Contents

<table>
<thead>
<tr>
<th>Foreword</th>
<th>XXI</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Contributors</td>
<td>XXIII</td>
</tr>
</tbody>
</table>

1 Historical Aspects

Keith Cartwright

1.1 The Origins of Meningococcal Disease 1
1.2 The 19th Century 2
1.3 From 1900 to 1920 3
1.4 From 1921 to 1939 5
1.5 From World War II to 1960 – Epidemiology 5
1.6 From 1961 to 2005 6
1.7 Conclusion 11

References 11

Part I Epidemiology of Meningococcal Disease

2 The Population Biology of *Neisseria meningitidis*: Implications for Meningococcal Disease, Epidemiology and Control 17

Martin C.J. Maiden and Dominique A. Caugant

2.1 Introduction: The Meningococcus, an Enigmatic Pathogen 17
2.1.1 The Global Burden of Meningococcal Disease 17
2.1.2 Paradoxes Arising from Meningococcal Natural History 19
2.2 Meningococcal Diversity and its Consequences 21
2.2.1 Genetic and Antigenic Diversity 21
2.2.2 Structure Within Meningococcal Populations – The Clonal Complex 23
2.3 Mechanisms of Diversification and Structuring in Meningococcal Populations 24
2.3.1 Mutation and Recombination in Bacterial Evolution 24
2.3.2 Evidence for Recombination in Meningococcal Populations 25
2.4 Meningococcal Genotypes in Carriage and Disease 27

Handbook of Meningococcal Disease. Infection Biology, Vaccination, Clinical Management.

Edited by M. Frosch and M.C.J. Maiden

Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 3-527-31260-9
2.4.1 The Hyperinvasive Lineages 27
2.5 Global Epidemiology of Meningococcal Disease 28
2.5.1 The Group A Pandemics 28
2.5.2 The ST-11 (ET-37) Complex Epidemics 29
2.5.3 The ST-32 (ET-5) Pandemic 30
2.5.4 The ST-41/44 Complex (Lineage 3) 30
2.5.5 Other Complexes 31
2.6 Conclusions: Implications of Meningococcal Population Biology for Disease Control 31
References 32

3 Methods for Typing of Meningococci 37
Keith A. Jolley, Steve J. Gray, Janet Suker and Rachel Unwin
3.1 Introduction 37
3.2 Phenotypic Typing Methods 38
3.3 Serological Typing Methods 39
3.3.1 Serogrouping of Meningococci 39
3.3.2 Serotyping and Serosubtyping 40
3.4 Immunotyping 42
3.5 Multilocus Enzyme Electrophoresis 42
3.6 Genetic Characterization 43
3.6.1 Antigen Gene PCR and Sequencing for Meningococcal Typing 44
3.6.2 Genogrouping (PCR-based Designation of Group) 44
3.6.3 Genotyping and Genosubtyping – porB and porA Sequencing 44
3.6.4 FetA 45
3.6.5 Multilocus Sequence Typing 46
3.6.6 Variable-number Tandem Repeats 48
3.6.7 Pulsed Field Gel Electrophoresis 48
3.6.8 Databases 49
3.7 Conclusion 50
References 51

4 Antibiotic Resistance 53
Colin Block and Julio A. Vázquez
4.1 Introduction 53
4.2 Testing Antibiotics Against N. meningitidis 54
4.2.1 Methodological Issues in N. meningitidis Susceptibility Testing 54
4.2.1.1 The “Invasion” of the Etest 55
4.2.1.2 The Breakpoint Issue 56
4.3 Clinical Impact and Spread of Antibiotic Resistance in Meningococcal Disease 60
4.3.1 Antibiotic Resistance in the Chemoprophylaxis of Meningococcal Disease 60
4.3.2 Antibiotic Resistance in the Treatment of Meningococcal Disease 63
4.3.2.1 Penicillin 63
4.3.2.2 Chloramphenicol 66
4.3.2.3 Quinolones 67
4.4 Are There New Drugs or New Strategies on the Horizon? 67
4.5 Molecular Tools for Definition of Antimicrobial Susceptibility in N. meningitidis 67
References 69

Part II Genetics and Genomics of the Meningococcus

5 Neisseria meningitidis Genome Sequencing Projects 77
Christoph Schoen and Heike Claus
5.1 Introduction 77
5.2 The Genomes of Neisseria meningitidis 78
5.3 Repetitive DNA Sequences Abound in the Meningococcal Genomes 84
5.3.1 DNA Uptake Sequences 85
5.3.2 Simple Sequence Repeats 85
5.3.3 IS Elements and Correia Repeats 87
5.3.4 Putative Genomic Islands 88
5.3.5 Computationally Identified Prophages 88
5.4 Genome-wide Mutational Analyses 89
5.5 DNA Microarray Analyses 90
5.5.1 Comparative Genomics 90
5.5.2 Transcriptomics 91
5.6 Conclusion 93
References 93

6 Phase Variation and Adaptive Strategies of N. meningitidis: Insights into the Biology of a Commensal and Pathogen 99
Peter M. Power and E. Richard Moxon
6.1 Introduction 99
6.2 Early Studies and Genome Sequencing Identify Large Numbers of Phase-variable Genes 100
6.3 Repetitive DNA Mediates Most Phase Variation 101
6.4 When is a “Potentially Phase-variable Gene” Really Phase Variable? 102
6.5 Mechanisms of Phase Variation: An Example of Convergent Evolution 103
6.5.1 Reversible Insertion of Insertional Elements Mediates Phase Variation in Some Genes 103
6.5.2 Unidirectional Recombination of pilE Locus Results in Pili Phase Variation 103
6.6 Trans-acting Genetic and Environment Factors Regulate Phase Variation 104
6.7 Local Factors May Influence Rates of Phase Variation 107
6.8 Examples of Phase Variation 108
6.8.1 Opc: Simple Sequence Repeats, Promoter Strength and “Volume Control” 108
6.8.2 NadA: Phase Variation and the Modulation of Classic Mechanisms of Gene Regulation 109
6.8.3 Pili: Combinatorial Complexity of Multiple Phase-variable Genes 109
6.8.3.1 Phase Variation of Pili 110
6.8.3.2 Post-translational Modifications of Pili Modulate Their Structure and Function 110
6.9 Conclusion: N. meningitidis is Adapted to Adapt 112
References 114

7 Meningococcal Transformation and DNA Repair 119
Tonje Davidsen, Ole Herman Ambur and Tone Tønjum
7.1 Introduction 119
7.2 Meningococcal Transformation 119
7.2.1 Role of Transformation in Horizontal Gene Transfer 119
7.2.2 The Transformation Process 120
7.2.2.1 The Neisserial DNA Uptake Sequence 120
7.2.2.2 The Type IV Pilus 121
7.2.2.3 Type IV Pilus Biogenesis 121
7.2.2.4 Required for Transformation: Pili or Pilus-like Structures? 124
7.2.3 Periplasmic Interactions 125
7.2.3.1 Inner Membrane Transport of DNA 126
7.2.4 DNA Integration 126
7.2.5 Sources of Exogenous DNA: Autolysis and Type IV Secretion 126
7.2.6 Effect of Transforming DNA in the Cell 127
7.3 Mechanisms of Meningococcal Genome Instability 127
7.3.1 Repeat Sequence Elements 128
7.3.2 Phase Variation 129
7.3.3 Antigenic Variation 129
7.4 Meningococcal DNA Repair Profile 130
7.4.1 Base Excision Repair 131
7.4.2 Mismatch Repair 133
7.4.3 Nucleotide Excision Repair and the SOS Response 133
7.4.4 Recombinational Repair 134
7.4.5 Other DNA Repair Strategies 134
7.4.6 Meningococcal DNA Repair Profile Adjusted to its Habitat 135
7.5 Mutator Alleles and Fitness for Survival 136
7.6 Concluding Remarks 137
References 137
Part III Infection Biology

13 Mechanisms of Attachment and Invasion 257

Sandrine Bourdoulous and Xavier Nassif

13.1 Introduction 257
13.2 Mechanisms of Attachment 258
13.2.1 Type IV Pili 258
13.2.2 Opacity Proteins: Opa and Opc 260
13.2.3 Other Adhesins 261
13.3 Mechanisms of Cellular Invasion 262
13.3.1 Initial Attachment to Host Cells 262
13.3.2 Cortical Plaque Formation and Invasion 262
13.3.3 Intimate Adhesion 265
13.4 N. meningitidis Survival and Replication Within Host Cells 265
13.4.1 Intracellular Survival 265
13.4.2 Intracellular Replication 266
13.5 Interactions with Extracellular Matrix Proteins 267
13.6 Conclusions 268

References 268

14 Role of Complement in Defense Against Meningococcal Infection 273

Sanjay Ram and Ulrich Vogel

14.1 Introduction 273
14.2 The Complement Cascade 273
14.2.1 The Classic Pathway 273
14.2.2 The Alternative Pathway 275
14.2.3 The Lectin Pathway 275
14.2.4 Assembly of the Terminal Complement Components (Membrane Attack Complex) 276
14.2.5 Regulation of the Complement Cascade in the Fluid Phase 276
14.2.6 Membrane-associated Complement Receptors and Regulators 277
14.3 Complement Deficiencies and Meningococcal Infections 277
14.3.1 Correlation of Disease Severity with Complement Activation 278
14.3.2 Complement Activation on Meningococci 279
14.4 Capsular Polysaccharide and Serum Resistance 281
14.5 Lipooligosaccharide Sialylation and Serum Resistance 282
14.6 Complement Evasion by Meningococci 283
14.6.1 Binding of Host Complement Regulatory Molecules 283
14.6.2 Modulation of Sialic Acid Biosynthesis 284
14.7 The MBL Pathway 284
14.8 Blocking Antibodies 286
14.9 Summary 287

References 288
17.2.3.2 Group B Conjugates 350
17.2.3.3 Group C Conjugates 351
17.2.3.4 Group Y and W-135 Conjugates 351
17.2.4 Combination Meningococcal Conjugate Vaccines 352
17.2.5 Lipo-oligosaccharide Conjugate Vaccines 352
17.2.6 Alternative Carrier Proteins for Meningococcal Vaccines 353
17.2.7 New Formulations and Delivery of Meningococcal Conjugate Vaccines 353
17.3 Control Testing of Conjugate Vaccines 354
17.3.1 Polysaccharide 355
17.3.2 Activated Saccharide 356
17.3.3 Carrier Protein 357
17.3.4 Monovalent Conjugate Bulk 357
17.3.5 Final Product Conjugate 357
17.3.6 Stability and Potency of Conjugate Vaccines 358
17.4 Immunogenicity of Meningococcal Conjugate Vaccines 359
17.4.1 Age-related Immunity 359
17.4.2 Antibody Persistence and Memory 360
17.4.3 Effectiveness 361
17.4.4 Use of Conjugate Vaccines in the Immunocompromised 361
17.4.5 Hyporesponsiveness to Meningococcal Polysaccharides 362
17.4.6 Herd Immunity 362
17.5 Future Developments 363
17.5.1 Affordable Conjugate Vaccines for Developing Countries 363
17.5.2 Towards a Comprehensive Vaccine 364
References 364

18 Outer Membrane Vesicle-based Meningococcal Vaccines 371
Jan T. Poolman, Philippe Denoël, Christiane Feron, Karine Goraj and Vincent Weynants
18.1 Introduction 371
18.2 Candidate Protein and LPS Immunogens 374
18.2.1 Major OMPs 374
18.2.2 The Opacity-associated Proteins 374
18.2.3 Iron-restricted Proteins 375
18.2.4 PilQ 376
18.2.5 OMP85 377
18.2.6 Minor OMPs 377
18.2.7 Adhesins 377
18.2.8 Other Antigens 378
18.2.9 In Silico Identified Antigens 378
18.2.10 Lipopolysaccharide 379
18.3 Development of Adapted OMV Vaccines 380
18.3.1 Upregulation of Minor Conserved Proteins 380
18.3.1.1 Recombinant Technologies 380
18.3.1.2 Iron Limitation Culture Conditions 382
18.3.2 Downregulation of Major Immunodominant Proteins 382
18.4 Process for MenB OMV 383
18.5 The Upregulation of Vaccine Candidates in OMV: Immunogenicity Data 384
References 385

19 Genome Mining and Reverse Vaccinology 391
Rosanna Leuzzi, Silvana Savino, Mariagrazia Pizza and Rino Rappuoli
19.1 Impact of Genomics on Vaccine Design: the Reverse Vaccinology Approach 391
19.2 Candidate Antigen Prediction 393
19.3 Antigen Screening 394
19.4 GNA1870 as an Example of Immunological Characterization 395
19.5 Exploring the Genome: Functional Characterization of Vaccine Candidates 396
19.5.1 NMB1985-App 397
19.5.2 NMB1994-NadA 398
19.5.3 GNA33-MltA 399
19.5.4 NMB1343-NarE 399
19.6 Advantages of Multiple-genome Analysis in Vaccine Design: the Example of GBS 399
References 401

20 Vaccination for the Control of Meningococcal Disease: the Use of Meningococcal Vaccines from the Public Health Perspective 403
Elisabeth Miller, Mary Ramsay and Helen Campbell
20.1 Considerations Before the Introduction of New Vaccines or Revised Immunization Programs 403
20.2 The UK Example of the Introduction of Meningococcal C Conjugate Vaccine 406
20.2.1 Epidemiology of Meningococcal Disease in England and Wales Before the Introduction of MCC Vaccines 406
20.2.2 Choice of Strategy 408
20.2.2.1 Vaccine Development in the UK 408
20.2.2.2 The UK Immunization Strategy 409
20.2.2.3 The UK Surveillance Strategy 409
20.2.3 Impact of the MCC Immunization Campaign in England and Wales 410
20.2.3.1 Immunization Coverage 410
20.2.3.2 Disease Epidemiology 411
20.2.3.3 Efficacy of MCC Vaccine 414
20.2.3.4 Herd Immunity and Carriage 414
20.2.3.5 Meningococcal Diversity 416
20.3 Other Examples of the Introduction of Meningococcal Vaccines 417
20.3.1 Meningococcal C Conjugate Vaccine 417
20.4 Other Meningococcal Vaccines 418
20.4.1 United States of America 418
20.4.2 New Zealand 419
20.5 Future Direction for Meningococcal Vaccines 419
References 420

Part V Clinical and Public Health Management

21 Pathogenesis and Pathophysiology of Invasive Meningococcal Disease 427

Petter Brandtzaeg

21.1 Introduction 427
21.2 Classification of the Clinical Presentations 428
21.3 Localized Oropharyngeal Infection 429
21.3.1 The Initial Stage of Colonization 429
21.3.2 Passage Through the Mucosal Barrier in Oropharynx 429
21.3.3 Passage into the Circulation 430
21.3.4 \textit{N. meningitidis} IgA1 Protease 430
21.4 Generalized Infection 431
21.4.1 The Initial Meningococcemia 431
21.4.2 Markers of Proliferation of Meningococci in the Circulation 431
21.4.3 Meningococcal LPS as a Marker of Bacterial Growth 432
21.4.4 Quantitative Detection of \textit{N. meningitidis} DNA in Plasma and Cerebrospinal Fluid 433
21.4.5 The True Load of Meningococci Versus Colony-forming Units in the Blood 433
21.4.6 Variable Growth During the Bacteremic Phase and the Clinical Presentation 434
21.4.7 Identification of Two Shock-resistant Patients 434
21.4.8 The Duration of Symptoms Related to the Clinical Presentation 435
21.4.9 Meningococcemia Leading to Meningitis 435
21.4.10 Meningococcemia Leading to Fulminant Septicemia 436
21.4.11 Meningococcemia Associated with Mild Systemic Meningococcal Disease 436
21.4.12 Clearance of Bacteria From the Circulation 437
21.4.13 Clearance of \textit{N. meningitidis} LPS from the Circulation in Patients 438
21.4.14 Clearance of \textit{N. meningitidis} DNA from the Circulation in Patients 438
21.4.15 The Scavenger Receptors that Clear Bacteria, LPS and Proteins 438
21.5 Lipopolysaccharides Triggering the Innate Immune System 439
21.5.1 Structure of \textit{N. meningitidis} LPS 439
21.5.2 Heterogeneity of Lipid A 439
21.5.3 Immunotypes of Meningococcal LPS, Biological Activity and Clinical Disease 441
21.6 Molecular Mimicry Between Meningococcus and Man 441
21.6.1 Capsule Polysaccharide of Serogroup B 441
21.6.2 Lipopolysaccharides 442
21.6.3 Molecular Mimicry Versus Clinical Presentation 443
21.7 N. meningitidis LPS Reacting with the Innate Immune System 444
21.7.1 N. meningitidis and Cell Activation 444
21.7.2 LPS-binding Protein 444
21.7.3 CD14 445
21.7.4 Toll-like Receptors 445
21.7.5 TLR4 is Part of the LPS Receptor Complex 445
21.7.6 TLR4 and TLR2 on Leukocytes and Endothelial Cells 446
21.7.7 The Intracellular Receptors for Peptidoglycan Fragments from Gram-negative Bacteria 446
21.7.8 Intracellular Signaling Through Nuclear Factor \(\kappa B \) 446
21.7.9 Wild-type N. meningitidis Activates the Human Innate Immune System Through TLR4 447
21.8 LPS Activates Human Cells During Meningococcal Infection 447
21.8.1 A Bioassay to Document the Effect of LPS in Human Disease 447
21.8.2 Blocking mCD14 Normal Monocytes 448
21.8.3 Selective Blocking of TLR4 with the Lipid A Antagonist RsDPLA 448
21.9 The Biological Effect of Outer Membrane Vesicles 448
21.10 The LPS-deficient N. meningitidis Mutant 449
21.10.1 The Creation of LPS-deficient Mutant 449
21.10.2 NonLPS Molecules Activating Immune Cells 449
21.10.3 NonLPS Components of N. meningitidis Activate the Human Immune System Through TLR2 449
21.10.4 The Effect of LPS-deficient Mutant on Human Dendritic Cells 450
21.10.5 What is the Contribution of nonLPS Molecules in the Inflammatory Response of Patients? 450
21.11 Distinct Differences Between Meningococcal and Pneumococcal Lethal Septic Shock Plasma 450
21.12 Plasma Systems Neutralizing N. meningitidis LPS 451
21.12.1 Lipoproteins May Contribute Little to Neutralization of Meningococcal LPS in Plasma 451
21.12.2 Antibodies in Plasma Reduce the Activity of Meningococcal LPS 451
21.13 Compartmentalized Inflammatory Response in the Vasculature Versus Subarachnoid Space 452
21.13.1 Bacterial Components and Inflammatory Mediators as Indicators 452
21.13.2 The Cytokine Profile in Patients with Fulminant Meningococcal Septicemia 452
21.13.3 The Net Inflammatory Effect of Septic Shock Plasma on Human Monocytes 453
21.13.4 Where are the Circulating Cytokines Produced? 453
21.13.5 Downregulation of Human Leukocytes in Shock Patients 454
21.14 Dysfunction of the Cardiovascular System 454
21.14.1 The Circulatory Pattern in Meningococcal Septic Shock 455
21.14.2 The Vasculature in the Progressing Shock 455
21.14.3 Cardiac Dysfunction 455
21.14.4 The Endothelial Cells 456
21.15 Capillary Leak Syndrome 457
21.16 Renal Failure 457
21.17 Altered Adrenal Function 457
21.18 Other Endocrine Reactions Associated with Meningococcal Septic Shock 458
21.19 Coagulopathy in Meningococcal Disease 458
21.19.1 Hemorrhagic Skin Lesions 458
21.19.2 Thrombus Formation of Larger Vessels 459
21.19.3 Activation of the Coagulation System Leading to Disseminated Intravascular Coagulation 459
21.20 The Natural Coagulation Inhibitors 460
21.20.1 Protein C 460
21.20.2 Antithrombin 461
21.20.3 Tissue Factor Pathway Inhibitor 461
21.20.4 Thrombin Activation 461
21.21 The Fibrinolytic System 462
21.21.1 Plasminogen Activator Inhibitor 1 462
21.21.2 Alpha-2-antiplasmin 462
21.21.3 Balance Between Coagulation and Fibrinolysis 463
21.22 The Complement System 463
21.22.1 The Effect of Bactericidal and Opsonophagocytic Antibodies and a Normal Complement System 463
21.22.2 The Complement System in Patients with Invasive Meningococcal Disease 463
21.22.3 Persistent Complement Activation 464
21.22.4 C5a 464
21.22.5 Activation Pathways of Complement 464
21.23 Activation of Neutrophils Related to Disease Severity 465
21.24 Meningitis 466
21.24.1 Meningococci and the Meninges 466
21.24.2 Where do Meningococci Enter the Subarachnoid Space? 466
21.24.3 Molecules Regulating the Influx of Leukocytes 466
21.24.4 Proliferation of *N. meningitidis* in the Subarachnoid Space 467
21.24.5 The Compartmentalized Inflammatory Response 467
21.25 Chronic Meningococcemia 468
21.26 Conclusion and Future Aspects 468
22 Course of Disease and Clinical Management 481

Andrew J. Pollard and Simon Nadel

22.1 Introduction 481
22.2 Disease Burden 481
22.3 Susceptibility to Infection and Severity of Disease 482
22.4 Carriage 486
22.5 Presentation and Clinical Features 487
22.5.1 Rash 487
22.5.2 Laboratory Features 488
22.6 Lumbar Puncture 490
22.7 Cardiovascular Shock 490
22.8 Initial Assessment and Management 493
22.8.1 Management of Shock 496
22.8.2 Respiratory Support 497
22.8.3 Biochemical and Hematological Derangements 498
22.8.4 Impaired Organ Perfusion 499
22.8.5 Raised Intracranial Pressure 500
22.8.6 Steroids 501
22.8.7 Antibiotic Therapy 502
22.9 Transfer to Intensive Care or Treatment on the General Ward 502
22.10 Adjunctive Therapy for Sepsis 503
22.11 Conclusion 507

Acknowledgements 507
References 507

23 Public Health Management 519

James Stuart

23.1 Introduction 519
23.2 Action Before a Case 520
23.2.1 Public and Professional Awareness 520
23.2.2 Promoting Early Treatment to Physicians 520
23.2.3 Surveillance and Response Systems 521
23.3 After a Case 522
23.3.1 Laboratory Investigation 522
23.3.2 Prophylaxis: Risk 523
23.3.2.1 Close Contacts 523
23.3.2.2 Contacts in Educational/Work Settings 523
23.3.2.3 Contact in Health Care Settings 523
23.3.2.4 Contact With a Case 524
23.3.2.5 Contact With Saliva 524
23.3.3 Prophylaxis: Risk Reduction 525
23.3.3.1 Chemoprophylaxis 525
23.3.3.2 Vaccination 525
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3.4</td>
<td>Prophylaxis: Costs</td>
<td>526</td>
</tr>
<tr>
<td>23.3.5</td>
<td>Prophylaxis: Policy</td>
<td>526</td>
</tr>
<tr>
<td>23.3.5.1</td>
<td>Chemoprophylaxis</td>
<td>526</td>
</tr>
<tr>
<td>23.3.5.2</td>
<td>Vaccination</td>
<td>527</td>
</tr>
<tr>
<td>23.3.6</td>
<td>Information</td>
<td>528</td>
</tr>
<tr>
<td>23.4</td>
<td>Outbreaks</td>
<td>528</td>
</tr>
<tr>
<td>23.5</td>
<td>Conclusion</td>
<td>529</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>529</td>
</tr>
</tbody>
</table>

Subject Index 533