9–10
intercurrent infections:
  carcinogenesis, promotion by, 36–37
  human safety, zoonotic hazards, 37
infectious agents:
  clinical effects, 37–38
  origins, 32–34
  research effects, 35–36
  pathogens, table of, 32
  pseudocancer, 36
  research background, 31–32
  retroviruses, 34
mammary gland cancer, limits of models with, 123–124
metastasis, 308–309
normal anatomy and histology and, 15–16
planning and development of, 15–16
preclinical trials and, 439–440
trial design criteria, isogenic strains, 409
Genetically engineered tumors, oncogene specificity, 77
Gene factors:
  cancer drug development, 427
  cancer genetics, 429–430
  human brain tumors, 203–205
lung cancer, 92–97
  conditional transgenic models, 95–96
  conventional transgenic models, 93–95
  gene-targeted models, 96–97
lymphoid malignancies:
  acute myeloid leukemia, 220
  chronic myeloproliferative disease, 220
  myelodysplastic/myeloproliferative disease (MD/MPD), 221–222
  myelodysplastic syndromes, 221
mammary gland cancer:
  human disease, 103–104
  mouse models, 111–112
ovarian cancer, sporadic and hereditary aberrations, 177–178
skin malignancies:
  basal cell carcinoma, 163–164
  malignant melanoma, 153–155
Genetic modifiers:
  basic properties, 263–264
  cancer phenotype partitioning, 264–265
detection and localization, 271–275
  heritability, 272
  modifier combinations and interactions, 274–275
  modifier detection, 271–272
  modifier detection significance, 272–273
  modifier localization, 273–274
Genetic modifiers: (continued)
   modifier strength, 272
   number of mice for localization, 274
   number of mice progeny, 272–273
   support for localization, 274
   fine mapping and validation, 275–279
   advanced intercrosses, 277–278
   congenics, 275–276
   haplotype analysis, 276–277
   modifier validation, 278–279
   glossary of terms, 281–286
   human cancer applications, 280–281
   mouse strains and crosses, 265–271
   backcrosses and intercrosses, 266–267
   genome scans, 270–271
   interspecific backcrosses, 267–269
   recombinant congenic and chromosome substitution strains, 270
   recombinant inbred panels, 269
   RIX and RIB derivatives, 269–270
   software resources, 279–280
   Gene transfer models, lymphoma/leukemia, 245
   Genome, defined, 283
   Genomic analysis:
      cancer modifier mapping, 270–271
defined, 284
   Genotype, defined, 284
   Genotyping procedures, genetically engineered mice, 9–10
   Germ cell antigens, immunologic mouse models, 323
   Germ cell-deficient (gcd) mutation, ovarian cancer, mouse models, 180–181
   Germ cell tumors, ovarian cancer:
      human disease, 104–106
      mouse model correlations to human disease, 118–119
   Germinal center (GC), B-cell development in mice, 239
   Germline modification strategies:
      chromosome engineering, 54–56
      compound models, 60–61
      gain-of-function strategies, 44–49
      conditional strategies, 50–54
      Cre or Flp-mediated recombination, 50–53
      inducible oncogenes, 51
      site-specific recombination, oncogene activation, 51–54
      spontaneous recombination, 53–54
      knockin approach, 46–47
      transgenic approach, 44–46
      loss-of-function strategies, 56–60
      conditional knockout, 58–60
      knockout approach, 56–58
   research background, 43–44
   RNA interference, 61–62
   Gg/T-15 SV40 TAg mouse, prostate cancer model, 142
   Glial cell-derived neurotrophic factor (GDNF), bioluminescent imaging, reporter gene strategies, 369–370
   Glial fibrillary acidic protein (GFAP):
      astrocytomas and glioblastoma multiforme, 200–201
      cell of origin identity, 77
   Glioblastoma multiforme (GBM):
      clinical aspects, 200–201
      incidence and epidemiology, 199–200
      magnetic resonance imaging, oncologic mouse models, 353–354
      mouse models, 205–206
   Gliomas, 200–202
      clinical aspects of, 200
      genetics, 203–204
      mouse models, 205
   Gli transcription factors:
      lung epithelial cell specialization, mesenchyme-based signaling and transcription, 88
      lung primordium specification, 85
   GLP65 regulator, lung cancer models, conditional transgenic mice, 96
   glp-fluc fusion gene, bioluminescent imaging, immune surveillance, 368–369
   Glutathione S-transferase (GST) activity:
      factorial experimental design, 414–415
      sample size estimation, 415–416
      trial design criteria, temporal/spatial effects, 409–410
   Glutathione S-transferase placental (GST-P) marker, physiologically-based pharmacokinetics/pharmacodynamics models, carcinogenesis-related clonal growth, 399–400
   G number, defined, 283
   Gorlin’s syndrome, basal cell carcinoma, 163–164
   Granulocyte macrophage progenitor (GMP), acute promyelocytic leukemia, mouse models, 224–227
   Green fluorescent protein (GFP):
      bioluminescent imaging, 364
      biochemical assays, 366–367
      conditional/somatic oncogene activation, 53
   GTPase-activating protein (GAP), bicistronic vectors, 78
   Handling protocols, laboratory mice, 5–8
      blood/body fluid collection, 5–6
      cardiac puncture, 7
      decapitation, 7
      retro-orbital bleeding, 6–7
      tail bleeding, 7
      blood handling, 7–8
      feces management, 7
      individual mouse identification, 5
      urine collection, 7
   Haplotype analysis:
      cancer modifier fine mapping, 276–277
      defined, 284
   HeLa cervical cancer cells, bioluminescent imaging, biochemical assays, 366–367
**Helicobacter hepaticus:**
carcinogenesis, 37
in severe combined immunodeficiency (SCID) mice, 33

**Helicobacter sp.:**
carcinogenesis and, 37
pseudocancer with, 36

Helix-loop-helix formations, blood vessel formation control, transcription factors, 297

Hematopoiesis, myeloid malignancies, normal vs. neoplastic development, 215–216
differentiation, 216
sites, 216–217

Hematopoietic stem cells (HSCs). See also Embryonic stem (ES) cells
bioluminescent imaging:
engraftment and multilineage reconstitution, 369
transplantation, 368–369
cancer drug development, 426–427
myeloid malignancies:
long-term vs. short-term differentiation, 216
normal vs. neoplastic development, 215–216
postnatal blood formation models:
bone marrow contribution, 298–299
wound healing, 300

Heme oxygenase (HO) regulation, bioluminescent imaging, 366–367

Hemizygous, defined, 284

Hepatocyte nuclear factor 3 (HNF-3):
lung metamorphogenesis, 85
lung primordium specification, 85

Hepatocyte-selective contrast agent, micro-computed tomography scanning:
strengths and weaknesses, 342–343
structure and properties, 344

Herceptin, mammary gland cancer, tyrosine kinase inhibitors, 111

Heritability:
cancer modifier detection, 272
defined, 284
her-2/ErbB2, mammary gland cancer, tyrosine kinase inhibitors, 111
HER-2 gene, ovarian cancer genetics, 178
Her-2/neu gene:
immunologic tumor research, mouse models, 330
ovarian cancer etiology and, tissue culture models, 179
overexpression, mammary gland cancer, mouse models, 116–117

Heterogeneous stocks (HS):
cancer modifier fine mapping, 277–278
defined, 284
Heterozygous, defined, 284

Hexachlorobenzene (HCB), physiologically-based pharmacokinetics/pharmacodynamics models, carcinogenesis-related clonal growth, 399–400

Hfh-4 gene, tracheal morphogenesis, 86

Hit-and-run strategy:
compound model, germline modification, 61
gain-of-function germline modification, knockin techniques, 48–49
spontaneous recombination, conditional/somatic oncogene activation, 54

Homeobox genes, ovarian cancer etiology and, 177

Homing mechanisms, metastasis mouse models, 311–312

Homogeneity, clinical effects of infectious agents and, 38

Homogeneous time-resolved fluorescence (HTRF), cancer drug development, high-throughput screening, 430

Homologous recombination:
gain-of-function germline modification, knockin techniques, 48–49
gene-targeted mouse models, lung cancer, 96
genetically engineered mice, in preclinical trials, 440

Homozygous, defined, 284

Homozygous/heterozygous matings, genetically engineered mice, breeding strategies, 8–9

Hormone ablation therapy, prostate cancer:
Gg/T-15 SV40 TAg mouse model, 142
transgenic adenocarcinoma mouse prostate mouse model, 140–141

Hormone responsiveness, mammary gland cancer:
human disease, 108
mouse models, 119–121

HOX11 transgene, splenic marginal zone lymphoma mouse models, 248

HOX7 gene, ovarian cancer etiology and, 177

H-ras oncogene, ovarian cancer etiology and, tissue culture models, 178–179

Human Achete Schuete homologue (hASH-1) gene, transgenic lung cancer models, conventional mice, 94–95

Human cathepsin G (hGC) promoter, gain-of-function germline modification, 46

Human genome sequencing, cancer drug development, 426

Human migration inhibitory factor-related protein 8 (hMRPi), gain-of-function germline modification, 46

Human papilloma virus (HPV), squamous cell carcinoma and, 159

Human safety, infectious agents in genetic mice and, 37

Human xenografts, immunodeficient mice, preclinical trials, 438–439

4-Hydroxytamoxifen (4-OHT), conditional gain-of-function germline modification, inducible oncogenes, 50

Hyperplasia, prostate cancer, mouse models, 137–138

Hyperproliferative cancer cells, cancer drug development, 426

Histopathology:
basal cell carcinoma, 163
lung cancer, human disease, 83–84
malignant melanoma, 153
mammary gland cancer, mouse models, nomenclature table, 112, 116
schwannomas, 190
squamous cell carcinoma, 159

Histone deacetylase inhibitors, mammary gland cancer, 111
Hypoxia-inducible transcription factor (HIF-1), blood vessel formation control, 296–297

Identification protocols, individual laboratory mice, 5
Id proteins, blood vessel formation control, 297
IGF1R, metastasis mouse models, cell signaling, 315
Ikaros allele, precursor T-cell lymphoblastic leukemia/lymphoma mouse models, 250–251
IL-6 transgene, plasmacytoma mouse models, 250
IL-7 transgene, pre-B-LBL mouse models, 247
IL-15 gene, T natural killer cell lymphoma mouse model, 253

Imaging techniques:
bioluminescent imaging:
  biochemical assays and validation of, 365–367
  hematopoietic stem cell engraftment and multilineage reconstitution, 369
  immune surveillance mechanisms and immunotherapy, 368–369
  low-light imaging detector technologies, 365
  reporter gene strategies, 369–370
  research overview, 363–365
  spontaneous tumor models, 367–368
brain tumors, 203
  mouse models, 208

cancer pathology in mouse models:
  image capture and postprocessing, 21
  investigator’s responsibilities, 17
  protocols for, 26–27

magnetic resonance imaging:
  contrast formation mechanisms, 350–352
extrinsic mechanisms, 352
intrinsic mechanisms, 350–352
dynamic-contrast-enhanced MRI, 352
 oncologic imaging, 353–356
  bladder, 355
  brain, 353–354
  liver, 354
  lung, 354–355
  prostate, 355–356
physical principles, 349–350
research background, 349
treatment response evaluation:
  diffusion-weighted MRI, 380–384
  mouse model applications, 377–380
tumor function, 356–359
  diffusion-weighted MRI, 356–357
dynamic-contrast-enhanced MRI, 357–359

mammary gland cancer, human disease, 109–110

micro-computed tomography:
applications in mouse models, 340
artifacts, 341
basic principles, 339–340
contrast-enhancing agents, 341–346
  hepatocyte-selective agent, 344–345
  vascular agent, 345
water-soluble contrast agents, 345–346
future research applications, 347–348
imaging protocol, 347
mouse organ sensitivity, 346
research background, 339–340
in vivo small-animal imaging, 340–343
anesthesia, 340
  organs and tissues, 341
  radiation exposure, 340–341
  skeleton imaging, 341
  soft-tissue challenge, 341
  strengths and weaknesses, 342–343, 345
  vasculature, 341–342
  vs. other imaging techniques, 346–347
prostate cancer, human disease, 134–136
“Immature forms/blasts,” acute promyelocytic leukemia, mouse models, 225–227

Immune-deficient mice, resource table, 325
Immune effects, infectious agents, 35–36
Immune escape, mouse models, 328, 330

Immune surveillance:
bioluminescent imaging, 368–369
mouse models, 324–325

Immune system, mouse models of tumors:
basic principles, 321–322
cancer immunotherapy applications, 331–332
immune-deficient mice:
  IFN-γ deficiency, 328
  limitations of, 328
  perforin deficiency, 327
  RAG deficiency, 328
resource table, 325

immune surveillance, 324–325

knockout and transgenic model limitations, 331
major histocompatibility complex antigens, 322
transgenic and genetically deficient models, 328–331
transplantable tumor models, 322–323
tumor antigens, 323–324
tumor rejection mechanisms, 325–328
adaptive immunity, 326–327
innate immunity, 326

Immunoglobulin gene rearrangement:
B-cell development in mice, 237–239
lymphoid malignancy classifications, IgH classifications, 241

Immunohistochemistry:
cancer pathology in mouse models, fixation techniques, 20–21
lymphoid malignancy classifications, 241
prostate cancer mouse models, Nkx3.1(-/-)/Pten(+/-) mouse, 147
prostate adenocarcinoma, mouse models, 139
schwannomas, 190

Immunotherapy:
bioluminescent imaging, 368–369
mammary gland cancer, mouse models, 123
mouse models, 331–332

Imputation, defined, 284
Inbred, defined, 284
Incomplete block experimental design, basic characteristics, 414
Incross, defined, 284
Indirect angiogenesis inhibitors, preclinical trials, mouse models for, 441–442
Inducible oncogenes, conditional gain-of-function germline modification, 50
Infectious agents:
carcinogenesis and, 36–37
clinical effects, 37–38
origins of, 32–34
pseudocancer, 36
research effects of, 35–36
retroviral interface, 34
as zoonotic hazard, 37
Inflammatory bowel disease, mouse models, infectious agents, 36
Inheritance, defined, 284
Inhibin gene promoter, ovarian cancer models, germ cell tumors, 179–180
Ink4a-arf, somatic cell gene transfer, insertional mutagenesis, 61, 75–76
Innate immunity, tumor rejection mouse models, 326
Insertional mutagenesis, somatic cell gene transfer, 74–76
In silico lead discovery, cancer drug development, 431
Insulinlike growth factor 1 (IGF-1), prostate cancer mouse models, 144
Integrase (IN), retrovirus life cycle, 69–70
Integrative pathology, cancer pathology in mouse models, 23
Integrins:
  blood vessel formation, mouse models, embryonic development, 296
  metastasis detachment and motility models, 311
Intercross design:
cancer modifier analysis, 266–267
defined, 284
Intercurrent infections, genetically engineered mice:
carcinogenesis, promotion by, 36–37
human safety, zoonotic hazards, 37
infectious agents:
  clinical effects, 37–38
  origins, 32–34
  research effects, 35–36
  pathogens, table of, 32
pseudocancer, 36
research background, 31–32
retroviruses, 34
Interferon-γ:
  immune surveillance models, 324–325
  tumor rejection models, immune-deficient mice, 328
Interindividual variation, trial design criteria and, 408–409
Interleukin-2 (IL-2), mammary gland cancer, mouse models, 123
Interleukin-12 (IL-12), mammary gland cancer, mouse models, 123
Internal ribosome entry site (IRES), bicistronic vectors, 78
Interpretation protocols:
cancer pathology in mouse models:
  pathologist’s responsibilities, 21–26
verification vs. validation, 21–22
micro-computed tomography scanning, 343
Interspecific backcross design, cancer modifier analysis, 267–269
Interspecific crosses, genetically engineered mice, breeding strategies, 9
Intersubspecific crosses, genetically engineered mice, breeding strategies, 9
Interval mapping, defined, 284
Intracellular life cycle, retroviruses, 70
Intradermal injection, drug administration, laboratory mice, 13
Intralesional injection, drug administration, laboratory mice, 13
Intramuscular injection, drug administration, laboratory mice, 13
Intraperitoneal injection, drug administration, laboratory mice, 13
Intravenous injection, drug administration, laboratory mice, 12
Intrinsically contrast mechanisms, magnetic resonance imaging, 350–352
Intrinsic contrast mechanisms, magnetic resonance imaging, 350–352
Interventions, defined, 284
Introgression process, defined, 284
Inv(16) gene, acute myeloid leukemia, mouse models, 226–227
Investigational new drug application/new drug application (IND/NDA), physiologically-based pharmacokinetics/pharmacodynamics, 395
In vitro fertilization, sperm cryopreservation protocols, 11–12
In vitro high-throughput screening (HTS), cancer drug development, 430
In vivo imaging:
  bioluminescent imaging, biochemical assays, 365–367
  mammary gland cancer, mouse models, 121–122
  metastasis mouse models, 315–316
  micro-computed tomography, 340–343
  anesthesia, 340
  image artifacts, 341
  organs and tissues, 341
  radiation exposure, 340–341
  skeleton imaging, 341
  soft-tissue challenge, 341
  strengths and weaknesses, 342–343
  vasculature, 341–342
treatment response evaluation, magnetic resonance imaging, 379–380
In vivo infection, MMMLV-based tumor formation systems, 76–77
Iron oxide contrast agents, prostate cancer models, magnetic resonance imaging, 356
Isogenic strains:
defined, 284
trial design criteria and, 409
ITG contrast agent, micro-computed tomography:
  basic properties, 344
  strengths and weaknesses, 342–343
  vascular agents, 345
Ito assay, physiologically-based pharmacokinetics/pharmacodynamics models:
carcinogenesis-related clonal growth, 399–400
Juvenile myelomonocytic leukemia (JMML):
farnesyl transferase inhibitors (FTIs), preclinical trials, mouse models for, 442–443
mouse models, 229
Kai1 suppressor gene, metastasis mouse models, 312
Kepone toxicity, physiologically-based pharmacokinetics/pharmacodynamics models, 397–399
Keratoacanthoma-like lesions, squamous cell carcinoma mouse models, 159–160
KiSS1 suppressor gene, metastasis mouse models, 312
Knockin models:
- acute myeloid leukemia, mouse models, 226–227
- cancer modifier fine mapping, validation, 278–279 defined, 284
- gain-of-function germline modification, 46–49
- mammary gland cancer, mouse models, 112
- Philadelphia chromosome, BCR-ABL gene expression, 246
Knockout models. See also Conditional knockout cancer modifier fine mapping:
- congenic strains, 276
- validation, 278–279
defined, 284
- integrin formation, 296
- loss-of-function germline modification, 56–58
- magnetic resonance imaging, oncologic images, 352–356
- mammary gland cancer:
  - characteristics and classification, 112
  - correlations to human disease, 118–119
- mouse model genetic engineering, 3–5
- prostate cancer, 134, 144–146
  - conditional Pten(-/-) mice, 145
  - Nkx3.1(+/-) mice, 145–146
  - Nkx3.1(+/+)//Pten(-/-) mice, 146
  - Pten(+/-)Cdkn1b(-/-) mice, 145
  - Pten(-/-) mice, 144–145
- skin cancer, malignant melanoma, 155–158
- tumor immunotherapy, 331
- tumor rejection mechanisms, limitations, 328
Kolmogorov-Smirnov normality test, treatment response evaluation, log kill evaluation, 379–380

K-ras oncogene:
- genetically engineered mice, in preclinical trials, 440
- germline modification, compound model, 61
- lung cancer models, gene-targeted mouse models, 96–97 magnetic resonance imaging, lung cancer models, 355
- ovarian cancer, 178
- epithelial tumors, mouse models, 183
tissue culture models, 178–179
spontaneous recombination, 54

Kruskal-Wallace test, experimental study design, 422
Ku70 protein, precursor T-cell lymphoblastic leukemia/lymphoma mouse models, 252

Latin square experimental design, basic characteristics, 413–414
Lead discovery, cancer drug development, 430–431
Lead optimization, cancer drug development, 431–432
Lentigo maligna melanoma, pathology, 153
Lewis lung carcinoma (LLC) cells, blood vessel formation, transcription factor control, 297
LGD1069, mammary gland cancer, mouse models for prevention and therapy, 122
Ligands, blood vessel formation, mouse models, vascular endothelial growth factor receptors, 295–296
Likelihood ratio statistic (LRS):
- cancer modifier localization, 273–274
- defined, 284
Linear algorithms, cancer pathology in mouse models, 25–26
Linkage, defined, 284
Liquid nitrogen storage, cryopreservation of mouse embryo, sperm and molecular constructs, 11–12
Liver:
- magnetic resonance imaging, mouse oncology models, 354
- myeloid malignancies, hematopoiesis, normal vs. neoplastic development, 216
Localization in cancer modifier mapping:
- estimation and interval mapping, 273–274
- modifier combinations and interactions, 274–275
- number of mice estimates, 274
- one-LOD support intervals, 274
Locus, defined, 284
Logarithm of the odds (LOD):
- cancer modifier localization, 273–274
- defined, 284
Long terminal repeat (LTR):
- insertional mutagenesis, somatic cell gene transfer, 74–76
- loss-of-function germline modification, conditional knockout techniques, 60
- murine retrovirus production, 70–71
- retrovirus-infectious disease interface, 34
- viral intracellular life cycle, 70
Long-term storage, cancer pathology in mouse models, fixation techniques and, 20–21
Loss-of-function germline modification strategies, 56–60
- conditional knockout, 58–60
- knockout approach, 56–58
Loss of heterozygosity (LOH):
- cancer modifier fine mapping, 277–278
- defined, 284
- loss-of-function germline modification, knockout techniques, 56–58
- mammary gland cancer, human disease, 103–104
Low-light imaging, detector technologies, 365
L-selectin molecule, metastasis mouse models, homing and extravasation, 311–312
Luciferases, bioluminescent imaging, 364–365
- biochemical assays, 366–367
- reporter gene strategies, 369–370
tumor cell kill estimates, 385–386
Luminescence resonance energy transfer (LRET), reporter gene strategies, 370
Lung cancer:
carcinogen-induced models, 89–92
chemoprevent agent evaluations, 92
evaluation applications, 89–90
metabolic activation mechanisms, 90–92
genetic models, 92–97
conditional transgenic models, 95–96
conventional transgenic models, 93–95
gene-targeted models, 96–97
human disease:
cells of origin, 84
histopathology, 83–84
incidence and epidemiology, 83
molecular biology, 84
mouse models of, 85
treatment and prognosis, 84
lung morphogenesis, 85–89
branching morphogenesis and epithelial cell
differentiation, 86–89
primordium specification, 85
tracheal morphogenesis and cellular organization, 85–86
magnetic resonance imaging, oncologic mouse models, 354–355
Lung primordium, morphogenesis and specification, 85
Luteinizing hormone (LH), ovarian cancer models, sex
cord-stromal tumors, 180–181
Lymphocytic choriomeningitis virus (LCMV):
immunologic tumor research, mouse models, 329–330
research issues, 35
Lymphoid cells:
expansions, 243–244
in mice, development, 237–240
B-cell development, 237–239
T, NK, NK/T and dendritic cell development, 240
neoplasms, mouse models, 243
Lymphoid malignancies:
B-cell cancer mouse models, 244–250
Burkitt and Burkittlike lymphoma, 248–249
diffuse large-B-cell lymphoma, 249
follicular B-cell lymphoma, 248
plasma cytomia, 249–250
precursor B-cell lymphoblastic lymphoma/leukemia,
244–247
_Aiolos_ system, 247
Blk tyrosine kinase, 246–247
c-myc, 247
IL-7, 247
p16(Ink-4a)/p19(Arf), 247
Philadelphia chromosome, 244–246
TEL/AML1 oncogene, 247
small B-cell leukemia/lymphoma, 247–248
splenic marginal zone lymphoma, 248
classification and diagnosis, 240–243
FAS and Fas ligand, 244
mouse models of neoplasms, 243
gene transfer and bone marrow reconstitution models, 245
premalignant lymphadenopathies and lymphoid cell
expansions, 243–244
T- and NK-cell mouse models, 250–253
precursor T-cell lymphoblastic leukemia/lymphoma,
250–252
small T-cell lymphoma, 252–253
T natural killer cell lymphoma, 253
Lymphoproliferation (lpr) mice, _Fas/Fasl_ mutations, 244
Macrophages, tumor rejection mouse models, innate immunity, 326
Magnetic resonance imaging (MRI):
bioluminescent imaging:
bioluminescent assays, 367
tumor cell kill estimates, 385–386
brain tumors, 203
mammary gland cancer:
human disease, 109–110
mouse models, 121–122
vs. micro-computed tomography scanning, 347
mouse cancer models:
contrast formation mechanisms, 350–352
extrinsic mechanisms, 352
intrinsic mechanisms, 350–352
dynamic-contrast-enhanced MRI, 352
oncologic imaging, 353–356
bladder, 355
brain, 353–354
liver, 354
lung, 354–355
prostate, 355–356
physical principles, 349–350
research background, 349
tumor function, 356–359
diffusion-weighted MRI, 356–357
dynamic-contrast-enhanced MRI, 357–359
prostate cancer, human disease, 135
treatment response evaluation:
diffusion-weighted MRI, 380–384
mouse model applications, 377–380
Major histocompatibility complex (MHC) antigens,
immunologic mouse models of tumors, 322
MALDI-TOF platforms, genome scans, 271
Malignant melanoma, skin cancer, 152–158
biology, 153–155
clinical features, 152–153
mouse models, 155–158
pathology, 153
Malignant peripheral nerve sheath tumors (MPNSTs):
histopathology, 191–192
molecular genetics, 193
mouse models, 194–195
Maloney murine leukemia virus (MMLV), oligodendromas,
mouse models, 207
Mammary gland cancer:
cancer modifier detection, 281
human disease, 103–104
aromatase inhibitors, 110
chemoprevention, 110
COX inhibitors, 111
environmental factors, 104
estrogen signaling inhibitors, 110
Mammary gland cancer: (continued)
genetic factors, 103–104
genomic changes, 104–106
histone deacetylase inhibitors, 111
hormone responsiveness, 108
imaging studies, 109–110
lesion progression and diagnostic/prognostic markers, 107–108
matrix metalloproteinase/angiogenesis inhibitors, 111
metastases, 108–109
molecular changes, 106–107
gene expression profiling, 107
sporadic breast cancer, 106–107
polyamine synthesis inhibitors, 111
retinoids, 110–111
tyrosine kinase inhibitors, 111
mouse models:
  conditional oncogene expression, 117
gene expression profiling, 119–121
  hormone responsiveness, 119–121
  metastasis, 121
  genetics and techniques, 111–112
genomic analysis, human disease correlation, 118–119
histologic comparisons, human disease, 112
limitations of, 123–124
oncogene overexpression, 112–117
c-MyC, 112, 115
cyclin D1, 117
Her-2/neu, 116–117
polyoma middle T (PyMT), 117
TGFα, 115–116
Wnt-1, 117
prevention/therapeutic trials, 122–123
resources table, 113–114
tumor suppressor gene loss, 117–118
in vivo imaging techniques, 121–122
Mann-Whitney test, experimental study design, 422
Mapmaker/QT software, cancer modifier fine mapping, 280
Map Manager QT/QTX, cancer modifier fine mapping, 280
Mapping, defined, 284
Marginal zone B-cells (MZBs):
  B-cell development in mice, 238–239
diffuse large B-cell lymphoma (DLBCL), mouse models, 249
Marker, defined, 284
Mathematical models, physiologically-based
  pharmacokinetics/pharmacodynamics, 393–395
Matrix metalloproteinase (MMP) enzymes:
  mammary gland cancer:
    metalloproteinase inhibitors, 111
    mouse models, metastasis, 121
    metastasis detachment and motility models, 310–311
    postnatal blood formation models:
      bone marrow contribution, 298–299
      reproductive angiogenesis, 300–301
Maximally tolerated dose (MTD) principle, cancer drug development, 433
Maximum-likelihood score, defined, 284
Mean square (MS), one-way analysis of variance, completely
  randomized (between-subjects) experimental design, 417–418
Measurement error, trial design criteria and, 409
Mechanism-based inhibition, physiologically-based
  pharmacokinetics/pharmacodynamics models, validation, 401
Mechanic factors, physiologically-based
  pharmacokinetics/pharmacodynamics, 396
Medicinal chemistry, cancer drug development, 431–432
Medulloblastomas:
  genetics and signaling, 204–205
  histopathology, 202–203
  mouse models, 205, 207–208
Mifepristone gene switch, lung cancer models, conditional
  transgenic mice, 95–96
Melanoma mouse models, germline modification strategies, 61
Mendelian trait, defined, 284
Mesenchymal signaling and transcription, lung epithelial cell
  specialization, 87–88
Meta-analysis, defined, 284
Metabolic activation mechanisms, carcinogen-induced models,
  90–91
Metalloproteinase inhibitors, mammary gland cancer, 111
Metallothionein 1 (Mt) promoter transgenic mice, Philadelphia chromosome, BCR-ABL gene expression, 244–246
Metastases:
  angiogenesis and intravasation, 311
  basic principles, 307
  cell signaling and, 312, 315
detachment and motility mechanisms, 309–311
  genetic modifier partitioning, 265
  homing and extravasation, 311–312
  malignant melanoma, 153
  mammmary gland cancer:
    human disease, 108–109
    mouse models, 121
  mouse models:
    list of resources, 313–314
    orthotopic vs genetically engineered mice, 308–309
    in vivo models, 315–316
    stages of, 307–308
    suppressors, 312
Methotrexate toxicity, physiologically-based
  pharmacokinetics/pharmacodynamics models, dose
  escalation experiments, 397
Methylcholanthrene (MCA), transplantable tumor models,
  immunologic studies, 322–323
Microbiology, cancer pathology in mouse models, investigator’s responsibilities, 17
Micro-computed tomography (microCT):
  applications in mouse models, 340
  basic principles, 339–340
  contrast-enhancing agents, 341–346
  hepatocyte-selective agent, 344–345
  vascular agent, 345
  water-soluble contrast agents, 345–346
  future research applications, 347–348
  imaging protocol, 347
mouse organ sensitivity, 346
research background, 339–340
in vivo small-animal imaging, 340–343
anesthesia, 340
image artifacts, 341
organs and tissues, 341
radiation exposure, 340–341
skeleton imaging, 341
soft-tissue challenge, 341
strengths and weaknesses, 342–343
vasculature, 341–342
vs. other imaging techniques, 346–347

Microsatellite markers:
defined, 284
genome scans, 270–271

Microscopic pathology, cancer pathology in mouse models,
22–23

Microscopy techniques, cancer pathology in mouse models:
investigator’s responsibilities, 21
pathologists’ interpretation protocols, 22–26

Middle-T antigen (MT), somatic gene cell transfer, polyoma
viral expression, 68

"Milk factor," mammary gland cancer, mouse models, 112

MISIR gene, ovarian cancer etiology and, mouse models,
181–183

MKK1 suppressor gene, metastasis mouse models, 312
MLH genes, mammary gland cancer, human disease, 104

MLL protein, acute myeloid leukemia, mouse models,
227

MMTV-S, pathogenesis, 34

Modifier, defined, 285

Modifier strength, cancer modifier detection, 272

Molecular constructs:
cancer pathology in mouse models, investigator’s
responsibilities, 16
laboratory mice, 10–12

Molecular imaging, mammary gland cancer, human disease,
109–110

Mom1 gene:
backcross and interspecific cross localization, 267
cancer modifier fine mapping, 276

Monoclonal antibodies:
integrin formation, 296
prostate cancer, human disease, 136

Monogenic trait, defined, 285

Monte Carlo simulation, physiologically-based
pharmacokinetics/pharmacodynamics models, 397–399

Motility mechanisms, metastasis models, 309–311

Mouse anatomy, prostate cancer models, 137

Mouse box, epidemiology of, 33

Mouse embryo fibroblasts (MEF), somatic cell gene transfer,
engineered retroviral infection, transfer models, 76

Mouse hepatitis virus, research effects, 35

Mouse mammary tumor virus long terminal repeat
(MMTV-LTR), mammary gland cancer, mouse models,
112

Mouse mammary tumor virus (MMTV):
gain-of-function germline modification, transgenic technique,
44–46

loss-of-function germline modification, conditional knockout
techniques, 60

mammary gland cancer:
mouse models, 112
Wnt-1 gene overexpression, 117

retrovirus pathogenesis, 34

tumor formation, in vivo infection, 76–77

Mouse models:
database distributors for, 3–5
mammary gland cancer, limits of, 123–124

myeloid malignancies, table of, 230–231

ovarian cancer, applications, 183–184

skin cancer, neoplasms and proliferations table, 166

Mouse Models of Human Cancer Consortium (MMHCC), 285

mouse models, 138

mouse strains and crosses, 266

Mouse Phenome Project, 285

Mouse strains and crosses, genetic modifiers, 265–271
backcrosses and intercrosses, 266–267
genome scans, 270–271
interspecific backcrosses, 267–269
recombinant congenic and chromosome substitution strains,
270
recombinant inbred panels, 269

RIP and RIB derivatives, 269–270

MPAKT mouse, prostate cancer models, 143–144

MRP8 PML/RARA mice, acute promyelocytic leukemia, mouse
models, 224–227

Msh2 mismatch repair (MMR) gene, precursor T-cell
lymphoblastic leukemia/lymphoma mouse models, 252

MTCP1 gene, small T-cell lymphoma mouse models, 252–253

Mt-Hgf mice, skin cancer models, malignant melanoma,
155–158

Muir syndrome, mammary gland cancer, human disease, 104

Müllerian-inhibiting substance (MIS) promoter, ovarian cancer
models, sex cord-stromal tumors, 181

Multilineage reconstitution, bioluminescent imaging,
hematopoietic stem cells, 369

Multiple character experiments, design criteria, 421–422

Multiple interval mapping (MIM):
cancer modifier localization and detection, 275
defined, 285

Murine double minute chromosomes (MDM2), malignant
melanoma genetics, 153–155

Murine leukemia virus (MuLV):
farnesyl transferase inhibitors (FTIs), preclinical trials,
mouse models for, 442–443

pathogenesis, 34

somatic cell gene transfer, insertional mutagenesis, 75–76

viral infection specificity, 70

Murine retroviruses, production, somatic cell gene transfer,
70–71

Mus musculus:
genealogy, 31–32
interspecific backcross design, 267–269

Mus spretus, interspecific backcross design, 267–269

Mutant mouse repositories and distribution centers, table of
sources, 10

Mutation, defined, 285
Mutation colonies, genetically engineered mice, breeding strategies, 8–9
myc gene expression, somatic cell gene transfer, insertional mutagenesis, 75–76
Myelodysplastic/myeloproliferative disease (MD/MPD):
  clinical features and genetics, 221–222
  hematopoiesis sites, 216–217
  mouse models, 229
Myelodysplastic syndrome (MDS):
  genetics and classification, 220–221
  hematopoiesis sites, 216–217
  mouse models, 231
Myeloid blast phase, chronic myeloproliferative disease, mouse models, 228–229
Myeloid malignancies:
  hematopoiesis, normal and neoplastic:
    development, 215–216
    differentiation, 216
    sites, 216–217
  human disease, 217–222
    acute myeloid leukemias, 217–220
    chronic myeloproliferative disease, 220
    mouse models, 222–231
    myelodysplastic/myeloproliferative disease, 221–222
    myelodysplastic syndromes, 220–221
    nonlymphoid hematopoietic neoplasms, 222
Myeloproliferative disease (MPD):
  clinical features, 220
  genetics, 220
  hematopoiesis sites, 216–217

N2 progeny, defined, 285
Natural killer (NK) cells:
  development in mice, 240
  immune surveillance models, 324–325
  lymphoid malignancies, mouse models, 250–253
    precursor T-cell lymphoblastic leukemia/lymphoma, 250–252
    small T-cell lymphoma, 252–253
    T natural killer cell lymphoma, 253
  tumor rejection mouse models, innate immunity, 326
Near-infrared (NIR) spectra, bioluminescent imaging, 363–365
Necropsy procedures, cancer pathology in mouse models, investigator’s responsibilities, 17–19
Negative enhancement, magnetic resonance imaging, extrinsic contrast mechanisms, 352
Neoangiogenesis, bone marrow contribution, postnatal blood vessel formation, 297–299
Neo cassette insert, genetically engineered mice, genotyping procedures, 10
Neoplasm classification, ovarian cancer, 172–174
  germ cell tumors, 172
  sex cord-stromal cell tumors, 172–173
  surface epithelial-stromal tumors, 173
Nestin promoter, cell of origin identity, 77
Neurofibroma:
  growth potential limitations, 195–196
  histopathology, 190–192
  molecular genetics, 192–193
  mouse models, 194
Neurofibromatosis 1 (NF1) gene:
  juvenile myelomonocytic leukemia (JMML), mouse models, 229
  malignant melanoma risk and, 155
  malignant peripheral nerve sheath tumors, molecular genetics, 193
  neurofibromas:
    histopathology, 190–192
    molecular genetics, 192–193
    mouse models, 194
Neurofibromatosis 2 (NF2) gene:
  malignant peripheral nerve sheath tumors, molecular genetics, 193
  schwannoma molecular genetics, 192
NF1 genetically engineered mice:
  farnesyl transferase inhibitors (FTIs), preclinical trials, mouse models for, 442–443
  in preclinical trials, 439–440
NK/T cells, development in mice, 240
NKKX2.1 transcription factor:
  lung metamorphogenesis, 85
  tracheal morphogenesis and cellular organization, 85–86
Nkx3.1 gene, prostate cancer mouse models:
  AR427/Ph-c-MYC mouse, 143
  Pten(-/-) mouse, 146
Nkx3.1 (-/-) mouse, prostate cancer models, 146–147
Nkx3.1 (-/-)Pten(-/-) mouse, prostate cancer model, 147
NNK exposure, carcinogen-induced models:
  chemopreventive agent evaluation, 92
  metabolic activation mechanisms, 91–92
Nonexpression. See Knockout techniques
Nonlymphoid hematopoietic neoplasms:
  Bethesda classification proposals table, 223
  histology and genetics, 222
  mouse models, BCR/ABL expression, 229
Nonparametric statistical analysis:
  clinical trial design, 417
  experimental study design, 422
Nonspecific immune modulation, mouse models, 331–332
Non-TAg-based mouse models, prostate cancer, 142–144
Normal distribution:
  defined, 285
  trial design data, 411
Notch-1 pathway, T cell development in mice, 240
Nude mice:
  immune-deficient components, 327–328
  immune surveillance models, 324–325
  metastasis models, 308
Null alleles, metastasis detachment and motility models, 310
Null hypothesis, nonparametric study design, 422
Number of mice estimates:
  cancer modifier detection, 272–273
  cancer modifier localization, 274
  Numerical data, trial designs, 410
NUP98/HOXA9 fusion proteins, chronic myeloproliferative disease, mouse models, 228–229
Observation protocols:
cancer pathology in mouse models, investigator’s responsibilities, 16
trial design criteria, 411–412
Oligodendromas:
histopathology, 201–202
mouse models, 206–207
Oncogenes:
combinations, somatic cell gene transfer, 77
conditional/somatic activation techniques, Cre/Flp-mediated recombination, 50–53
specificity, genetically engineered tumors, 77
Oncogenic pathways, human brain tumors, 203–204
One-LOD support interval, cancer modifier localization, 274
One-way analysis of variance (ANOVA), completely randomized design, 417–418
Organ preparation:
cancer pathology in mouse models, necropsy procedures, 18–19
micro-computed tomography scanning, 341
water-soluble contrast agents, 345–346
Orthotopic mouse model:
bioluminescent imaging, 367
magnetic resonance imaging, 353
bladder cancer, 355
metastasis, 308–309
treatment response evaluation, magnetic resonance imaging, brain tumor models, 378–379
Osmotic pumps, drug administration, laboratory mice, 13
Outcross, defined, 285
Ovarian cancer:
etiology, 176–177
incidence and epidemiology, 171
mouse models, 179–183
applications, 183–184
epithelial tumors, 181–183
germ cell tumors, 179–180
sex-cord-stromal tumors, 180–181
neoplasm classification, 172–173
germ cell tumors, 172
sex cord-stromal cell tumors, 172–173
surface epithelial-stromal tumors, 173
ovarian development, 171–172
screening and detection, 173–175
sporadic/hereditary genetic aberrations, 177–178
tissue culture models, 178–179
treatment options, 175–176
Ovarian cryopreservation, laboratory mice, 11–12
Ovarian transplantation, genetically engineered mice, breeding strategies, 9
Overexpression. See Transgenesis
mammary gland cancer, mouse models, 112
c-myc, 112, 115
Ovulation, ovarian cancer etiology and, 176–177
p14ARF pathway:
human brain tumor genetics, 204
malignant melanoma genetics, 153–155
p16 gene, malignant peripheral nerve sheath tumors, molecular genetics, 193
p16ink4a:
human brain tumor genetics, 204
malignant melanoma genetics, 153–155
p16ink4a/p19(Arf), pre-B-LBL mouse models, 247
p21 oncogene, transgenic lung cancer models, conventional mice, 94–95
p27kip1 cyclin-dependent kinase inhibitor, prostate cancer models, PTEN(+/-)/Cdkn1b(-/-) mouse, 146
p53 oncogene:
cancer drug development, genetic factors, 427
gain-of-function germline modification, knockin techniques, 49
lymphoid malignancies:
precursor T-cell lymphoblastic leukemia/lymphoma mouse models, 252
splenic marginal zone lymphoma mouse models, 248
malignant melanoma genetics, 153–155
malignant peripheral nerve sheath tumors, molecular genetics, 193
mammary gland cancer:
human disease, 103–104
mouse models, 118
hormone responsiveness, 121
ovarian cancer genetics, 178
epithelial tumors, mouse models, 183
skin malignancies, squamous cell carcinoma and, 159
transgenic lung cancer models, conventional mice, 94–95
p53R172H/ΔΔG, metastasis mouse models, in vivo research, 315–316
Palpation of tumors, cancer pathology in mouse models, investigator’s responsibilities, 16–17
Paramagnetic contrast agents, magnetic resonance imaging, 352
Parametric statistic:
clinical trial design, 417
defined, 285
Partitioning techniques, cancer phenotypes, genetic modifiers, 264–265
Paroviruses, research effects, 35
Passive immunotherapy, mouse models, 331–332
Patch produces, medulloblastoma genetics and signaling, 163–165, 205
Pathogens, laboratory mice, table of, 32
Pathologist:
cancer pathology in mouse models:
interpretation protocols, 21–26
responsibilities, 21–26
duties of, 15
Pathology. See Histopathology
Pb-mAR mice, prostate cancer models, 144
PDGFB gene, MMTV tumor formation, in vivo infection, 76–77
Penetrance, defined, 285
Pentachlorobenzene (PECB), physiologically-based pharmacokinetics/pharmacodynamics models, carcinogenesis-related clonal growth, 399–400
Perforin-deficient mice, tumor rejection models, 327
Perfusion contrast mechanisms, magnetic resonance imaging, 351–352
Perineural fibroblasts, peripheral nerve anatomy, 189–190
Peripheral nervous system (PNS) tumors:
   cellular environment issues, 195–196
   classification, 189
   malignant peripheral nerve sheath tumors, 192
   molecular genetics:
      malignant peripheral nerve sheath tumors, 193
      neurofibromas, 192–193
      schwannomas, 192
   mouse models:
      chemically induced tumors, 193–194
      malignant peripheral nerve sheath tumors, 194–195
      neurofibromas, 194
      schwannomas, 195
      neural anatomy and organization, 189–190
      neurofibroma, 190–192
      schwanna, 190
Permutation test:
   defined, 285
   significance of cancer modifier detection, 272–273
Pharmacokinetics, physiologically-based
   pharmacokinetics/pharmacodynamics vs., 392–393
   2-Phenethyl isothiocyanate (PEITC), carcinogen-induced
   models, chemopreventive agent evaluation, 92
Phenotype, defined, 285
Phenotype features:
   genetically engineered mice, breeding strategies, 8–9
   genetic modifier partitioning, 264–265
   magnetic resonance imaging, oncologic mouse models, 352–353
   mouse strains and crosses, 265–266
Philadelphia chromosome, BCR-ABL mouse model, 244–246
Phosphoinositol-3-kinase (PI3K) pathway:
   human brain tumor genetics, 204
   prostate cancer models, MPAKT mouse, 143–144
   squamous cell carcinoma and, 159
Physiologically-based pharmacokinetic/pharmacodynamic
   (PBPK/PD) modeling:
      applications, 397–400
      carcinogenesis-related clonal growth, 398–400
      chemotherapeutic dosing schedules, 397
      “electronic rats,” 397–398
      data requirements, 396
      function and applications, 393–395
      future applications, 402–403
      interactive models, 396–397
      mythology concerning, 395
      reaction networks, 402
      research background, 391–392, 395–396
      second-generation model construction, 402
      silico toxicology and second-generation modeling, 401–402
      validation, 400–401
      vs. classical pharmacokinetics, 392–393
Physiologic constants, physiologically-based
   pharmacokinetics/pharmacodynamics, 396
Pilot studies, trial design criteria, experimental/observational
   studies, 411–412
Pimentel 1/2 genes, somatic cell gene transfer, insertional
   mutagenesis, 75–76
Pim-1 gene:
   lymphoid malignancies:
      diffuse large B-cell lymphoma mouse model, 249
      Fas/FasL mutations, 244
      follicular B-cell lymphoma mouse models, 248
      prostate cancer mouse models, ARR2Pb-c-MYC mouse, 143
   Pituitary hyperplasia, treatment response evaluation, magnetic
   resonance imaging, 379–380
   Placental alkaline phosphatase (PLAP) expression, Cre
   recombinase monitoring, 53
   Plasmacytoma (PCT), mouse models, 249–250
Platelet-derived growth factor (PDGF):
   bicistronic vectors, 78
   bioluminescent imaging, efflux transgenic mice models, 388
   human brain tumor genetics, 203–204
   lung epithelial cell specialization:
      alveologenesis, 88–89
      signaling and transcription, 86–87
   MMTV tumor formation, in vivo infection, 77
   oligodendromas, mouse models, 206–207
   Pleiotrophic, defined, 285
   PLZF/RARA fusion, acute promyelocytic leukemia, mouse
   models, 226–227
   PML/RARA fusion gene:
      acute promyelocytic leukemia, mouse models, 223–227
      translocation, preclinical trials, mouse models for, 440–441
   PML-RARα fusion product, gain-of-function germline
   modification, 46
   Poisson distribution, trial design data, 410–411
   Polyamine synthesis inhibitors, mammary gland cancer:
      human disease, 111
      mouse models for prevention and therapy, 122
   Polycyclic aromatic hydrocarbons (PAHs), carcinogen-induced
   models:
      evaluation applications, 89–90
      metabolic activation mechanisms, 91–92
   Polygenic trait, defined, 285
   Polymerase chain reaction (PCR), genetically engineered mice,
   genotyping procedures, 10
   Polymorphism, defined, 285
   Polyoma virus middle T (PyMT), mammary gland cancer,
   mouse models, 117
   Polyoma virus (PyV), somatic gene cell transfer, 67–68
   Population characteristics, trial design criteria, 411
   Positive enhancement, magnetic resonance imaging, extrinsic
   contrast mechanisms, 352
   Positron emission tomography (PET):
      brain tumors, 203
      mammary gland cancer:
         imaging studies, 110
         mouse models, 121–122
      prostate cancer, human disease, 135–136
   Posterior probability, defined, 285
   Post hoc comparisons, analysis of variance (ANOVA),
   experimental design, 419
   Postnatal blood vessel formation, mouse models, 297–301
bone marrow contribution to neoangiogenesis, 297–299
reproductive angiogenesis, 300–301
tumor angiogenesis markers and targets, 301
wound healing, 299–300

Power, defined, 285
Power analysis, sample size estimation, 415–416
Preclinical studies:
aims and objectives, 407–408
cancer drug development, 432–433
mouse cancer models:
angiogenesis inhibitors, 441–442
chemotherapy responsiveness and resistance, 443
farnesyltransferase inhibitors (FTIs), mouse cancer models, 442–443
FLT3 inhibitors, 441
future research issues, 443–444
genetically engineered models, 439–440
human disease and cancer therapy, 437–438
human xenografts, immunodeficient mice, 438–439
proof of principle trials, 440–441
protocols for, 440
research background, 437

Precursor B-cell lymphoblastic lymphoma/leukemia
(pre-B-LBL), mouse models, 244–247
Aiolos system, 247
Blk tyrosine kinase, 246–247
c-myc, 247
IL-7, 247
p16(Ink-4a)/p19(Arf), 247
Philadelphia chromosome, 244–246
TEL/AML1 oncogene, 247

Precursor T-cell lymphoblastic leukemia/lymphoma
(pre-T-LBL), mouse models, 250–252
ATM gene, 250
Brca2 protein, 252
E2A proteins, 250
Ikarov allele, 250–251
Ku70 protein, 252
Msh2, 252
p53 oncogene, 252
PTEN, 252
Rb1t gene, 251
Tel1 gene, 251–252

Premalignant lymphadenopathies, histopathology, 243–244
Preventive therapies, mammary gland cancer, mouse models, 122–123

Primitive neuroectodermal tumors (PNETs), MMTV tumor formation, in vivo infection, 77

Probability, one-way analysis of variance, completely randomized (between-subjects) experimental design, 417–418
Processing protocols, cancer pathology in mouse models, investigator’s responsibilities, 20–21
Progestosterone receptor, mammary gland cancer, human disease, 108

Prognostic markers:
malignant melanoma, 152–153
mammary cancer progression, 107–108

Proof of principle protocol, preclinical trials, mouse models for, 440–441
Prostaglandins, mammary gland cancer, COX inhibitors, 111
ProstaScint, prostate cancer, human disease, 136
Prostate cancer:
dietary effects, human disease, 136
human disease:
anatomy, 136–137
clinical diagnosis, 133–134
dietary effects, 136
imaging studies, 134–136
overview, 133
radiolabeled monoclonal antibodies, 136
magnetic resonance imaging, oncologic mouse models, 355–356

mouse models:
anatomy, 137
future applications, 146–147
hyperplasia in, 137–138
intraepithelial neoplasia, 138
knockout models, 144–146
conditional Pten(-/-) mice, 145
Nkx3.1(-/-), 145–146
Nkx3.1(-/-)/Pten(+/-) mice, 146
Pten(+/-)/Cdkn1b(-/-) mice, 145
Pten(+/+) mice, 144–145
prostatic adenocarcinoma, 139
transgenic models, 139–144
ARR2Pb-c-MYC mice, 142–143
BK5-IGF-1 mice, 144
C3(1)-c-myc, 143
C(1)SV40 large-T antigen mouse, 141
cryptidin-2 SV40 TAg, 142
Gg/T-15 SV40 TAg, 142
LADY mouse, 141
MPAKT mice, 143–144
non-TAg-based models, 142–144
Pb-mAR mice, 144
TAg-based models, 139–142
transgenic adenocarcinoma mouse prostate (TRAMP) mouse, 139–141

Prostate cancer cells (PC3M):
bromelinsedent imaging:
biochemical assays, 366–367
tumor cell kill estimates, 385–386
treatment response evaluation, diffusion-weighted magnetic resonance imaging, 384

Prostate intraepithelial neoplasia (PIN):
mouse models, 138
ARR2Pb-c-MYC mouse, 142–143
C3(1) SV40 large-T antigen mouse, 141
C3(1)-c-Myc mouse, 143
cryptidin-2 SV40 TAg mouse, 142
Gg/T-15 SV40 TAg mouse, 142
LADY transgenic mouse, 141
MPAKT mouse, 143–144
Nkx3.1(-/-) mouse, 146–147
Pb-mAR mice, 144
Prostate intraepithelial neoplasia (PIN): (continued)
transgenic adenocarcinoma mouse prostate mouse, 139–141
prostate cancer mouse models, BK5-IGF-1 mouse, 144
Prostate-specific antigen (PSA) levels, prostate cancer:
human clinical diagnosis, 133–134
imaging in human disease, 134–135
Prostate-specific membrane antigen (PSMA), prostate cancer,
radiolabeled monoclonal antibodies, 136
Prostatic adenocarcinoma, mouse models, 139
Protein expression:
B-cell development in mice, 237–239
metastasis models, 308–309
Proviral elements, retrovirus-infectious disease interface, 34
Provirus hypothesis, historical background, somatic gene cell
transfer, 69
PSCA gene, prostate cancer mouse models, MPAKT mouse,
143–144
Pseudocancer, infectious agents and, 36
PTEN-deficient mice:
loss-of-function germline modification, knockout techniques,
57–58
prostate cancer models, MPAKT mouse, 143–144
PTEN (phosphatase and tensin homologue) gene:
astrocytomas and glioblastoma multiforme, 201
mammary gland cancer:
human disease, 104
mouse models, 118
ovarian cancer genetics, 178
precursor T-cell lymphoblastic leukemia/lymphoma mouse
models, 252
prostate cancer models:
PTEN(+/-)/Cdkn1b(-/-) mouse, 146
PTEN(+/-- mouse, 145–146
Pten(-/-) mouse, 146
Ptprj gene, cancer modifier fine mapping, validation, 278–279
QTL Cartographer software, cancer modifier fine mapping,
280
Quantitative structure-activity relationship (QSAR) techniques, physically-based
pharmacokinetics/pharmacodynamics, 392–393
Quantitative trait loci (QTL):
cancer modifier fine mapping, 278–279
defined, 285
genetic modifiers, 264
Radiation exposure, micro-computed tomography, 340–341
Radiofrequency pulses, magnetic resonance imaging, 350
intrinsic contrast formation, 350–352
oncologic mouse models, 353
Radiographic imaging, bioluminescent imaging, 367
Radiolabeled monoclonal antibodies, prostate cancer, human
disease, 136
Radionuclide bone scintigraphy, prostate cancer, human
disease, 135
Raf-1 gene, transgenic lung cancer models, conventional mice,
94–95
Raf-MEK-ERK effector cascade, genetically engineered mice,
in preclinical trials, 440
Raloxifene, mammary gland cancer, estrogen signaling
inhibition, 110
Randomization:
cancer drug development, clinical trials, 433
trial design criteria, experimental/observational studies, 411
Randomized block experimental design:
basic characteristics, 412–413
dose-response relationships, analysis of variance, 419–420
Random point mutagenesis, mouse model engineering, 3–5
RAS oncogene:
cancer drug development, 429–430
farnesyl transferase inhibitors (FTIs), preclinical trials,
mouse models for, 442–443
gain-of-function germline modification, transgenic
techniques, 46
juvenile myelomonocytic leukemia (JMML), mouse models,
229
neurofibroma molecular genetics, 192–193
signaling pathway, astrocytomas and glioblastoma
multiforme, mouse models, 205–206
RAS-RAF-mitogen activated protein kinase pathway,
malignant melanoma risk and, 155
Rate constant:
dynamic contrast-enhanced magnetic resonance imaging,
tumor function, mouse cancer models, 357–359
physiologically-based pharmacokinetics/pharmacodynamics,
393–395
Rbni2 gene, precursor T-cell lymphoblastic
leukemia/lymphoma mouse models, 251
RCAS vectors:
cell of origin identity, 77
mammary gland cancer, mouse models, 112
oncogene combinations, 77
ovarian cancer models, epithelial tumors, 181–183
somatic cell gene transfer:
engineered retroviral infection, transfer models, 76
murine cell infection, 71–73
in vivo direct gene transfer, 77
Reaction network model, basic features and applications,
402
Real-time imaging, mammary gland cancer, mouse models,
121–122
Receptor interference, murine retrovirus production, 71
Receptor tyrosine kinases (RTKs):
blood vessel formation, mouse models, 294–296
human brain tumor genetics, 204
Recessive allele, defined, 285
Recessive genetics, cancer drug development, 430
Recombinant congenic (RC) strains:
cancer modifier mapping, 270
defined, 285
Recombinant inbred backcrosses (RIBs):
cancer modifier mapping, 269–270
defined, 285
Recombinant inbred intercross (RIX) derivatives:
cancer modifier mapping, 269–270
defined, 285
Recombinant inbred (RI) panels:
cancer modifier mapping, 269
defined, 285

Recombinase-activating gene 1 (RAG1):
immune surveillance models, 324–325
tumor rejection models, RAG-deficient mice, 328

Recombinase-mediated gene activation:
gain-of-function strategies, 51–53
lung cancer models, gene-targeted mouse models, 97

Record-keeping protocols:
cancer pathology in mouse models, investigator’s responsibilities, 16
genetically engineered mice, 16

Regression analysis, defined, 285

Relaxation time constants, magnetic resonance imaging:
extrinsic contrast mechanisms, 352
intrinsic contrast formation, 350–352

Reporter gene strategies, bioluminescent imaging, 369–370

Reproductive angiogenesis, blood vessel formation control, 300–301

Residual diagnostic plots, analysis of variance (ANOVA), 418–419

Resource equation, sample size estimation, 416

Results presentation, experimental study design, 422–423

Retinoblastoma (Rb gene):
biluminescent imaging, eflux transgenic mice models, 387–388
brain tumors, 205
cancer drug development, 427
loss-of-function germine modification, knockout techniques, 56–58
malignant melanoma genetics, 153–155

Retinoids, mammary gland cancer:
human disease, 110–111
mouse models for prevention and therapy, 122

Retro-orbital bleeding, blood collection protocols using, 6–7

Retroviral infection, acute myeloid leukemia, mouse models, 227

Retroviral transfer models, somatic cell gene transfer, 76–78

Retroviral vector delivery, somatic cell gene transfer, 73–74

Retroviruses:
genetics interface with infectious disease, 34
historical background on, somatic gene cell transfer, 68–69
life cycle, somatic gene cell transfer, 69–70
murine cell infection, 70–73
avian retroviruses, RCAS/TV-A, 71–73
murine retroviruses, 70–71

Reverse transcriptase polymerase chain reaction (RT-PCR),
biluminescent imaging, 366–367

Reverse transcriptase (RT), retrovirus life cycle, 69–70

RGD molecules, integrin activity, 296

RHOGD12 suppressor gene, metastasis mouse models, 312

Rho proteins, metastasis detachment and motility models, 311

RipTag transgenic mice, metastasis models, 308–309

RNA interference (RNAi), germline modification strategies, 61–62

RNA tumor viruses, somatic gene cell transfer, 67–68

ROCK1 effector, metastasis detachment and motility models, 311

ROSA26-lacZ reporter (R26R) strain, Cre recombinase monitoring, 53

Rous sarcoma virus (RSV):
astrocytomas and glioblastoma multiforme, mouse models, 205–206
historical background, somatic gene cell transfer, 68–69

R/qtl software, cancer modifier fine mapping, 280

Sampling techniques:
sample size estimation, 415–416
power analysis, 415–416
resource equation, 416
trial design criteria, basic characteristics, 411

Scale of measurement, trial design data, 410

Scale transformations, dose-response relationships, 420–421

Scc1 gene, cancer modifier fine mapping, validation, 278–279

Schwannomas:
histopathology, 190
molecular genetics, 192
mouse models, 195
chemically induced tumors, 193–194

Screening and detection protocols, ovarian cancer, human disease, 173, 175

Second-generation physiologically-based pharmacokinetics/pharmacodynamics:
construction protocols, 402
research background for, 396
silico toxicology, 401–402

Sectioning techniques, cancer pathology in mouse models, investigator’s responsibilities, 20–21

Selective temporal expression. See Gene switching

Semidominant alleles, defined, 285

Sendai virus, research effects, 35

Sequence-specific gene silencing, germline modification strategies, RNA interference, 61–62

Sequential experimental design, basic characteristics, 414

Serial analysis of gene expression (SAGE), tumor angiogenesis markers and targets, 301

SERM agents, mammary gland cancer, estrogen signaling inhibition, 110

Severe combined immunodeficient (SCID) mice:
engineered retroviral infection, transfer models, 76

H. hepaticus in, 33
metastasis models, 308
preclinical trials, human xenografts, 438–439
retroviral vector delivery, 73–74
tumor angiogenesis markers and targets, 301

Sex cord-stromal tumors, ovarian cancer:
human disease, 172–174
mouse models, 180–181

Shared antigens, immunologic mouse models, 323–324

Shipping protocols, cancer pathology in mouse models, investigator’s responsibilities, 20–21

Short hairpin RNAs (shRNAs), germline modification strategies, RNA interference, 61–62

Sibling matings, genetically engineered mice, breeding strategies, 8–9
Signal-to-noise ratio:
  bioluminescent imaging, 364
  magnetic resonance imaging, oncologic mouse models, 353
Significance, defined, 286
Silico toxicology:
  physiologically-based pharmacokinetics/pharmacodynamics
    models, 401–402
  in silico lead discovery, cancer drug development, 431
Sonic hedgehog (SHH) gene:
  lung epithelial cell specialization, signaling and
    transcription, 86–87
  lung morphogenesis, 85
  medulloblastoma genetics and signaling, 205
    mouse models, 207–208
Spatial effects, trial design criteria, 409–410
Spectral karyotyping (SKY):
  lymphoid malignancy classifications, 241
  mammary gland cancer:
    human disease, 105–106
    mouse model correlations to human disease, 118–119
Speed congenics, defined, 286
Sperm (laboratory mice), cryopreservation techniques, 10–12
Staging protocols:
  astrocytomas and glioblastoma multiforme, 200–201
  malignant melanoma, 152–153
  neurofibromas, 190–192
  ovarian cancer therapy, 175–176
  prostate cancer, human disease, 134
Somatic gene cell transfer:
  avian retrovirus, RCAS/TV-A, 71–73
  basic principles, 67–68
  DNA/RNA tumor viruses, 67–68
completely randomized (between-subjects) design, 412
factorial design, 414–415
formal designs, 414
Latin square design, 413–414
randomized block design, 412–413
treatment selection, 412
within-subject/crossover design, 413
experimental/observational studies, 411–412
pilot studies, 411–412
randomization and blinding, 411
experimental unit features, 408
fixed-effect variation, 410
interindividual variation, 408–409
isogenic strains, 409
measurement error, 409
multiple characters or outcomes, 421–422
nonparametric methods, 422
populations and samples, 411
preclinical studies, 407–408
results presentation, 422–423
sample size estimation, 415–416
power analysis, 415–416
resource equation method, 416
statistical analysis, 416–419
analysis of variance assumptions, 418–419
data screening, 416–417
dedicated software, 417
nonparametric vs. parametric methods, 417
one-way ANOVA, completely randomized design, 417–418
post hoc comparisons, 419
statistical inference, 408
temporal/spatial effects, 408–410
cancer modifier detection, 271–272
treatment response evaluation, magnetic resonance imaging, 379–380

Stem cells. See Embryonic stem cells; Hematopoietic stem cells (HSCs)
_Stat_6 gene, cancer modifier fine mapping:
\[\text{haplotype analysis, 276–277}\
\[\text{validation, 278}\

Strain A mouse, carcinogen-induced models, 89–92
chemopreventive agent evaluation, 92
metabolic activation mechanisms, 90–91

Strain distribution patterns (SDP):
\[\text{defined, 286}\
\[\text{recombinant inbred panels, cancer modifiers, 269}\

Strain selection, tumor rejection models, 328

Strain surveys, mouse strains and crosses, 266–271
Strength, defined, 286

Student’s _t_-test, sample size estimation, 415–416

SU5416, mammary gland cancer, metalloprotease and angiogenesis inhibitors, 111

Subcutaneous injection, drug administration, laboratory mice, 12

Sums of squares (SS), one-way analysis of variance, completely randomized (between-subjects) experimental design, 417–418

Superinfection resistance, murine retrovirus production, 71
Suppressor genes, metastasis mouse models, 312
Surface epithelial-stromal tumors, ovarian cancer, human disease, 173–174

Surgical stages, ovarian cancer therapy, 175–176

Susceptibility parameter, defined, 286
SV40 TAg oncogene:
\[\text{ovarian cancer models, sex cord-stromal tumors, 181}\
\[\text{preclinical trials, mouse models for, 441–442}\

Swiss-Webster mice, carcinogen-induced models, evaluation applications, 89–90

Synoptic report form, cancer pathology in mouse models, descriptive guidelines, 25–26

Synteny, defined, 286

Systemic mastocytosis, histology and genetics, 222

Tail bleeding, blood collection protocols using, 7
Tail tattooing, individual mouse identification, 5–6

_Tal_1 gene, precursor T-cell lymphoblastic leukemia/lymphoma mouse models, 251–252
tAML, mouse models, 227

Tamoxifen:
\[\text{mammary gland cancer:}\
\[\text{chemopreventive techniques, 110}\
\[\text{estrogen signaling inhibition, 110}\

squamous cell carcinoma mouse models, 160–162

T antigens (TAg):
\[\text{immunologic tumor research, mouse models, 328–330}\
\[\text{mammary gland cancer:}\
\[\text{mouse model gene expression profiling, 119–120}\
\[\text{SV40-TAg mouse models, 117–118}\
\[\text{prostate cancer, transgenic mouse models, 139–144}\

Somatic gene cell transfer, polyoma viral expression, 68

_Taq_man platforms, genome scans, 271

Targeting vector design:
\[\text{knockin techniques, gain-of-function germline modification, 47–49}\
\[\text{loss-of-function germline modification, knockout techniques, 56–58}\

Target selection, cancer drug development:
\[\text{discovery and validation, 428}\
\[\text{lead optimization and medicinal chemistry, 431–432}\

Recessive genetics and, 430

_T-cell receptor_ β (TCRβ):
\[\text{immunologic tumor research, mouse models, 329–330}\

Lymphoid malignancy classifications, 241

T-cells:
\[\text{development in mice, 240}\
\[\text{immune surveillance models, 324–325}\

Lymphoid malignancies:
\[\text{classifications, 241}\

Mouse models, 250–253

Precursor T-cell lymphoblastic leukemia/lymphoma, 250–252

Small T-cell lymphoma, 252–253

T natural killer cell lymphoma, 253

_TCL_1 gene expression:

_Burkitt and Burkittlike lymphoma mouse models, 249_
TCL1 gene expression: (continued)
folicular B-cell lymphoma mouse models, 248
small B-cell leukemia/lymphoma mouse models, 247–248
small T-cell lymphoma mouse models, 252–253
TEL/AML1 oncogene, pre-B-LBL mouse models, 247
TEL-PDGFBR fusion protein,
myelodysplastic/myeloproliferative disorders, mouse models, 229
Temporal effects, trial design criteria, 409–410
1,2,4,5-Tetrachlorobenzene (TECB), physiologically-based pharmacokinetics/pharmacodynamics models,
carcinogenesis-related clonal growth, 399–400
Tetracycline transactivator (tTA) system:
conditional gain-of-function germline modification, inducible oncogenes, 50
lung cancer models, conditional transgenic mice, 95
mammary gland cancer, conditional oncogene expression, 117
Tg:AC transgenic mice, squamous cell carcinoma models, 159–162
TGFα/myc bitransgenic mice, mammary gland cancer, gene overexpression, 115
Tg mouse model, bioluminescent imaging, spontaneous tumor development, 367–368
Therapeutic trials, mammary gland cancer, mouse models, 122–123
Three-dimensional proton magnetic resonance spectroscopic imaging (3D-1H-MRSI), prostate cancer, human disease, 135
Thrombospondin (TSP), postnatal blood formation models, wound healing, 299–300
Tier 1 necropsy, cancer pathology in mouse models, 17–19
Tier 2 necropsy, cancer pathology in mouse models, 18–19
Tier 3 necropsy, cancer pathology in mouse models, 18–19
Tie receptors:
blood vessel formation, mouse models, vascular endothelial growth factor receptors, 295–296
postnatal blood formation models, wound healing, 300
Tissue culture models, ovarian cancer, 178–179
Tissue inhibitors of metalloproteinase (TIMPs):
metastasis detachment and motility models, 310–311
postnatal blood formation models, reproductive angiogenesis, 300–301
Tissue preparation, micro-computed tomography scanning, 341
Tissue-specific promoters, gain-of-function germline modification, transgenic technique, 45–46
T natural killer cell lymphoma (TNK), mouse models, 253
Tobacco smoke, carcinogen-induced models, evaluation applications, 90
Toremifene, mammary gland cancer, estrogen signaling inhibition, 110
Toxicty studies, cancer drug development, 427–428
TP53 gene:
malignant melanoma genetics, 153–155
mammary gland cancer:
molecular changes, 107
mouse model-human genomic comparisons, 118–119
Trachea, morphogenesis and cellular organization, 85–86
Trait value, defined, 286
Transcription factors:
blood vessel formation control, 296–297
lung epithelial cell specialization, 86–87
lung morphogenesis, 85
Transfer constant, dynamic contrast-enhanced magnetic resonance imaging, tumor function, mouse cancer models, 357–359
Transforming growth factor-α (TGFα), mammary gland cancer, mouse models, 115–116
Transforming growth factor-β (TGFβ), metastasis mouse models, cell signaling, 315
Transgenic adenocarcinoma mouse prostate (TRAMP) mouse:
immunologic tumor research, 329–330
metastasis mouse models, 312
in vivo research, 315–316
prostate cancer models, 139–141
magnetic resonance imaging, 355–356
Transgenic mice:
gain-of-function germline modification, 44–46
immunologic tumor research, 328–331
lung cancer models:
conditional strains, 95–96
conventional strains, 93–95
lymphoma/leukemia models, 246–247
magnetic resonance imaging, oncologic images, 352–356
metastasis models, 308–309
ovarian cancer models, germ cell tumors, 179–180
Philadelphia chromosome, BCR-ABL gene expression, 244–246
prostate cancer models, 134, 139–144
ARR3Pb-c-MYC mice, 142–143
BK5-IGF-1 mice, 144
C3(1)-c-myc, 143
C3(1) SV40 large-T antigen mouse, 141
cryptidin-2 SV40 TAg, 142
Gg/T-15 SV40 TAg, 142
LADY mouse, 141
MPAKT mice, 143–144
non-TAg-based models, 142–144
Pb-mAR mice, 144
TAg-based models, 139–142
transgenic adenocarcinoma mouse prostate (TRAMP) mouse, 139–141
skin cancer models:
malignant melanoma, 155–158
squamous cell carcinoma, 159–162
tumor immunotherapy, limitations, 331
tumor rejection mechanisms, 328
Translocation, chromosome engineering, 54–56
Transplantable tumor models, immunologic research, 322–323
Transrectal ultrasonography (TRUS), prostate cancer, human disease, 134–135
Transvaginal sonography, ovarian cancer screening, 175
Treatment response evaluation:
magnetic resonance imaging:
diffusion-weighted MRI, 380–384
mouse model applications, 377–380
selection criteria, experimental design, 412
Trial design criteria:
- data categories, 410–411
  - frequency distribution, 410–411
  - measurement scale, 410
  - numerical data, 410
- dose-response relationships, 419–421
  - ANOVA for randomized block and within-subject designs, 419–420
    - factorial experiment statistical analysis, 421
    - scale transformations, 420–421
- experimental design, 412–415
  - completely randomized (between-subjects) design, 412
  - factorial design, 414–415
  - formal designs, 414
  - Latin square design, 413–414
  - randomized block design, 412–413
  - treatment selection, 412
  - within-subject/crossover design, 413
- experimental/observational studies, 411–412
  - pilot studies, 411–412
  - randomization and blinding, 411
- experimental unit features, 408
  - fixed-effect variation, 410
  - interindividual variation, 408–409
  - isogenic strains, 409
  - measurement error, 409
  - multiple characters or outcomes, 421–422
  - nonparametric methods, 422
  - populations and samples, 411
  - preclinical studies, 407–408
  - results presentation, 422–423
  - sample size estimation, 415–416
    - power analysis, 415–416
    - resource equation method, 416
- statistical analysis, 416–419
  - analysis of variance assumptions, 418–419
  - data screening, 416–417
  - dedicated software, 417
  - nonparametric vs. parametric methods, 417
  - one-way ANOVA, completely randomized design, 417–418
  - post hoc comparisons, 419
  - statistical inference, 408
  - temporal/spatial effects, 409–410
- Tumor angiogenesis, markers and targets, 301
- Tumor antigens, immunologic mouse models, 323–324
- Tumor cell kill, quantitative analysis:
  - bioluminescence imaging, 384–386
  - in vivo log evaluation, 379–380
- Tumor endothelial markers (TEMs), blood vessel formation, 301
- Tumor function, magnetic resonance imaging, mouse cancer models, 356–359
  - diffusion-weighted MRI, 356–357
  - dynamic-contrast-enhanced MRI, 357–359
- Tumor growth rates, magnetic resonance imaging:
  - brain tumor models, 353–354
  - treatment response evaluation, 379–380
- Tumorigenesis, infectious agents, 35–36
- Tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL), bioluminescent imaging, apoptosis, 386–387
- Tumor rejection mechanisms, mouse models, 325–328
  - adaptive immunity, 326–327
  - IFN-γ-deficient mice, 328
  - innate immunity, 326
  - limitations of, 328
  - perforin-deficient mice, 327
  - RAG-deficient mice, 328
- Tumor sampling, cancer pathology in mouse models, 18–19
- Tumor-suppressor genes (TSGs):
  - brain tumors, mouse models, 206
  - cancer drug development, 429–430
  - gain-of-function germline modification, knockin techniques, 48–49
  - germline modification strategies, basic properties, 43–44
  - loss-of-function germline modification, 56–60
    - conditional knockout techniques, 58–60
    - knockout techniques, 56–58
  - lung cancer, human disease, 84
  - mammary gland cancer, mouse models, 117–118
- Tumor vaccines, mammary gland cancer, mouse models, 123
- TVA receptor,
  - brain tumor models, 205
  - oncogene combinations, 77
  - ovarian cancer models, epithelial tumors, 181–183
  - RCAS vectors, somatic cell gene transfer, 72–73
  - retroviral vector delivery, 73–74
- Tyrosine kinase inhibitors, mammary gland cancer, human disease, 111
- Tyrosine kinases:
  - cancer drug development, 429–430
  - malignant melanoma risk and, 155
- UCN-01, mammary gland cancer, mouse models for prevention and therapy, 122
- Ultrasmall particles of iron oxide (USPIO), magnetic resonance imaging, liver cancer models, 354
- Ultrasound (US) examination, mammary gland cancer, human disease, 109–110
- Ultraviolet radiation:
  - malignant melanoma risk and, 154–155
  - mouse models, 158
  - squamous cell carcinoma risk and, 159
  - mouse models, 160–162
- Transplantable tumor models, immunologic studies, 322–323
  - Underexpression. See Knockout techniques
- Unique tumor antigens, immunologic mouse models, 323
- Urine collection protocols, laboratory mice, 8
  - v-abl transgene, plasmacytoma mouse models, 250
- Validation protocols:
  - cancer drug development, 428
  - recessive genetics and, 430
  - cancer modifiers, 275–279
  - cancer pathology in mouse models, verification vs., 21–22
  - physiologically-based pharmacokinetics/pharmacodynamics models, 400–401
Variance, defined, 286

Variation:
- defined, 286
- preclinical study design and, 408
- trial design criteria and:
  - fixed-effect variation, 410
  - interindividual variation, 408–409

Vascular agents, micro-computed tomography, 345

Vascular endothelial growth factors (VEGFs):
- blood vessel formation, mouse models, embryonic development, 294–296
- dynamic contrast-enhanced magnetic resonance imaging, tumor function, mouse cancer models, 357–359
- mammary gland cancer, metalloprotease inhibitors, 111
- metastasis mouse models, angiogenesis, 311
- ovarian cancer, mouse models, 179–183
- postnatal blood formation models:
  - reproductive angiogenesis, 300–301
  - wound healing, 300
- tumor angiogenesis markers and targets, 301

Vascular morphology:
- dynamic contrast-enhanced magnetic resonance imaging, tumor function, mouse cancer models, 357–359
- magnetic resonance imaging, brain tumor models, 354

Vascular structure, micro-computed tomography scanning, 341–342

VDUP1 suppressor gene, metastasis mouse models, 312

Verification protocols, cancer pathology in mouse models, validation vs., 21–22

Vestibular schwannoma, histopathology, 190

v-H-ras gene, transgenic lung cancer models, conventional mice, 94–95

Viral antigens, immunologic mouse models, 324

Viral infection specificity, retrovirus life cycle, 70

Virally-delivered CRE recombinase, lung cancer models, gene-targeted mouse models, 97

v-onc genes:
- retrovirus-infectious disease interface, 34
- somatic gene cell transfer, polyoma viral expression, 68
- v-src oncogene, historical background, somatic gene cell transfer, 69

Water-soluble contrast agents, micro-computed tomography, 345–346

Websites:
- cancer modifier fine mapping, 277–278
- software resources, 279–280
- cryopreservation resources, 10

genome scans, 271
imaging protocols, 27
mammary gland cancer, genomic analysis resources, 118–119
microsatellite markers, 270–271
mouse model information and databases, 3–5
mammary gland cancer, 112–113
mouse strains and crosses, 266
necropsy procedures, 17
sample size estimation sources, 416
tissue-specific promoters, 45–46
Whey acidic protein (WAP) promoter:
- loss-of-function germine modification, conditional knockout techniques, 60
- mammary gland cancer, mouse models, 112

Whole-mount techniques, cancer pathology in mouse models, organ preparation, 18–19

“Wild-type” infectious agents, clinical effects, 38

Within-subject experimental design:
- basic characteristics, 413
dose-response relationships, analysis of variance, 419–420
Wnt gene family,
- hormone responsiveness, 119, 121
- lung epithelial cell specialization, signaling and transcription, 86–87
- mammary gland cancer, mouse models, 112
- metastasis, 121
- overexpression, 117

Wound healing, postnatal blood formation models, 299–300

Wx/Wv mice, ovarian cancer models, sex cord-stromal tumors, 180–181

Xenograft models, immunodeficient mice, preclinical trials, 438–439

Xeroderma pigmentosum, malignant melanoma risk and, 154–155

Yeast cytosine deaminase (yCD), treatment response evaluation, diffusion-weighted magnetic resonance imaging, 382–384

Zinc finger transcription factors, Aiolos, pre-B-LBL mouse models, 247

Zoonotic hazards, human safety and, infectious agents in genetic mice, 37