Contents

Preface XI
List of Contributors XV

1 Modeling Catalytic Reactions on Surfaces with Density Functional Theory 1
 John A. Keith, Josef Anton, Payam Kaghazchi, and Timo Jacob
 1.1 Introduction 1
 1.2 Theoretical Background 2
 1.2.1 The Many-Body Problem 2
 1.2.2 Born–Oppenheimer Approximation 3
 1.2.3 Wave Function-Based Methods 4
 1.2.3.1 Hartree–Fock Approximation 4
 1.2.3.2 Post Hartree–Fock Methods 5
 1.2.4 Density-Based Methods 6
 1.2.4.1 The Thomas–Fermi Model 7
 1.2.4.2 The Hohenberg–Kohn Theorems 7
 1.2.4.3 The Kohn–Sham Equations 9
 1.2.4.4 Exchange–Correlation Functionals 10
 1.2.5 Technical Aspects of Modeling Catalytic Reactions 13
 1.2.5.1 Geometry Optimizations 13
 1.2.5.2 Transition-State Optimizations 14
 1.2.5.3 Vibrational Frequencies 14
 1.2.5.4 Thermodynamic Treatments of Molecules 16
 1.2.6 Model Representation 19
 1.2.6.1 Slab/Supercell Approach 19
 1.2.6.2 Cluster Approach 21
 1.3 The Electrocatalytic Oxygen Reduction Reaction on Pt(111) 22
 1.3.1 Water Formation from Gaseous O₂ and H₂ 24
 1.3.1.1 O₂ Dissociation 25
 1.3.1.2 OOH Formation 27
 1.3.1.3 HOOH Formation 28
 1.3.2 Simulations Including Water Solvation 28

COPYRIGHTED MATERIAL
4.3.1 Kinetic Monte Carlo Simulations 116
4.3.2 Extension of MC Simulations to Nanoparticles 120
4.3.3 Reaction Rates Derived from MC Simulations 124
4.3.4 Particle–Support Interaction and Spillover 125
4.3.5 Potentials and Limitations of MC Simulations for Derivation of Overall Reaction Rates 125
4.4 Models Applicable for Numerical Simulation of Technical Catalytic Reactors 128
4.4.1 Mean Field Approximation and Reaction Kinetics 129
4.4.2 Thermodynamic Consistency 131
4.4.3 Practicable Method for Development of Multistep Surface Reaction Mechanisms 134
4.4.4 Potentials and Limitations of the Mean Field Approximation 139
4.5 Simplifying Complex Kinetic Schemes 141
4.6 Summary and Outlook 142
References 143

5 Modeling Reactions in Porous Media 149
Frenich J. Keil
5.1 Introduction 149
5.2 Modeling Porous Structures and Surface Roughness 152
5.3 Diffusion 158
5.4 Diffusion and Reaction 163
5.5 Pore Structure Optimization: Synthesis 173
5.6 Conclusion 175
References 175

6 Modeling Porous Media Transport, Heterogeneous Thermal Chemistry, and Electrochemical Charge Transfer 187
Robert J. Kee and Huayang Zhu
6.1 Introduction 187
6.2 Qualitative Illustration 189
6.3 Gas-Phase Conservation Equations 190
6.3.1 Gas-Phase Transport 191
6.3.2 Chemical Reaction Rates 191
6.3.3 Boundary Conditions 192
6.4 Ion and Electron Transport 192
6.5 Charge Conservation 194
6.5.1 Effective Properties 195
6.5.2 Boundary Conditions 195
6.5.3 Current Density and Cell Potential 196
6.6 Thermal Energy 196
6.7 Chemical Kinetics 196
6.7.1 Thermal Heterogeneous Kinetics 197
6.7.2 Charge Transfer Kinetics 198

References 175
7 Evaluation of Models for Heterogeneous Catalysis 221

John Mantzaras

7.1 Introduction 221
7.2 Surface and Gas-Phase Diagnostic Methods 222
7.2.1 Surface Science Diagnostics 222
7.2.2 In Situ Gas-Phase Diagnostics 223
7.3 Evaluation of Hetero/Homogeneous Chemical Reaction Schemes 225
7.3.1 Fuel-Lean Combustion of Methane/Air on Platinum 225
7.3.1.1 Heterogeneous Kinetics 225
7.3.1.2 Gas-Phase Kinetics 228
7.3.2 Fuel-Lean Combustion of Propane/Air on Platinum 231
7.3.3 Fuel-Lean Combustion of Hydrogen/Air on Platinum 234
7.3.4 Fuel-Rich Combustion of Methane/Air on Rhodium 238
7.3.5 Application of Kinetic Schemes in Models for Technical Systems 240
7.4 Evaluation of Transport 242
7.4.1 Turbulent Transport in Catalytic Systems 243
7.4.2 Modeling Directions in Intraphase Transport 245
7.5 Conclusions 246

References 248

8 Computational Fluid Dynamics of Catalytic Reactors 251

Vinod M. Janardhanan and Olaf Deutschmann

8.1 Introduction 251
8.2 Modeling of Reactive Flows 253
8.2.1 Governing Equations of Multicomponent Flows 253
8.2.2 Turbulent Flows 256
8.2.3 Three-Phase Flow 256
8.2.4 Momentum and Energy Equations for Porous Media 257
8.3 Coupling of the Flow Field with Heterogeneous Chemical Reactions 258
8.3.1 Given Spatial Resolution of Catalyst Structure 258
8.3.2 Simple Approach for Modeling the Catalyst Structure 259
8.3.3 Reaction Diffusion Equations 260
8.3.4 Dusty Gas Model 261
8.4 Numerical Methods and Computational Tools 262
8.4.1 Numerical Methods for the Solution of the Governing Equations 263
8.4.2 CFD Software 264
8.4.3 Solvers for Stiff ODE and DAE Systems 264
8.5 Reactor Simulations 264
8.5.1 Flow through Channels 265
8.5.2 Monolithic Reactors 268
8.5.3 Fixed Bed Reactors 271
8.5.4 Wire Gauzes 273
8.5.5 Catalytic Reactors with Multiphase Fluids 273
8.5.6 Material Synthesis 275
8.5.7 Electrocatalytic Devices 277
8.6 Summary and Outlook 278

References 279

9 Perspective of Industry on Modeling Catalysis 283
Jens R. Rostrup-Nielsen
9.1 The Industrial Challenge 283
9.2 The Dual Approach 285
9.3 The Role of Modeling 287
9.3.1 Reactor Models 287
9.3.2 Surface Science and Breakdown of the Simplified Approach 288
9.3.3 Theoretical Methods 290
9.4 Examples of Modeling and Scale-Up of Industrial Processes 291
9.4.1 Ammonia Synthesis 291
9.4.2 Syngas Manufacture 294
9.4.2.1 Steam Reforming 294
9.4.2.2 Autothermal Reforming 297
9.5 Conclusions 298
References 300

10 Perspectives of the Automotive Industry on the Modeling of Exhaust Gas Aftertreatment Catalysts 303
Daniel Chatterjee, Volker Schmeißer, Marcus Frey, and Michel Weibel
10.1 Introduction 303
10.2 Emission Legislation 304
10.3 Exhaust Gas Aftertreatment Technologies 306
10.4 Modeling of Catalytic Monoliths 308
10.5 Modeling of Diesel Particulate Filters 313
10.6 Selective Catalytic Reduction by NH₃ (Urea-SCR) Modeling 315
10.6.1 Kinetic Analysis and Chemical Reaction Modeling 316
10.6.1.1 NH₃ Adsorption, Desorption, and Oxidation 316
10.6.1.2 NO-SCR Reaction 316