Contents

Introduction and Preface
List of Contributors
Abbreviations
List of Boxes and Definitions

1
Yeast-Based Chemical Genomic Approaches
Katja Hübel

1.1 Introduction
1.2 The Biological Problem
1.2.1 Interplay between Organic Chemistry and Biology
1.2.2 Chemical Genomics
1.2.3 Small Molecules in Chemical Genomics
1.2.4 Cell-based Genomic Approaches
1.2.5 Yeast-Based Chemical Genomic Approaches
1.3 The Chemical Approach
1.4 Chemical Biological Research/Evaluation—Chemogenomic Profiling: Elucidating the Mode of Action of Small Molecules
1.4.1 Assay Principle
1.4.2 The Yeast Deletion Strain Collection
1.4.2.1 Homozygous Deletion Strains
1.4.2.2 Heterozygous Deletion Strains
1.4.3 Advantages and Disadvantages
1.4.4 Case Studies
1.5 Conclusions
References

2
Microarray-Based Strategies to Identify Unknown Protein Interactions
Sabine Borgmann and Christof M. Niemeyer

2.1 Introduction
2.2 The Biological Problem
2.3 The Chemical Approach
2.3.1 Introduction to Microarray Technology
3 Compound Collection Synthesis for Chemical Biology 39
Kamal Kumar
3.1 Introduction 39
3.2 Chemical Probes—a Chemical Question with Biological Consequences 39
3.3 Diversity Oriented Synthesis (DOS) 40
3.3.1 Aims of Diversity Oriented Synthesis 40
3.3.2 DOS Based Library Synthesis and Evaluation 42
3.4 Biology Oriented Synthesis (BIOS) 46
3.4.1 Aims of Biology Oriented Synthesis 46
3.4.2 BIOS-Based Library Synthesis and Evaluation 47
3.5 Conclusions 52
References 52

4 Target Identification and Validation of a WNT/ß-Catenin Pathway Modulator 55
Petra Janning
4.1 Introduction 55
4.2 The Biological Problem 55
4.2.1 Target Identification and Validation 55
4.2.2 WNT/ß-Catenin Pathway 56
4.2.3 Modulation of the WNT/ß-Catenin Pathway by Small Molecules 57
4.3 The Chemical Approach 59
4.3.1 High Throughput Screens 59
4.3.2 Synthesis of QS11, QS11-NC and Coupling to Solid Support 60
4.4 Chemical Biological Research/Evaluation 62
4.4.1 Target Identification 62
4.4.2 Target Validation 64
4.4.3 Mechanism of Action 65
4.5 Conclusions 66
References 66

5 Activity-Based Protein Profiling of Cys Proteases 69
Renier van der Hoorn
5.1 Introduction 69
5.2 The Biological Problem 69
5.3 The Chemical Approach 70
5.3.1 Epoxide Probes for Papain-Like Cys Proteases 71
5.3.2 Acyloxymethylketones for Caspase-like Proteases 72
5.3.3 Vinyl Sulfones for Ubiquitin-Specific Proteases 74
5.4 Chemical Biological Research/Evaluation 75
5.5 Conclusions 78
References 78

6 The Use of Photoaffinity Labeling for the Identification of the Binding Site of the Antibiotic Linezolid 79
Rolf Breinbauer and Matthias Mentel
6.1 Introduction 79
6.2 The Biological Problem 79
6.3 The Chemical Approach 81
6.3.1 Synthesis of Oxazolidinone Antibiotics 82
6.3.2 Synthesis of Photoaffinity-Labeled Probes 83
6.4 Chemical Biological Research/Evaluation 86
6.5 Conclusions 87
References 88

7 Surgical Strikes: Uses of Analog Sensitive Technologies to Target Kinases of Interest 89
Matthias Rabiller and Daniel Rauh
7.1 Introduction 89
7.2 The Biological Problem 89
7.3 The Chemical Genetic Approach 91
7.3.1 Aim of the Chemical Genetic Approach 91
7.3.2 Engineering ASKA Ligand–Kinase Pairs 95
7.4 Chemical Biological Research/Evaluation: ASKA Technology—Applications in Molecular Biology 99
7.4.1 Kinase Substrate Identification 99
7.4.2 Kinase Inhibition Studies 101
7.5 Conclusions 102
References 102

8 Modulation of Protein–Protein Interactions by Small Molecules 105
Stefanie Bovens and Christian Ottmann
8.1 Introduction 105
8.2 The Biological Problem 105
8.3 The Chemical Approach 111
8.4 Chemical Biological Research/Evaluation 114
8.4.1 Homodimerization 114
8.4.2 Heterodimerization 116
8.4.3 Engineering the Protein–Ligand Interaction 117
8.5 Conclusions 118
References 119
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Targeted Protein Degradation in Live Cells</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Markus Kaiser</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>121</td>
</tr>
<tr>
<td>9.2</td>
<td>The Biological Problem</td>
<td>121</td>
</tr>
<tr>
<td>9.3</td>
<td>The Chemical Approach</td>
<td>124</td>
</tr>
<tr>
<td>9.3.1</td>
<td>The PROTAC Approach</td>
<td>124</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Conditional Control of Engineered Protein Stability</td>
<td>127</td>
</tr>
<tr>
<td>9.4</td>
<td>Chemical Biological Research/Evaluation</td>
<td>129</td>
</tr>
<tr>
<td>9.4.1</td>
<td>In Vivo Targeted Protein Degradation by PROTACs</td>
<td>129</td>
</tr>
<tr>
<td>9.4.2</td>
<td>In Vivo Evaluation of Shld-1-Controlled Degradation of DD-POI Fusion Proteins</td>
<td>130</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusions</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>132</td>
</tr>
<tr>
<td>10</td>
<td>Trapoxin B: From Total Synthesis to Epigenetics</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Bruno Bulic</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>135</td>
</tr>
<tr>
<td>10.2</td>
<td>The Biological Problem</td>
<td>135</td>
</tr>
<tr>
<td>10.3</td>
<td>The Chemical Approach</td>
<td>138</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Properties of Trapoxin B</td>
<td>138</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Synthesis of the K-trap Affinity Matrix</td>
<td>139</td>
</tr>
<tr>
<td>10.4</td>
<td>Chemical Biological Research/Evaluation</td>
<td>140</td>
</tr>
<tr>
<td>10.5</td>
<td>Conclusions</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>144</td>
</tr>
<tr>
<td>11</td>
<td>Native Chemical Ligation—A Tool for Chemical Protein Synthesis</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Christian F.W. Becker</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>145</td>
</tr>
<tr>
<td>11.2</td>
<td>The Synthetic Challenge</td>
<td>145</td>
</tr>
<tr>
<td>11.3</td>
<td>The Chemical Approach–Native Chemical Ligation</td>
<td>148</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Principles of Native Chemical Ligation</td>
<td>148</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Challenges and Limitations</td>
<td>149</td>
</tr>
<tr>
<td>11.4</td>
<td>Chemical Biological Research/Evaluation—The Ras-RBD System</td>
<td>150</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Chemical Synthesis of the Ras Protein and Its Effector RBD</td>
<td>152</td>
</tr>
<tr>
<td>11.4.2</td>
<td>In Vitro Analysis of Synthetic Ras and RBD</td>
<td>153</td>
</tr>
<tr>
<td>11.5</td>
<td>Conclusions</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>156</td>
</tr>
<tr>
<td>12</td>
<td>Using Split Inteins to Prepare Semi-synthetic Proteins and to Study the Mechanism of Protein trans-Splicing</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Henning D. Mootz</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>159</td>
</tr>
<tr>
<td>12.2</td>
<td>The Biological Problem</td>
<td>159</td>
</tr>
<tr>
<td>12.3</td>
<td>The Chemical Approach</td>
<td>160</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Traditional Protein Bioconjugation</td>
<td>160</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Reprogramming Protein Biosynthesis</td>
<td>161</td>
</tr>
</tbody>
</table>
12.3.3 Chemical Ligation Methods for Protein Semi-synthesis 161
12.3.4 Chemoenzymatic Ways to Ligate Two Polypeptides 163
12.4 Chemical Biological Research/Evaluation 164
12.4.1 Mechanism and Structure of Inteins and Split Inteins 164
12.4.2 Semi-synthesis Mediated by Protein trans-Splicing 166
12.4.3 Investigation of the Mechanism of Protein Splicing Using a Semi-synthetic Intein 171
12.5 Conclusions 172
Acknowledgements 173
References 173

13 Elucidation of the Ras Cycle with Semi-synthetic Proteins 175
Luc Brunsveld
13.1 Introduction 175
13.2 The Biological Problem 175
13.3 The Chemical Approach 178
13.3.1 Synthesis of Lipidated Ras-peptides 178
13.3.2 Synthesis of Ras-proteins 181
13.4 Chemical Biological Research/Evaluation 183
13.5 Conclusions 186
References 186

14 The Study of Rab GTPase Recycling Using Semi-synthetic Prenylated Proteins 189
Kirill Alexandrov, Roger Goody, Herbert Waldmann, and Yaowen Wu
14.1 Introduction 189
14.2 The Biological Problem 189
14.3 The Chemical Approach 192
14.3.1 Expressed Protein Ligation 192
14.3.2 Synthesis of Prenylated Peptides 192
14.3.3 Semi-synthesis of Soluble Prenylated Rab Proteins 194
14.4 Biological Research/Evaluation 197
14.4.1 Structure of Mono- and Di-geranylgeranylated Ypt1:GDI Complexes 197
14.4.2 Quantitative Analysis of the Interaction between Prenylated Rab and REP/GDI 200
14.4.3 Mechanistic Model of REP/GDI-Mediated Membrane Extraction of Rab Proteins 201
14.5 Conclusions 204
References 205

15 Development of a Model Cancer Vaccine Candidate Based on the MUC1 Cellular Surface Glycopeptide Epitope 207
Christian Hedberg and Ulrika Westerlind
15.1 Introduction 207
15.2 The Biological Problem 207
16 The Introduction of Chemical Reporter Groups by Bioorthogonal Ligation Reactions for the Imaging of Cell-Surface Glycans 221
Rolf Breinbauer and Matthias Mentel
16.1 Introduction 221
16.2 The Biological Problem 221
16.3 The Chemical Approach 222
16.3.1 Preparation of Cell-Surface Glycans Exhibiting an Azide Moiety 222
16.3.2 Synthesis of Alkyne-Tagged Fluorescent Probes 225
16.4 Chemical Biological Research/Evaluation 228
16.5 Conclusions 229
References 232

17 Sequence Specific DNA-Binding Small Molecules for Protein Recruitment and Modulation of Transcription 233
Hans-Dieter Arndt and Sascha Baumann
17.1 Introduction 233
17.2 The Biological Problem—Targeting DNA with Small Molecules 233
17.3 The Chemical Approach: The Polyamide Rationale 234
17.4 Chemical Biological Research/Evaluation—Polyamides in Biological Applications 237
17.4.1 Hypoxia Inducible Factor 237
17.4.2 Artificial Activators 240
17.5 Conclusions 243
References 243

18 G-Quadruplex Ligands as Tools for Elucidating c-MYC Transcriptional Regulation 247
Barbara Saccà and Markus Kaiser
18.1 Introduction 247
18.2 The Biological Problem 247
18.3 The Chemical Approach 251