Subject Index

a
activity, 415
conformational descriptor, 116
hyperfine coupling constant, 260
A
equatorial preference, 130
in Edwards equation, 507
overall solute hydrogen bond
acidity, 339
preexponential factor, 349
A value in conformational analysis, 131, 135, 151, 169
A1 mechanism, 447
A(1,2) strain, 122
A2 mechanism, 447
A(1,3) strain, 122
A_{Ac1} mechanism, 450, 451
A_{Ac2} mechanism, 450–452
A_{Al1} mechanism, 450–452
A_{Al2} mechanism, 450
Ab initio calculation, 223
acidity, 419
amide hydrolysis, 461
bromonium ion, 566
carbene rearrangement, 286
carbocation, 593
carboxylate stability, 418
chloronium ion, 580
computational resources, 223
computational time, 136
Cope rearrangement, 772
Diels–Alder reaction, 736
electrophilic addition, 557
epoxidation, 606
ethyl cation, 294
formic acid, 429
gas phase acidity, 428
hydration of alkene, 593
hydroboration, 604
in chirality determination, 91
in conformational studies, 150
methyl anion, 315
nucleophilic addition to
carbonyl, 626
nucleophilic vinylic substitution, 532
ozonolysis, 747
pericyclic reaction, 706, 771
S_{1/2} reaction, 496, 502
Ab initio theory, 223
Ablation, 790
Abnormal addition, 589
Absolute addition, 589
Absolute configuration, 68, 91
Absolute electronegativity, 23
Absolute hardness and aromaticity, 220
Absolute hardness, \eta, 220, 506
Absolute softness, \sigma, 506
Absorption of UV-vis radiation, 787, 794
by CT complex, 557
+\alpha, 115
−\alpha, 115
Acceptable representations of
stereochemistry, 56
Acenaphthylene, syn addition of
chlorine, 579
Acene, 206
Acetal hydrolysis, 447
Acetic acid
acidity, 418
acidity and thermodynamic values, 429
dipole–dipole interaction, 325
Acid catalysis
Brønsted catalysis law, 437
buffer ratio, 437
general, 435
in alcohol dehydration, 670
in alkene hydration, 592, 594
in alkyne hydration, 614
significance of Brønsted z, 437, 438
specific, 434
Acidity
and bent bond description of double
bonds, 45
and Hammett equation, 415
and hybridization, 41, 44
and ion pairing, 415
and \textit{t}J_{H\ldot\ldot}, 41
and photochemical reaction, 834
tand Taft equation, 418
and \sigma,\pi description of double bonds, 44
\Delta G_{acid}, 424
\Delta H_{acid}, 424
\Delta S_{acid}, 424
ethane, 44
ethenone, 44
ethyne, 44
formic acid, 419
gas phase data for selected
compounds, 425
importance of \Delta S in solution, 429
in aqueous solution, 416
in cyclohexylamine solution, 421
in DMSO solution, 422
in gas phase, 422, 423
in nonaqueous solvents, 420
in THF solution, 421
K_{a}, 414
K_{T}, 415
K_{s}, 415
kinetic, 41
leveling effect, 422
leveling effect of solvent, 430
trends of alcohols in gas phase and in
solution, 426
Acidity constant, 414
Acidity function
excess acidity, 433
H''', 431
H', 431
H_C, 432
H_E, 432
other, 432
Aromatic structure, 201
Aromatic transition state, 764
Aromatic transition structure, 763, 764
Aromaticity, 201
$4n + 2$ rule, 201
delocalization energy, 218
Clar notation, 210
Möbius, 767
of transition structures in pericyclic reactions, 763
Arrhenius equation, 348
Arrhenius plot, 350
Artificial photosynthesis, 862
Aryne, 168, 541, 542
in cycloaddition reactions, 741
aS, 70, 72
α_{S2} mechanism, 593
α-π_2 mechanism, 593
Association process, 450
Asym-methylethylethylene, 592
Asymmetric induction, 623
Asymmetric structure, 62
Atactic polymer, 93
Atom transfer reaction, 378, 749
selection rules, 750
Atom type in molecular mechanics, 140
Atomic carbon, 255
Atomic force microscopy (AFM), 3
Atomic radius in QTAIM, 235
Atomic surface area, 6
Atomic volume, 6
calculated, 7
in QTAIM, 235
Atoms in molecules, 232
Atropisomers, 66
Attached atoms list, 139
Attachment step, 533, 590
Aufbau principle, 187
Autocatalytic reaction, 442
Average bond dissociation energy, 16
Avoided crossing, 457, 458, 713
Avoided crossing rule, 713
A_{H} (activity of water), 432
A_{α} mechanism descriptor, 639
$A_{\alpha}D_{\alpha4} + D_{\alpha}$ mechanism, 639
$A_{\alpha}D_{\alpha4} + D_{\alpha2}$ mechanism, 644
$A_{\alpha}D_{\alpha4}$, $D_{\alpha2}$ mechanism, 644
$A_{\alpha}D_{\alpha4}$, D_{α} mechanism, 644
$A_{\alpha}D_{\alpha4}$, D_{α} mechanism, 639
Axial chirality, 70
Axial substituent, 128, 626, 665
Azobisobutyronitrile, 271
Azulene, 195, 244, 432, 795
B in Edwards equation, 507
overall solvent hydrogen bond basicity, 339
B3LYP functional, 237
B-A_{α}, A_{α} mechanism, 450
B_{α} mechanism, 453
$B_{\alpha2}$ mechanism, 453–456
Back electron transfer, 306, 804
Back-side attack in $S_{N}2$ reaction, 495
Baeyer strain, 123, 148
B_{α} mechanism, 456
$B_{\alpha2}$ mechanism, 453
Baldwin’s rules, 274
Bamford–Stevens reaction, 286
Banana bond, 42, 46
Barrelene, 108, 167
Base
Bremsted, 413, 414
Lewis, 413
Base catalysis, 437
carbon dehydrogenation, 676
π-halogenation of carbonyl compounds, 444
and carbonyl hydration, 439
Bremsted catalysis law, 437
enolate formation, 446
ester hydrolysis, 457
Base-promoted reaction, 449
Basicity
equilibrium concept, 504
gas phase basicity, 426
in aqueous solution, 420, 421
proton affinity, 426
selected gas phase data, 426
Basicity function, 433
Basis set, 224, 771
in DFT, 236
in HMO theory, 175
Bass set function, 224
Basketane, 163, 170
Bathochromic shift, 817
Beckmann rearrangement, 409
Beer and photochemistry, 861
Bell-Evans–Polanyi (BEP) principle, 363
Beltene, 166
Bema Hapothle, 363
Benson electronegativity, 23
Bent bond, 46, 47
and acidity, 45
and bond length, 44
and deformation of propene, 46
and LMO, 225
and Pauling, Linus, 43
and theoretical calculations, 46
as starting point, 47
banana bond, 42
description of double bond, 42
π bond, 42
Bent bond line representation of glycosidic linkage, 81
Benzene
D_{e}, 190, 201
DRE, 219
electron diffraction, 202
heat of hydrogenation, 190, 203
HMO energy levels, 198
Hückel MOs, 186
isomer counting, 4
Kekulé structures, 238
Möbius molecular orbitals, 766
Subject Index

Benzene (Continued)

photochemistry, 843
photophysical data, 809
resonance energy, 190, 203, 238, 239
SRT resonance energy, 245
valence bond calculation, 238
Benzene hexachloride, 648
Benzylic dipole moment in T1 state, 815
Benzenophene
DRE, 219
photophysical data, 809
photoreduction, 834
Benzvalene, 167, 843
Benzylic radical
EPR spectrum, 197
from toluene photodissociation, 847
Benzyne, 168, 532, 536, 539, 541
in cycloaddition reactions, 741
m-Benzyne, 168
o-Benzyne, 168
p-Benzyne, 168
Benzyne mechanism, 537, 540, 549
BEP principle, 363
ß
in Edwards equation, 507
in HMO theory, 179, 190
isokinetic temperature, 402
solvent parameter, 339
ß-bromovinyl cation, 610
ß-cleavage, 832, 836
ß, (Bohr magneton), 259
ß-elimination, 633
Bichromophoric structure, 829
Bicyclo[1.1.0]butane, 108
radical cation, 308
Bicyclo[2.2.2]octane, 387
Bicyclobutyronium ion, 300
is-bicyclo[4.4.4]-1-tetradecene, 299
Bifunctional catalysis, 448, 458
Bifurcated potential energy surface, 370
Biphenyl
DRE, 219
SRT resonance energy, 245
Biradical, 308, 311, 438
Bridgehead proton acidity, 51
Bridgehead double bond, 162
Bridgehead carbanion, 311
Bridgehead carboxylation, 475
Bridgehead proton acidity, 51
Bridgehead radical, 267
Bridging in carbocations, 295
Bridging power, 583
Broken bold line in Maehr convention, 75
Broken wedge in Maehr convention, 74
Bromonium ion, 488, 578
Bromine ion, 488, 578, 598
Bromination, 578
Bromonium ion, 488, 553, 556, 598
resonance structures, 564
Brensted acid, 413, 414
Brensted z, 438
Brensted base, 413, 414
Brensted ß, 457
Bromination, 475
Bromination, 437
Bromination, 505
Bromination, 296
Bromination, 437
Buffer ratio, 329
Butane
distribution of conformations, 121
molecular mechanics calculation, 139
radical cation, 307
Butanoic acid acidity in gas phase and in solution, 428
Bredt’s rule, 162
for Cope rearrangement, 722
for Claisen rearrangement, 724
Bulvalene, 726, 854
Bu3SnH, 271
1,3-Butadiene
C2–C3 rotational barrier, 190
DE, 201
Diels–Alder reaction, 731
electrocyclic reaction, 702
HMO calculation, 184
P, 193
Butane
distribution of conformations, 121
molecular mechanics calculation, 139
radical cation, 307
Butanoic acid acidity in gas phase and in solution, 428
Butterfly mechanism, 606
sec-Butyl carbocation, 297, 298
rearrangement, 304
ß-Butyl alcohol gas phase acidity, 426, 428
ß-Butyl carbocation
ESCA, 321
generation, 291, 293
reaction with naphthyl, 678
rearrangement, 321
ß-Butyl radical geometry, 267
ß-Butylcarboxylic conformation, 132
ß-Butyne gas phase acidity, 428
ß
conformational descriptor, 117
s-cis, 117
stereochemical descriptor, 76
3c–2e bond, 290
C3H7+, 294
C60, 209
C76, 63
C76, 63
Cahn–Ingold–Prelog (CIP) system, 67
Calderon, 777
Calorimetry, 8
Canonical MO, 225
Carbanion
racemization, 314
rearrangement, 319
stability, 317
Carbene, 278
cycloaddition with alkene, 284
insertion, 285
rearrangement, 286
Carbenium ion, 289
Carbenoid, 283
Carboline, 441
Carboxylation, 289
and ion pairing, 298
conformationally equilibrated, 594
hydrogen-bridged, 299
lifetime, 594
rearrangement, 298, 302, 577, 674
stability, 291, 302
Carbonium ion, 289, 300
Carbonyl hydrate dissociation constant, 439
Carbonyl oxide in 1,3-dipolar cycloaddition, 744
Carbyne, 255
Carroll rearrangement, 728
CASSCF, 225
Catalytic antibody, 459
Catena, 67
Cation radical, 305, 309, 311
Radical cation
CASSCF, 225
CD (circular dichroism), 89
Centauric transition structure, 773
Center of inversion (i), 60
CH2Cl2 and variable hybridization, 39
generation, 39
isomer counting, 4
Dissociation process, 450
Dissociative state, 848
Dissymmetric structure and point group, 63
Dissymmetry, 63
Distonic radical ion, 308
Di-α-butylcarbene, 280, 288
Di-α-methane rearrangement, 828, 855

1/DN mechanism label, 471
1/DN + 3/AN mechanism, 471
D_{N} + A_{N} + A_{N}D_{N} mechanism, 453
D_{N} + A_{N} mechanism, 471
D_{N}1/2 mechanism, 471
D_{N} + A_{N}D_{N} mechanism, 639
D_{N} + D + A_{N} mechanism, 472
D_{N} + D mechanism, 639
D_{N} mechanism label, 471
DNA, 4
Dodecahedrane, 162
Doering-Zeiss intermediate, 482
Doering-Zeiss mechanism, 482
Dot stereoischemic descriptor, 58
Dotted line in Maehr convention, 75
Doublet state, 792
DPPH, 258
DPPH, 259
Dipole moment, 507
Dynamic effects, 776
Dyotropic reaction, 749

Electrochemical reaction, 702
and FMO theory, 757
as cycloaddition reaction, 754
cyclobutene-butadiene interconversion, 697, 702, 708, 710, 713, 714, 755, 757, 767, 768, 770
cyclohexadiene-hexatriene interconversion, 699
cyclopropyl-allyl interconversion, 743
Möbius aromaticity, 767
photochemical, 826, 829
selection rules, 705
Electrofuge, 450, 469, 513, 543
Electron affinity, 18
and absolute hardness, 506
and charge transfer complex, 229
and Mulliken electronegativity, 22
in gas phase acidity determination, 424
relationship to \(E_{\text{LUMO}} \), 220
Electron configuration, 26, 225, 711, 713, 733
of formaldehyde electronic states, 791
Electron correlation, 223
Electron density and basis sets, 224
and QTAIM, 223
in DFT, 236
in HMO theory, 191
Kohn-Sham theory, 236
Electron density contour, 127
Electron donor-acceptor complex, 229
Electron paramagnetic resonance selection rules, 705
Electron pushing and MO following, 768
Electron spin resonance (ESR), 259
Electron transfer, photoinduced, 803
Electronegativity, 21, 626
absolute, 23
Allen, 23
and acidity, 386, 429
and benzene formation, 538
and benzene reaction, 541
and bond curvature, 150
and substituent effect, 400
and variable hybridization, 37
and VSEPR, 36
Benson, 23
comparison, 23
group, 23
Mulliken, 22
Nagle, 23
Pauling, 21
Electronic chemical potential (\(\mu \)), 23
Electronic energy transfer, 802
collisional, 802
Förster, 802
radiative, 802
trivial, 802
Electron-rich alkene, 555
Electrophilic addition, 206, 575
chemoselectivity, 567
epoxidation, 605
hydroboration, 600
Markovnikov’s rule, 585
oxymercuration, 596
regiochemistry, 568
reversibility, 563
solvent effects, 561
solvent participation, 561
solvomercuration, 596
surface-mediated, 587
Electrophilicity parameter, 509
Electrostatic effect, 386
Element effect, 529, 533, 642
Elementary reaction, 328, 350, 363
molecularity, 342
Elimination, 633
heterogeneous, 652
1,1-Elimination, 634, 653
1,2-Elimination, 633, 638
1/2/Elimination, 633
1,3-Elimination, 635
1,4-Elimination, 635
stereochemistry, 654
1,6-Elimination, 636
1,8-Elimination, 636
1,10-Elimination, 636
\(E_{\text{LUMO}} \), 220

Energy of UV-vis radiation, 789
Energy minimization, 141
Energy of UV-vis radiation, 789
Energy surface, 820
Enol, 443
in Conia-ene reaction, 753
in oxy-Cope reaction, 727
intermediate in Norrish type II reaction, 836
photochemical generation, 446
regiochemistry, 444
Enolate, 443
as model for dienophile, 763
conjugate addition, 621
in 2-halogenation, 443
nucleophilic addition, 318
oxidative coupling, 320
regiochemistry, 444
Enolization, 442

Epoxide of alkenes, 605

Epimeric center, 81
Epimer, 81

Enolate, 443

Enyne

Enthalpy-controlled reaction, 570
Enthalpy–entropy compensation, 402
Entropy-controlled reaction, 570
Entropy units, 351
Enthalpy–entropy compensation, 402

Enol, 443

Enzyme catalysis, 423

Enolidization, 443

EPR spectrum, 261
hyperconjugation, 292
PMO analysis, 294
LUMO, 293
PMO description, 293

Ethene
acidity, 44
bent-bond description, 42
dimerization, 731, 755, 757
EHT calculation, 221
electron density, 233
gas phase acidity, 425
gas phase basicity, 427
geometry, 42

HOMO calculation, 176
LMOs, 225
natural bond orbitals, 226
photochemical reaction with benzene, 843
radical cation, 307
π,π' state, 819, 820
σ,π description, 42

E(θ) in molecular mechanics, 137, 139

Eπ−
e
allyl anion, 188
allyl cation, 188
allyl radical, 188
energy of the π system, 188
in HMO theory, 188

Epimer, 81

Epimeric center, 81
Epoxidation of alkenes, 605
EPR, 259
ε
dielectric constant, 20, 338
extinction coefficient, 466
εmax, 797

Equatorial preference (A value), 130
Equatorial substituent, 128
Equilibrium control of product distribution, 357, 759
Equilibrium isotope effect, 382
and acidity, 382
and conformation, 383
Equilibrium substituent effect, 390
E2 reaction and Curtin–Hammett principle, 358
E(τ) in molecular mechanics, 137
Erythro, 83, 571
Erythrosox, 83
E in Taft equation, 401
E3B in molecular mechanics, 138
ESCA, 32
2-norbornyl carbocation, 300
cyclopropenyl cation, 303
Eschenmoser rearrangement, 729
ESR (electron spin resonance), 259

Ester
acid-catalyzed hydrolysis, 449
alkaline hydrolysis, 452
amination, 459
E3(30) scale of solvent polarity, 339
η (absolute hardness), 506
Ethane
acidity, 44
conformational energy, 119
gas phase acidity, 317
gas phase basicity, 427
origin of rotational barrier, 120, 231
VSEPR description, 36
Ethanol
acidity, 386, 419
gas phase acidity, 426, 428
80% Ethanol, 646
Ethanolysis, 476

Ethene
acidity, 44
bent-bond description, 42
dimerization, 731, 755, 757
EHT calculation, 221
electron density, 233
gas phase acidity, 425
gas phase basicity, 427
geometry, 42

HOMO calculation, 176
LMOs, 225
natural bond orbitals, 226
photochemical reaction with benzene, 843
radical cation, 307
π,π' state, 819, 820
σ,π description, 42

E(θ) in molecular mechanics, 137

Ethyl anion
EHT calculation, 317
HOMO, 317
inversion barrier, 315

Ethyl cation
ab initio calculation, 294
bridged structure, 294
EHT calculation, 293
formation in gas phase, 678
geometry, 284
hyperconjugation, 292
LUMO, 293
PMO analysis, 292
rearrangement, 298

Ethyl radical
dimerization, 268
EHT calculation, 263
EPR spectrum, 261
hyperconjugation, 262, 268
PMO description, 264
pyramidalization, 266
SOMO, 263

Ethylene
acidity, 44
bent-bond description, 44
gas phase acidity, 425, 428
gas phase basicity, 427
σ,π description, 44
eu, 351
Even alternant structure, 195
Excess acidity, 433
Exchange-correlation functional, 237
Excimer, 803
Exciplex, 803
Excitation spectrum, 801
Excited state kinetics, 805
Exciton migration, 802
Exo, 78
Exo closure in Baldwin’s rules, 274
Exothermic reaction
and kinetic isotope effect, 376
and Marcus theory, 365
Exothermic step and Hammond postulate, 262
Extended Hückel theory (EHT), 221
Extent of reaction, 254
Extrusion reaction, 747
Eyring plot, 351
F
in Swain–Lupton equation, 399
in Taft–Topsom equation, 400
f in Swain–Lupton equation, 399
fν, 522
FI fragmentation, 637
F1cb fragmentation, 637
F2 addition to alkene, 580
F2 fragmentation, 637
FA (flowing afterglow), 317, 423
FA-SIFT, 423
Fast reaction techniques, 331
Favorskii rearrangement, 692, 853
Fellkin model, 624
Femtosecond, 331

Fenestrane, 161, 170
[4.4.4.4]Fenestrane, 161

F, (free valence index), 193
Field effect, 386
and substituent effect, 400
Field effect constant, 399
First-order decay process, 805
Fischer projection, 72
allowed operations, 73
forbidden operations, 73
Fischer–Tollens projection, 72
Flagpole hydrogen, 124
Flash photolysis, 807
Flash spectroscopy, 807
conventional, 807
laser, 807
pump-probe technique, 807
Flowing afterglow (FA or FA-SIFT), 317, 423
Fluorescence, 795, 798
and excited state geometry, 799
Fluorescence lifetime, 806
Fluorescent chemosensor, 859
Fluorine substituent and acidity, 386, 429
as a bridging atom, 580
as a leaving group, 663
effect on radical geometry, 265, 311
2-Fluoroethanol acidity, 386
Fluorohydrin, 578
in amide hydrolysis, 460
in amine deamination, 679
in benzyne reaction, 537
in carbocation rearrangement, 302
in elimination, 634
in ester hydrolysis, 457
in ester pyrolysis, 684
in hydrolysis of ethyl propionate, 453
in hydrolysis of methyl mesitoate, 451
in pericyclic reaction, 699, 719, 749, 772, 774, 777
in von Richter reaction, 530
Isotopologue, 94
Isotopomer, 94
Isotropic hyperfine coupling, 261

\[I_{v_{\alpha\omega}} \]
and hybridization parameter, 41
and kinetic acidity, 41
Jablonski diagram, 792
Jackson–Meisenheimer complex, 316, 529
Jahn–Teller effect and geometry of methyl
Johnson rearrangement, 729
Karplus' equation, 34
Kasha's rule, 795
Karplus equation, 152
Kasha's rule, 795
K \(\alpha \), 415
K \(\beta \), 420
K \(\beta_{HHSS} \), 420
\(\kappa \) in transition state theory, 351
K \(\beta \), 809
Kekulé molecular models, 125
Kekulé structure, 48, 53, 202, 210, 238
counting, 241
k \(\ell \) (fluorescence rate constant), 805
K \(\ell \), 415
Kinetic acidity, 41, 421
Kinetic control of product
distribution, 356, 357, 581, 670, 759
Kinetic isotope effect, 370, 371
and temperature, 379
and tunneling, 378
in arylidiazonium reaction, 527
in bromine addition to alkene, 559
in Chugaev reaction, 683
in Claisen rearrangement, 728
in elimination, 642–644, 673
in Hofmann elimination, 665
in hydroboration, 605
in hydrolysis of formamide, 462
in hydrolysis of methyl formate, 452, 456
in pyrolysis, 684
in \(\Sigma_{3} \)Ar reaction, 519
intramolecular, 378
usual range, 377
1° Kinetic isotope effect, 371
2° Kinetic isotope effect, 371, 380
Kinetically stable radical, 258
Kinetics and mechanism
determination, 341
\(K_{\text{eq}} \), 420
Koelsch radical, 258
Kohn–Sham theory, 236
Koopmans' theorem, 32
Kosower Z scale of solvent polarity, 339
\(k_{\text{p}} \), 344
\(K_{\text{SC}} \), 244
\(l \) (like), 84
\(l \) (sensitivity to solvent
character), 37
weighting parameter for ionic
class, 21
\(l_{\text{max}} \), 797
Lapworth mechanisms, 443
Laser flash spectroscopy, 331, 807
Late transition state, 362, 376, 452, 680
and kinetic isotope effect, 375
Law of definite proportions, 2
LCAO (linear combination of atomic
orbitals), 175
L-CPL, 858
L CAO (linear combination of atomic
orbitals), 175
Levorotatory, 86
Leveling effect of solvent, 422, 430
Levotatory, 86
Lewis acid, 413
Lewis acid catalysis
Claisen rearrangement, 728
Diels–Alder reaction, 762
Friedel–Crafts reaction, 330
Lewis base, 413, 504
Lewis cubical bonding model, 19
Lewis structure, 226, 524, 564, 814
representation of electronically excited
state, 814, 832, 840, 841, 845
LFER, 389
Lifetime
of 1,4-biradical, 837
of bromonium ion, 564
of carbene, 288
of carboxylation, 298, 674
of excited state, 805, 809, 810, 862
of intermediate, 254, 320, 533, 555, 565,
571, 594
of singlet oxygen, 851
relationship to half-life, 806
Lightstruck flavor of beer, 861
Limonene
deprotonation, 315
photohydration, 825
Line formula conventions, 54
Linear chelotropic reaction, 747
Linear free energy relationship
(LFER), 389, 477, 507
and gas phase acidity, 423
Hammett equation, 390
Linear Hammett correlation, 392
\(\ell \) (like), 84
LMO, 33, 225
Local minimum, 147
and reactive intermediate, 254
Localized molecular orbital, 33, 225
London dispersion forces, 139
Lowest unoccupied molecular orbital, 229
Luminol, 839
LUMO, 220, 229
and conjugate addition, 621
and Diels–Alder regiochemistry, 761
in FMO theory, 756
of alkene, 818
of ethyl cation, 293
of formaldehyde, 790
of nitrobenzene, 845
LUMOMERS, 769
Lyte ion, 435
Lyonium ion, 434
M chirality descriptor, 71, 72
\(m \) in Grunwald–Winstein equation, 477
–M mesomeric effect, 385
+ M mesomeric effect, 385
M05-2X functional, 237
Maehr convention for stereochemical
drawings, 74
Magic acid, 296
Magnetic susceptibility and
triphenylmethyl radical, 258
Manifold, 793
singlet, 793
triplet, 793
Marcus equation, 364
Markovnikov orientation, 567, 592, 595,
597, 603
Markovnikov spelling, 585
Markovnikov's rule, 405, 585, 631
Mass law effect, 474
Matrix isolation study, 213, 307, 308, 320,
331, 830
benzyne, 541
MC (Monte Carlo statistical
mechanics), 154
MD (molecular dynamics), 153
Mechanism of a reaction, 327
Mechanism descriptor, 644
Mechanism descriptor, 644
Menschutkin reaction, 500
Methidazol reaction, 500
Mecurinium ion, 598, 614, 615, 617
Mercuronium ion, 598
Meso
alternative definition, 82
stereochemical descriptor, 82
Meso structure, 82
and stereogenicity, 98
physical properties, 93
with internal plane of symmetry, 82
without internal plane of symmetry, 82
Mesomeric effect, 385
Metal ion catalysis, 458
π-electron deficient carbene, 280
π electron density (\(p\)), 191
π molecular orbital, 175
π-nucleophile, 509
\(\pi,\pi^*\) state, 792
\(1\pi,\pi^*\) state, 793, 819
\(3\pi,\pi^*\) state, 793, 819
π-radical cation, 306
π system in pericyclic reaction, 702
π* antibonding orbital, 180
solvant dipolarity/polarizability index, 338
\(\pi_{\alpha\alpha}\) solvent parameter, 339
π → π* transition
and solvent effect, 817
in alkene, 818
in benzene, 843
in benzoephene, 816
Picosecond (ps), 331
Pilote atom, 72
Pipek–Mezey method, 225
Pipe-atom, 72
Piperine, 867
pK_{a}, 414
of electronically excited state, 813
PK_{CIE}, 421
PKIE, 371
Plain curve, 88
Planar carbon atom, 161
Planar chirality, 70
Planck’s constant (\(h\)), 414
Plane polarized light, 86
Plane of chirality, 66
Plane polarized light, 86
Platonic solid, 161
PM3, 223
PM6, 223
PMO calculation
ethylcation, 230, 292
conformation of ethane, 231
ethyl radical, 263, 264
pericyclic reaction, 756
torsional barrier in ethane, 231
PMO theory, 226
Point group, 61
and chirality, 62, 63, 65
and nondissymmetry, 64
classification scheme, 61
Polar Felkin–Anh model, 627
Polarizability
and acidity, 429
and base softness, 505
and nucleophility, 504, 507
and pericyclic reaction, 771
and substituent effect, 400
Polarized light
circularly polarized, 88
plane polarized, 86
Polyacene, 206
Polymerization, 271
Ponderal effect, 501
Positional isomers, 57
Positive Cotton effect, 88
Post-Hartree–Fock method, 225
Potential energy surface, 147, 216, 253, 366, 370, 472, 566, 640, 645, 714, 777, 812, 821, 848, 850
acid-base reaction, 418
and electrolytic reaction, 714
and kinetic isotope effect, 373
and syn elimination, 651
bifurcated, 370
bromonium ion, 566
for electronically excited state, 820
pR, 70, 72
Preassociation mechanism, 595
Predissociation, 848
Predissoiative state, 848
Preexponential factor (\(A\)), 349
and kinetic isotope effect, 374
Pref, 84
Preferred representations of stereocchemistry, 56, 81
Previatm D_{3}h, 720
pericyclic reaction, 720
Primary kinetic isotope effect, 371, 374, 607
Primary oxidonide, 745
Primary solvent kinetic isotope effect, 384
Principle of additivity, 6, 10
Principle of microscopic reversibility, 344
Prismane, 163, 170, 843
(Pro)\(^2\)-chirality, 99
Pro(R) descriptor, 96, 97
Pro(S) descriptor, 97
Prochiral structure, 96
Prodrug, 636
Product development control, 625
Product distribution and \(\delta G^i\), 354
Pro-fragrance, 861
Progress of reaction, 253, 361, 641
Propagation step in chain reaction, 270, 271, 543, 583, 589
Propane gas phase acidity, 317
2-Propanol acidity, 418
gas phase acidity, 426, 428
[1.1.1]Propellane, 160, 168
Propene conformations
and bonding models, 46
Proper rotation axis (\(C_n\)), 60, 99
Propionic acid acidity, 428
1-Propyl cation, ab initio calculation, 298
1-Propyl radical, 270
hyperfine coupling, 262
Propyne gas phase acidity, 428
Proutum (\(\text{H}^+\)), 516, 774
Protobranching, 15
Proton (\(\text{H}^+\)), 414
Proton affinity (PA), 426
Proton inventory, 385
Protonation, 414
pS, 70, 72
ps (picosecond), 331
Pseudoasymmetric atom, 98
Pseudoaxial substituent, 135
Pseudoaxially substituent, 135
Pseudo-first-order kinetics, 344, 452, 474
Pseudorotation, 128
pss, 823
PTOC ester, 272
Puckered conformation, 126
Pulsed ion cyclotron resonance (ICR) spectrometry, 423
Push-pull carbene, 281
Push-push carbene, 281
Pyramidal carbon atom, 160
Pyramidalization
alkene distortion, 166
in excited state, 820, 821
Pyramidene, 163
Pyrene SRT resonance energy, 245
Pyridine reaction with singlet carbene, 287
Pyridine-2-thione-N-oxycarbonyl ester, 272
2-Pyridone-2-hydroxypyridine
tautomerization, 449
Pyridyne, 168
Pyrolytic elimination, 681
Q, (charge density), 192
QTAIM, 233
methonium ion, 290
Quantitative conformational analysis, 135
Quantum Chemistry Program
Exchange, 137
Quantum efficiency, 804
Quantum theory of atoms in molecules, 233
Quantum yield, 804
Quasi-steady-state approximation, 345
Quencher, 800
of electronically excited state, 809
R
\(R\) gas constant, 349
in Swain–Lupton equation, 399
in Taft–Topsom equation, 400
in Yukawa–Tsuno equation, 399
stereocchemical descriptor, 67, 68, 76
+ R resonance effect, 385
− R resonance effect, 385
R^*, 76
Ra, 70
Rac- (stereocchemical descriptor), 87
Racemate, 87
physical properties, 93
Racemic mixture, 87
Racemic modification, 87
Racemization, 135
and A1 mechanism, 447
and carbanion, 314, 333
and carbocation, 291
and radicals, 314
and SET mechanism, 517
and \(S_1\) mechanism, 480
of chiral ketones, 443
Radiant intensity, 789
in benzyne formation, 538
in dehalogenation reaction, 668
in electrophilic aromatic substitution, 519, 520
in ester hydrolysis, 449, 450, 452, 454, 456, 457
in hydration of alkene, 594
in nucleophilic acyl substitution, 459
in nucleophilic aromatic substitution, 527
in nucleophilic vinylic substitution, 533
in oxymercuration, 597
in photochemical process, 833
in pyrolytic elimination, 683
in reaction of XeF2 with alkene, 581
in S$_0$1 reaction, 473
r$_e$ (covalent radius), 5
R-CPL, 858
Re face, 98
Reaction constant in Hammett equation, 390
Reaction coordinate, 253, 254, 367
and excited states, 820
and kinetic isotope effect, 376
and VBCM, 514
E1 reaction, 642
Gibbs diagram, 255
Marcus theory, 363
pericyclic reaction, 711, 739
photodissociation, 848
S$_2$02 reaction, 361
Reaction coordinate diagram, 253
acetal hydrolysis, 447
and excited state acidity, 811
and Hammond postulate, 362
and product distribution, 357
and reactive intermediate, 254
and substituent effect, 390
E1 reaction, 641
E1cbR reaction, 643
E2 reaction, 641
elementary reaction, 348
Gibbs diagram, 328
Hofmann orientation, 658
Saytzeff orientation, 655
S$_2$Ar reaction, 519
S$_2$2 reaction, 361
solvolyis, 485
Reaction mechanism, 327
Reaction velocity, 342
Reactive intermediate, 253, 254
and Hammond postulate, 362
detection, 531
energy requirement, 329
isolation, 329, 330
lifetime, 254
photochemical generation, 824, 842, 855
spectroscopic detection, 330
trapping, 331, 483
Rectus, 67
Red shift, 817
Regiochemistry, 621
and Markovnikov's rule, 585
in addition of HBr to alkene, 589
in addition of HCl to alkylene, 612
in benzyne reaction, 537
in electrophilic addition, 568, 574, 582, 584
in elimination, 654
in hydration of alkene, 593
in hydroboration of alkene, 596, 602
in hydroboration of terminal alkynyl, 616
in nucleophilic addition, 620
in oxymercuration of alkene, 597
in oxymercuration of alkylene, 614
in z-halogenation of ketones, 444
of Cope elimination, 686
of Diels–Alder reaction, 760
of enol formation, 444
of enolate formation, 444
Regioselective reaction, 86
Regioselectivity, 567, 584, 597, 603, 605, 661
Regiospecific reaction, 86
Rel, 76
Relative configuration, 74–76, 91, 92
Relative hardness and aromaticity, 220
Relative static permittivity, 338
Resolution of a racemate, 87
Resolve (a racemate), 87
Resonance, 189, 192, 197, 198, 239
and acidity of carboxylic acids, 418
and benzene reaction, 541
and substituent effect, 400
bromonium ion, 564
carbanion stabilization, 311
carbene stabilization, 280
carboxylation stabilization, 292
description of carbanion, 312
nucleophilic aromatic substitution, 529
substrate effect, 385
Resonance effect constant, 399
Resonance energy, 204
and aromaticity, 206
and heat of formation, 218
and number of resonance structures, 238
and SRT method, 241, 244
and valence bond theory, 189
annulenes, 218
benzene, 190, 203–205, 238, 239
Dewar resonance energy, 218
furan, 206
naphthalene, 206
phenanthrene, 206
thiophene, 206
Resonance hybrid, 189
Resonance integral
HMO theory, 177
in Möbius π systems, 765
Resonance structure, 189, 197, 238
and electrophilic aromatic substitution, 524
and hyperconjugation, 230, 262
and representation of electronically excited state, 814, 832, 841, 843, 845
Retention of configuration, 92
in ester hydrolysis, 453, 456
Retro-1,3-cycloaddition, 746
Retro-Diels–Alder reaction, 736, 854
Retro-ene reaction, 683, 752
Reverse aldol reaction, 638
Reverse Michael addition, 638
ρ
in Hammett equation, 390, 400
interpretation, 392
negative value, 392
positive value, 392
reaction constant, 391
ρ (electron density), 191
ρ(r) in QTAIM, 233
ρ∗ in Taft equation, 401
11-cis-Rhodopsin
photoisomerization, 822
r0, 5
Ring current, 203
Ritchie equation, 479, 511
RLS (rate limiting step), 336
Robinson annulation, 621
Rose bengal, 852
Rosenline, 852
Rotamer, 113
[3]Rotane, 163
Rotational energy level notation, 789
Rotational isomer, 113. See also Rotamer
Rotundone, 867
Rp, 70
RS (stereochemical descriptor), 87
RSE (radical stabilization energy), 264
Rule of steric control of asymmetric induction, 623
rsw (van der Waals radius), 5
Ryderberg state, 818, 819, 825, 826, 829, 843
Ryderberg transition, 818
S
in Taft equation, 401
solvent dipolarity/polarizability parameter, 339
stereochemical descriptor, 67, 68
s in Swain–Scott equation, 507
S′, 76
S0 state, 792
S1 state, 792
Sa, 70
Saddle point, 641, 852
and potential energy surface, 366
and transition structure, 708
Salt effect, 338
normal, 479
special, 483
Sawhorse representation, 55
Saytzeff orientation, 655, 662
Saytzeff product, 657
Saytzeff rule, 654, 656
SC (structure count), 241
+ sc, 115
−sc, 115
Scalemic, 85
Scanning tunneling microscopy (STM), 3
SCF, 224, 225, 244
Schrödinger equation, 25, 176
s-cis conformational descriptor, 117
s(E), 117
s in Mayr equation, 510
S0 mechanism label, 593
SAr reaction
and single-electron transfer, 525
electrophilic aromatic substitution, 518
Secondary kinetic isotope effect, 371, 380, 673
Secondary orbital interactions, 759
Secondary solvent kinetic isotope effect, 384
Secular determinant, 178
Selection rules
and number of electrons, 743
atom transfer reactions, 750
cheletropic reactions, 748
cycloaddition, 739
electrocyclic reactions, 705
pericyclic reactions in general, 755
sigmatropic reaction, 717, 724
transition state aromaticity, 767
Self-consistent field (SCF), 224
Semiempirical MO calculation, 223, 226
computational resources, 223
pericyclic reaction, 771
Sensitization, 283, 809, 818, 820, 824, 830
851
electronic energy transfer, 803
origin of the term, 803
Sensitizer, 283
SET, 513, 517
S0 in Mayr equation, 513
SF in molecular mechanics, 138
S i face, 98
σ
absolute softness, 506
in Hammett equation, 390, 400
substituent constant, 391
symmetry operation, 59
σ bond
heterolytic dissociation, 19
photodissociation, 847
σ complex, 520, 553
σ−−σ substituent constant, 399
σ∗ in Taft equation, 400, 401
σ,π description of double bond, 42
and acidity, 44
σ∗ substituent constant, 398
σ′ substituent constant, 400
σ′′ substituent constant, 400
σ-complex, 526
σ-electron rich carbene, 280
1Σg+ C2 (electronic state of O2), 851
3Σg− state of O2, 851
σ0 (horizontal plane of symmetry), 60
σ1 substituent constant, 400
σm in Hammett equation, 395
σ′′ substituent constant, 400
σp in Hammett equation, 395
σE substituent constant, 400
σE* substituent constant, 400
σE′′ substituent constant, 400
σ-radical cation, 307
σs (vertical plane of symmetry), 59
Sigmatropic reaction, 715, 725
as cycloaddition reaction, 754
Mobius aromaticity, 767
selection rules, 717, 724
Simmons-Smith reaction, 283
Singlet electron shift, 513, 515
Singlet electron transfer (SET), 269, 513, 517, 525, 531, 881
Singlet oxygen, 851
Singlet manifold, 793, 794
Singlet oxygen lifetime, 851
photodynamic therapy, 852
Sinlet state, 792
of carbene, 288
of methylene, 278
Singlet-singlet absorption, 795
Singlet-triplet absorption, 795
Singlet-walled nanotube, 208
Singly-occupied molecular orbital, 262
Sinister, 67
Skein conformation, 114
Slater type orbital (STO), 224
SMILES notation, 54
Smiles rearrangement, 529
Sn
chirality and point group, 63
symmetry operation, 59
sN in Mayr equation, 509
S0(EA) mechanism, 536
S0,1 mechanism label
meaning intended by Ingold, 471
S0N1 reaction, 470
archimeric assistance, 485
and salt effect, 479
and solvent polarity, 477
and steady-state approximation, 473
and steric effects, 474
designated as (DN + A0), 471
kinetic isotope effect, 382
nonclassical carbocations, 491
potential energy surface, 472
racemization, 337, 480
rate equation, 470
reactivity and carbocation stability, 362, 474, 475
S0N1′ mechanism designated as (1/DN + 3/A0), 471
S0,N2 mechanism label meaning intended by Ingold, 471
S0N2 reaction, 337, 361, 381, 470, 494
and 18-crown-6, 499
and back-side attack, 496
and BAl2 mechanism, 453
and Hammert ρ, 393, 394
and radical intermediate, 515

<table>
<thead>
<tr>
<th>Subject Index</th>
<th>p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>and single-electron shift</td>
<td>515</td>
</tr>
<tr>
<td>back-side displacement</td>
<td>495</td>
</tr>
<tr>
<td>competition with E2</td>
<td>646</td>
</tr>
<tr>
<td>designated as (AνDν3)</td>
<td>471</td>
</tr>
<tr>
<td>effect of leaving group</td>
<td>512</td>
</tr>
<tr>
<td>effect of solvent</td>
<td>496</td>
</tr>
<tr>
<td>inversion of configuration</td>
<td>337</td>
</tr>
<tr>
<td>nucleophility of nucleophile</td>
<td>506</td>
</tr>
<tr>
<td>of diazonium ion</td>
<td>679</td>
</tr>
<tr>
<td>ponderal effect</td>
<td>501</td>
</tr>
<tr>
<td>steric effect</td>
<td>501</td>
</tr>
<tr>
<td>transition structure</td>
<td>502</td>
</tr>
<tr>
<td>S_N1 mechanism designated as (3/1/C3)</td>
<td>472</td>
</tr>
<tr>
<td>S_N2 reaction</td>
<td>543</td>
</tr>
<tr>
<td>and single-electron transfer</td>
<td>531</td>
</tr>
<tr>
<td>first-order reaction</td>
<td>527</td>
</tr>
<tr>
<td>nucleophilic aromatic substitution</td>
<td>58</td>
</tr>
<tr>
<td>second-order reaction</td>
<td>528</td>
</tr>
<tr>
<td>S_N3 mechanism designated as (Dν + D + Aν3)</td>
<td>472</td>
</tr>
<tr>
<td>Snoutane</td>
<td>163</td>
</tr>
<tr>
<td>Soft base</td>
<td>505</td>
</tr>
<tr>
<td>Solar energy storage</td>
<td>862</td>
</tr>
<tr>
<td>Solid bold line in Maehr convention</td>
<td>75</td>
</tr>
<tr>
<td>Solid dot stereochemical descriptor</td>
<td>58</td>
</tr>
<tr>
<td>Solid wedge in Maehr convention</td>
<td>74</td>
</tr>
<tr>
<td>Solvatocromism</td>
<td>339</td>
</tr>
<tr>
<td>Solvent cage</td>
<td>335, 515–517, 526, 599, 613</td>
</tr>
<tr>
<td>Solvent dipolarity/polarizability index (π), 338</td>
<td></td>
</tr>
<tr>
<td>Solvent effect on Hammett ρ</td>
<td>393</td>
</tr>
<tr>
<td>Solvent kinetic isotope effect</td>
<td>384, 594</td>
</tr>
<tr>
<td>1° Solvent kinetic isotope effect</td>
<td>384</td>
</tr>
<tr>
<td>2° Solvent kinetic isotope effect</td>
<td>384</td>
</tr>
<tr>
<td>Solvent kinetic isotope effect</td>
<td>448, 559, 562, 615</td>
</tr>
<tr>
<td>in amide hydrolysis</td>
<td>460</td>
</tr>
<tr>
<td>Solvent polarity and mechanism determination</td>
<td>338</td>
</tr>
<tr>
<td>Solvent reorientation time</td>
<td>595</td>
</tr>
<tr>
<td>Solvent-separated ion pair</td>
<td>313, 421, 483, 485, 560, 804</td>
</tr>
<tr>
<td>Solvent viscosity</td>
<td>469</td>
</tr>
<tr>
<td>and encounter-controlled reactions</td>
<td>337</td>
</tr>
<tr>
<td>and reaction in solvent cage</td>
<td>517</td>
</tr>
<tr>
<td>in mechanism determination</td>
<td>338</td>
</tr>
<tr>
<td>Solvolysis</td>
<td>477, 478</td>
</tr>
<tr>
<td>anchimeric assistance</td>
<td>485</td>
</tr>
<tr>
<td>and carboxylation stability</td>
<td>475</td>
</tr>
<tr>
<td>and elimination</td>
<td>645</td>
</tr>
<tr>
<td>and nonclassical carboxylations</td>
<td>300</td>
</tr>
<tr>
<td>and nonplanar carboxylations</td>
<td>475</td>
</tr>
<tr>
<td>and solvent polarity</td>
<td>477</td>
</tr>
<tr>
<td>Grunwald–Winstein equation</td>
<td>477</td>
</tr>
<tr>
<td>internal return</td>
<td>482</td>
</tr>
<tr>
<td>ion pair intermediate</td>
<td>485</td>
</tr>
<tr>
<td>kinetics</td>
<td>344</td>
</tr>
<tr>
<td>LFER</td>
<td>398</td>
</tr>
<tr>
<td>2-norbomyl system</td>
<td>493</td>
</tr>
<tr>
<td>pseudo-first-order kinetics</td>
<td>474</td>
</tr>
<tr>
<td>salt effect</td>
<td>479</td>
</tr>
<tr>
<td>stereochrometry</td>
<td>480</td>
</tr>
<tr>
<td>Solvomercuration</td>
<td>596, 614</td>
</tr>
<tr>
<td>SOMO</td>
<td>262</td>
</tr>
<tr>
<td>sp</td>
<td>115</td>
</tr>
<tr>
<td>+ sp</td>
<td>115</td>
</tr>
<tr>
<td>−sp</td>
<td>115</td>
</tr>
<tr>
<td>Sp</td>
<td>70</td>
</tr>
<tr>
<td>Special salt effect</td>
<td>483</td>
</tr>
<tr>
<td>Specific acid catalysis</td>
<td>434, 437, 670, 673</td>
</tr>
<tr>
<td>Specific acid, general base catalysis</td>
<td>436</td>
</tr>
<tr>
<td>Specific base catalysis</td>
<td>435, 437, 456</td>
</tr>
<tr>
<td>Specific base, general acid catalysis</td>
<td>435, 437, 456</td>
</tr>
<tr>
<td>in ester hydrolysis</td>
<td>456</td>
</tr>
<tr>
<td>Specific hydroxide ion catalysis</td>
<td>435</td>
</tr>
<tr>
<td>Specific lyate ion catalysis</td>
<td>434</td>
</tr>
<tr>
<td>Specific lyonium ion catalysis</td>
<td>434</td>
</tr>
<tr>
<td>Spine quantum number</td>
<td>259</td>
</tr>
<tr>
<td>Spin adduct</td>
<td>277</td>
</tr>
<tr>
<td>Spin-forbidden process</td>
<td>796</td>
</tr>
<tr>
<td>Spin-forbidden transition</td>
<td>801</td>
</tr>
<tr>
<td>Spin-orbit coupling</td>
<td>796, 801</td>
</tr>
<tr>
<td>Spin polarization</td>
<td>260</td>
</tr>
<tr>
<td>Spin transition structure</td>
<td>608</td>
</tr>
<tr>
<td>Spirocyclopentadiene</td>
<td>163</td>
</tr>
<tr>
<td>sR</td>
<td>70</td>
</tr>
<tr>
<td>SR (stereochemical descriptor)</td>
<td>87</td>
</tr>
<tr>
<td>S_N1 mechanism</td>
<td>543</td>
</tr>
<tr>
<td>S_N1 reaction</td>
<td>544</td>
</tr>
<tr>
<td>designated as (T + Dν + Aν3)</td>
<td>543</td>
</tr>
<tr>
<td>SRT (structure resonance theory)</td>
<td>241</td>
</tr>
<tr>
<td>counting Kekulé structures</td>
<td>241</td>
</tr>
<tr>
<td>resonance energy</td>
<td>244</td>
</tr>
<tr>
<td>types of electron permutations</td>
<td>243</td>
</tr>
<tr>
<td>SSIP</td>
<td>560</td>
</tr>
<tr>
<td>Staggered conformation</td>
<td>114</td>
</tr>
<tr>
<td>Standard heterolytic bond dissociation energy</td>
<td>18</td>
</tr>
<tr>
<td>Standard homolytic bond dissociation energy</td>
<td>16</td>
</tr>
<tr>
<td>Stark effect</td>
<td>20</td>
</tr>
<tr>
<td>State correlation diagram</td>
<td>712, 734</td>
</tr>
<tr>
<td>Diels–Alder reaction</td>
<td>736</td>
</tr>
<tr>
<td>Steady-state approximation</td>
<td>345–348, 473, 642</td>
</tr>
<tr>
<td>Step-wise process</td>
<td>329</td>
</tr>
<tr>
<td>Stereocenter</td>
<td>75, 98</td>
</tr>
<tr>
<td>(+) Stereochemical descriptor</td>
<td>87</td>
</tr>
<tr>
<td>Stereochemistry</td>
<td>53</td>
</tr>
<tr>
<td>accepted representations</td>
<td>56</td>
</tr>
<tr>
<td>not acceptable representations</td>
<td>56, 81</td>
</tr>
<tr>
<td>preferred representations</td>
<td>56, 81</td>
</tr>
<tr>
<td>Stereoelectronic effect</td>
<td>151</td>
</tr>
<tr>
<td>Stereogenic atom</td>
<td>98</td>
</tr>
<tr>
<td>Stereogenicity</td>
<td>98</td>
</tr>
<tr>
<td>and meso structure</td>
<td>98</td>
</tr>
<tr>
<td>Stereoheterotopic substituents</td>
<td>94</td>
</tr>
<tr>
<td>Stereoisomers, 57</td>
<td></td>
</tr>
<tr>
<td>cis,trans</td>
<td>58</td>
</tr>
<tr>
<td>configuration</td>
<td>67</td>
</tr>
<tr>
<td>diastereomers</td>
<td>58</td>
</tr>
<tr>
<td>geometric</td>
<td>58</td>
</tr>
<tr>
<td>Stereoselective reaction</td>
<td>85, 122</td>
</tr>
<tr>
<td>Stereospecific reaction</td>
<td>85, 533, 569, 668, 669, 697, 735, 745</td>
</tr>
<tr>
<td>Stereotopicty</td>
<td>94</td>
</tr>
<tr>
<td>Steric acceleration in solvolysis</td>
<td>494</td>
</tr>
<tr>
<td>Steric energy</td>
<td>136, 155</td>
</tr>
<tr>
<td>Steric interaction</td>
<td>120, 231</td>
</tr>
<tr>
<td>Steric isotope effect</td>
<td>383</td>
</tr>
<tr>
<td>Sterm–Volmer equation</td>
<td>809, 810</td>
</tr>
<tr>
<td>Sterm–Volmer plot</td>
<td>810</td>
</tr>
<tr>
<td>Stilbene</td>
<td>219</td>
</tr>
<tr>
<td>SRT resonance energy</td>
<td>245</td>
</tr>
<tr>
<td>STM</td>
<td>3</td>
</tr>
<tr>
<td>STO (Slater type orbital)</td>
<td>224</td>
</tr>
<tr>
<td>STO-3G basis set</td>
<td>224</td>
</tr>
<tr>
<td>Stokes shift</td>
<td>798</td>
</tr>
<tr>
<td>Strain energy</td>
<td>155</td>
</tr>
<tr>
<td>Strained molecule</td>
<td>155</td>
</tr>
<tr>
<td>Strained π bond</td>
<td>164</td>
</tr>
<tr>
<td>Strainless bond enthalpy</td>
<td>157</td>
</tr>
<tr>
<td>trans conformational descriptor</td>
<td>117</td>
</tr>
<tr>
<td>Stretch-bend term in molecular mechanics</td>
<td>136</td>
</tr>
<tr>
<td>Structural isomers</td>
<td>57</td>
</tr>
<tr>
<td>Structure-resonance theory (SRT)</td>
<td>241</td>
</tr>
<tr>
<td>Styrene</td>
<td>219</td>
</tr>
<tr>
<td>SRT resonance energy</td>
<td>245</td>
</tr>
<tr>
<td>Substituent constant</td>
<td>390</td>
</tr>
<tr>
<td>in Hammett equation</td>
<td>390</td>
</tr>
<tr>
<td>selected values</td>
<td>401</td>
</tr>
<tr>
<td>Substituent effects on reactions</td>
<td>385</td>
</tr>
<tr>
<td>Substituent topology</td>
<td>94</td>
</tr>
<tr>
<td>constitutionally heterotopic</td>
<td>94</td>
</tr>
<tr>
<td>diastereotopic</td>
<td>94</td>
</tr>
<tr>
<td>enantiotopic</td>
<td>94</td>
</tr>
<tr>
<td>heterotopic</td>
<td>94</td>
</tr>
<tr>
<td>homotopic</td>
<td>94</td>
</tr>
<tr>
<td>stereochemistry</td>
<td>94</td>
</tr>
<tr>
<td>Substitution</td>
<td>469</td>
</tr>
<tr>
<td>Ingold notation</td>
<td>470</td>
</tr>
<tr>
<td>IUPAC notation</td>
<td>471</td>
</tr>
<tr>
<td>solvolysis</td>
<td>474</td>
</tr>
<tr>
<td>Superacid media</td>
<td>296, 298, 320</td>
</tr>
<tr>
<td>Suprafacial-antarafacial pathway</td>
<td>722</td>
</tr>
<tr>
<td>Suprafacial pathway</td>
<td>715, 717–721, 731, 739, 741, 743, 750, 777</td>
</tr>
<tr>
<td>Suprafacial-suprafacial pathway</td>
<td>721</td>
</tr>
<tr>
<td>Surface effect</td>
<td>681</td>
</tr>
<tr>
<td>Surface-mediated reaction</td>
<td>587, 614, 687</td>
</tr>
<tr>
<td>Swain–Schaad equation</td>
<td>374</td>
</tr>
<tr>
<td>Swain–Scott equation</td>
<td>507, 508, 511</td>
</tr>
<tr>
<td>SWNT</td>
<td>208</td>
</tr>
<tr>
<td>Symmetric molecular orbital</td>
<td>33, 707, 708, 712, 732</td>
</tr>
<tr>
<td>Symmetry element</td>
<td>59, 708, 736</td>
</tr>
<tr>
<td>Symmetry operation</td>
<td>59, 708</td>
</tr>
<tr>
<td>and MO symmetry</td>
<td>708</td>
</tr>
<tr>
<td>and substituent topology</td>
<td>99</td>
</tr>
<tr>
<td>Symmetry operation of the first kind</td>
<td>99</td>
</tr>
</tbody>
</table>
Symmetry point group, 61
 classification scheme, 61
Symmetry-allowed transition, 796
Symmetry-correct molecular orbital, 33, 707, 732
Symmetry-forbidden process, 776
Symmetry-forbidden reaction, 729
Symmetry-forbidden transition, 796
Syn, 77
Syn addition, 552, 571, 581, 582, 586, 601, 602, 614
 in hydroboration, 600, 616
 of Cl2 to acenaphthylene, 579
 of F2 to alkene, 580
 of HCI to alkyne, 612
Syn conformation, 114
Syn elimination, 634, 649, 669, 682-685, 695
 and E1cb character, 650
 in β-elimination, 649
 in pyrolytic elimination, 681
potential energy surface, 651
Synchronous reaction, 459, 472, 513, 608, 944
 synchronous reaction, 459, 472, 513, 608, 944
 and syn elimination, 649
 and synchronous addition, 552
 and electromthic addition, 555, 575
 and E2 reaction, 664
 and intermediate formation, 581, 670
 of Cl2 to alkyne, 612
 of HCl to alkyne, 612
 of Cl2 to acenaphthylene, 579
 and E1cb character, 650
 and E1cb reaction, 649
 and E2 reaction, 664
 and electrophilic addition, 555, 575
 and trans addition, 552
 and transition state theory, 351
 and kinetic isotope effect, 375
 and Hammond postulate, 362
 and free energy surface, 708
 and potential energy surface, 708
 and orbital symmetry, 708
 and antiaromatic, 763
 and aromatic, 763
centauric, 772
chameleonic, 772
saddle point on potential energy surface, 366
symmetry, 770
Transition structure, 348
Transmission coefficient in transition state theory, 351
Trapping reactive intermediate, 163, 270, 277, 331, 341, 483, 515, 542, 555, 700, 824, 830
in pericyclic reaction, 745
Trefoil knot, 67
Triethylborane and radical generation, 269
Trifluoromethyl radical geometry, 266
Tri (in Baldwin’s rules), 274
Triphenylmethyl radical, 256, 257
Triphenylmethyl cation, 475
Triphenylene Clar notation, 211
Triphenylmethyl cation, 475
Triphenylmethyl radical, 256, 257
and magnetic susceptibility, 258
Triplet manifold, 793, 794
Triplet state, 278, 792
of methylene, 278
Triplet-triplet absorption, 795
Tritium (3H), 81
Triton (3H, 3H), 84
Twist conformation of cyclooctane, 128
Twist conformation of cyclopentane, 128
Twistane, 163, 170
Twisted alkene, 165
Twist boat cyclohexane, 124
cis-1,4-di-t-butyldicyclohexane, 132
Twist conformation of cyclopentane, 128
Twistane, 163, 170
Twisted alkene, 165
and chirality, 858
Twisted excited state, 820
Twisted π system and Möbius MO theory, 765

and acid-catalyzed hydrolysis of acetals, 447
and biases of computational methods, 771
and Δ5', 333
and Hammet ρ, 392
and kinetic isotope effect, 375
and orbital symmetry, 708
and potential energy surface, 708
antiaromatic, 763
aromatic, 763
UV-vis region of the electromagnetic spectrum, 787
u (vibrational energy level), 787, 798
V (characteristic volume), 339
Vacuum UV, 818
Valence bond configuration mixing (VBCM), 513
Valence bond (VB) theory, 24, 35, 240
and resonance, 189
and resonance energy, 237, 240
Valence isomerization, 726
Valence isomers, 167, 701, 726
Valence shell electron pair repulsion theory (VSEPR), 36
and resonance, 189
and resonance energy, 237, 240
Valence isomerization, 726
Valence isomers, 167, 701, 726
Valence shell electron pair repulsion (VSEPR), 36
Valley-ridge inflection point (VRI), 370
van der Waals radius, 5, 6
and non-bonded interactions, 6
of deuterium relative to hydrogen, 383
van der Waals strain, 121, 139
and A(1,2) strain, 122
and A(1,3) strain, 122
and annulenes, 217
and axial substituent, 129
and butane gauche conformation, 150
and limits to molecular stability, 160
and syn-pentane interaction, 122
and UV-vis absorption, 821
van der Waals surface area (A_W), 7
van der Waals volume (V_W), 7
Variable hybridization
and acidity, 45
and carbocation stability, 45
and electronegativity, 37
and geometry, 37, 39
and J_13 esp, 41
and p character, 37
and s character, 37
CH_4Cl_2, 39
CH_3Cl, 40
CH_F_4, 40
cyclopropane, 40
hybridization index, 37
hybridization parameter, 37
Variable transition state theory in elimination reactions, 664
Variational principle, 176-178, 236, 239
VB theory, 24, 25
VBCM, 513
Velocity of a reaction, 342
Vertical excitation, 821
Vertical excited state, 819, 820
Vertical plane of symmetry (s_0), 59
Vertical transition, 796, 847
Vibrational energy level, 372, 787
and electronic states, 793
Vibrational relaxation, 794
Vicarious nucleophilic aromatic substitution, 530
Vicinal dihalide dehalogenation, 665
Vinyl alcohol acidity, 419
Vinyl carbanion, 212
hybridization, 311
reactive intermediate, 653
Vinyl cation, 532, 609, 612, 613, 615
Vinyl halide dehydrohalogenation, 653
electrophilic addition, 585
nucleophilic vinylic substitution, 533
Vinyl radical, 256
in addition of HBr to propyne, 611
Virtual experiment, 339
Vitamin D_3, 720, 721
Vitamin E, 69
Von Richter reaction, 530
VRI, 370
VSEPR theory, 36
and electronegativity, 36
and variable hybridization, 37
methylene, 279
V_x (Benson electronegativity), 23
Wagner–Meerwein rearrangement, 492
Wagner–Meerwein–Whitmore rearrangement, 492
Walden cycle, 495
Walden inversion, 337, 494, 671
Wavelength and energy of light, 789
and specific rotation, 87
Wavy line stereochemical descriptor, 58
Wedge outline in Maehr convention, 75
Westheimer method, 135
Wheland intermediate, 330, 520
Winstein–Holness equation, 360
Wolff rearrangement, 288
Woodward–Hoffmann rules
atom transfer reaction, 750
cheletropic reaction, 749
cycloaddition, 739
electrocyclic reaction, 705
general selection rule, 755
pericyclic reaction, 755
sigmatropic reaction, 718, 724
X (excess acidity function), 433
Xanthate ester pyrolysis, 682
Xanthone, polarity of electronically excited states, 817
XeF_2, 581, 611
Xi-bond, 58
athi-bond, 58
m-Xylylene, 798
Y in Grunwald–Winstein equation, 477
Yang cyclization, 836
Ylide elimination mechanism, 635
YOTs scale of solvent ionizing power, 477
Yukawa–Tsuno equation, 399
Z, 76
Z scale of solvent polarity, 339
Zero point energy (ZPE), 373, 382
Zig-zag conformation, 154, 234
Zimmerman rearrangement, 828
ZPE, 373
Zusammen, 76
Zwitterionic structures and electronically excited states, 820