Contents

Preface xv
Acknowledgments xvii
List of Abbreviations xix

1 Historical Evolution of Substation Automation Systems (SASs) 1
 1.1 Emerging Communication Technologies 4
 1.1.1 Serial Communication 4
 1.1.2 Local Area Network 4
 1.2 Intelligent Electronic Devices (IEDs) 5
 1.2.1 Functional Relays 5
 1.2.2 Integrated Digital Units 5
 1.3 Networking Media 5
 1.3.1 Fiber-Optic Cables 5
 1.3.2 Network Switches 5
 1.4 Communication Standards 6
 1.4.1 IEC Standard 61850 (Communication Networks and Systems for Power Utility Automation) 6
 1.4.2 IEEE Standard 802.3 (Ethernet) 6
 Further Reading 8

2 Main Functions of Substation Automation Systems 9
 2.1 Control Function 14
 2.2 Monitoring Function 15
 2.3 Alarming Function 16
 2.4 Measurement Function 17
 2.5 Setting and Monitoring of Protective Relays 17
 2.6 Control and Monitoring of the Auxiliary Power System 17
 2.7 Voltage Regulation 18
 Further Reading 18
3 Impact of the IEC 61850 Standard on SAS Projects

3.1 Impact on System Implementation Philosophy
3.2 Impact on User Specification
3.3 Impact on the Overall Procurement Process
3.4 Impact on the Engineering Process
3.5 Impact on Project Execution
3.6 Impact on Utility Global Strategies
3.7 The Contents of the Standard
3.8 Dealing with the Standard

Further Reading

4 Switchyard Level, Equipment and Interfaces

4.1 Primary Equipment
 4.1.1 Switchgear
 4.1.1.1 Circuit Breaker
 4.1.1.2 Disconnector
 4.1.1.3 Earthing Switch
 4.1.2 Instrument Transformers
 4.1.2.1 Voltage Transformer
 4.1.2.2 Current Transformer
 4.1.3 Power Transformers
 4.1.4 Other Primary Equipment
4.2 Medium and Low Voltage Components
4.3 Electrical Connections between Primary Equipment
 4.3.1 Incoming Circuits
 4.3.2 Outgoing Circuits
 4.3.3 The “Bay” Concept
4.4 Substation Physical Layout
4.5 Control Requirements at Switchyard Level

Further Reading

5 Bay Level: Components and Incident Factors

5.1 Environmental and Operational Factors
 5.1.1 Lightning Strike
 5.1.2 Switching Transients
 5.1.2.1 Disconnector Operation
 5.1.2.2 Circuit Breaker Operation
 5.1.3 Electromagnetic Disturbance Phenomenon
 5.1.4 Lightning Protection Practices
 5.1.5 Typical Earthing Systems
 5.1.6 Measures to Minimize Electromagnetic Effects
5.2 Insulation Considerations in the Secondary System
5.3 Switchyard Control Rooms
5.4 Attributes of Control Cubicles
 5.4.1 Constructive Features
 5.4.2 Earthquake Withstand Capability
 5.4.3 Electromagnetic Compatibility
5.5 The Bay Controller (BC) 60
5.6 Other Bay Level Components 61
5.7 Process Bus 62
Further Reading 63

6 Station Level: Facilities and Functions 65
6.1 Main Control House 65
6.2 Station Controller 67
6.3 Human Machine Interface HMI 68
 6.3.1 Start-Up Screen 69
 6.3.2 Main Box Screen 69
 6.3.3 Users Administrator Screen 69
 6.3.4 Primary Circuit Screen (Process Screen) 71
 6.3.5 SAS Scheme Screen 71
 6.3.6 Event List Screen 71
 6.3.7 Alarm List Screen 72
6.4 External Alarming 73
6.5 Time Synchronization Facility 74
6.6 Protocol Conversion Task 74
 6.6.1 Briefing on Digital Communication Protocols 75
 6.6.2 Premises for Developing Protocol Conversion 76
6.7 Station Bus 77
6.8 Station LAN 77
Further Reading 77

7 System Functionalities 79
7.1 Control Function 79
 7.1.1 Control of Primary Switchgear 81
 7.1.1.1 Symbols, Colors and Appearance Representing Primary Switchgear 81
 7.1.1.2 Switching Command Implementation 81
 7.1.1.3 Supervision of Circuit Breaker Trip Circuit 82
 7.1.2 Check of Voltage Synchronization (Synchrocheck) 82
 7.1.3 Checking Operative Constraint 83
 7.1.3.1 Checking of Interlocking Conditions 83
 7.1.3.2 Checking of Blocking Conditions 84
 7.1.4 Voltage Regulation Task 84
 7.1.5 Parallel Working of Power Transformers 85
 7.1.6 Operation of Secondary Components 85
 7.1.7 Facilities for Operation under Emergency Conditions 86
7.2 Monitoring Function 86
 7.2.1 Event Handling 86
 7.2.2 External Disturbance Recording 87
 7.2.3 Alarming Management 87
7.3 Protection Function 88
7.4 Measuring Function 89
9.3 Station Level Engineering 112
 9.3.1 Engineering Related to the Station Controller 113
 9.3.1.1 Definition and Implementation of the Station Level Database (Process Database) 113
 9.3.1.2 Implementation of Redundant Solutions 114
 9.3.2 Engineering Related to the Human Machine Interface 114
 9.3.2.1 General Design Principles 115
 9.3.2.2 Typical Screens 115
 9.3.2.3 Operative Features 116

9.4 Functionalities Engineering 116
 9.4.1 Interlocking Engineering 116
 9.4.2 Voltage Regulation Engineering 117
 9.4.3 Protection Engineering 117
 9.4.4 Metering Engineering 117
 9.4.5 Disturbance Recording Engineering 117
 9.4.6 System Self-Monitoring Engineering 118

9.5 Auxiliary Power System Engineering 118
 9.5.1 Design Concept 118
 9.5.2 AC Voltage Distribution 118
 9.5.3 DC Voltage Distribution 119
 9.5.4 Batteries and Chargers 119
 9.5.5 Medium Voltage Switchgear 119
 9.5.6 Automatic Transfer Switches 119

9.6 Project Drawings List 120

9.7 The SAS Engineering Process from the Standard IEC 61850 Perspective 120

Further Reading 120

10 Communication with the Remote Control Center 123
 10.1 Communication Pathway 123
 10.2 Brief on Digital Communication 123
 10.2.1 The OSI Reference Model 124
 10.2.2 The IEC Enhanced Performance Architecture Model 127
 10.3 Overview of the Distributed Network Protocol (DNP3) 127
 10.3.1 The Device Profile Document 128
 10.3.2 The DNP3 Implementation Level 128
 10.3.3 The DNP3 Implementation Document 128

Further Reading 129

11 System Attributes 131
 11.1 System Concept 131
 11.2 Network Topology 132
 11.3 Redundancy Options 134
 11.4 Quality Attributes 135
 11.4.1 System Reliability and Availability 135
 11.4.1.1 Considerations of the Standards 136
 11.4.1.2 Example of an Availability Calculation 136
 11.4.2 System Maintainability and Security 138
11.5 Provisions for Extendibility in Future
11.6 Cyber-Security Considerations
11.7 SAS Performance Requirements
Further Reading

12 Tests on SAS Components
12.1 Type Tests
 12.1.1 Basic Characteristics Tests
 12.1.2 Functional Tests
12.2 Acceptance Tests
12.3 Tests for Checking the Compliance with the Standard IEC 61850
Further Reading

13 Factory Acceptance Tests
13.1 Test Arrangement
13.2 System Simulator
13.3 Hardware Description
13.4 Software Identification
13.5 Test Instruments
13.6 Documentation to be Available
13.7 Checking System Features
 13.7.1 Checking Basic Features
 13.7.2 Checking Power Circuit Screens
 13.7.3 Checking the SAS Scheme Screen
 13.7.4 Checking Reports Screens (Each Type)
 13.7.5 Checking Measurement Screens
 13.7.6 Checking Time Synchronization Facilities
 13.7.7 Checking of Self-Supervision Functions
 13.7.8 Checking Peripheral Devices
 13.7.9 Checking Collateral Subsystems
 13.7.10 Checking Redundant Functionalities
13.8 Planned Testing Program for FAT
 13.8.1 System Behavior in an Avalanche Condition
 13.8.2 System Performance
 13.8.3 Test of the Time Synchronization Mechanism
 13.8.4 Test of Event Buffer Capability
 13.8.5 Interlocking Logics
 13.8.6 Synchronization Features
 13.8.7 Operational Logic of Transfer Switch
 13.8.8 Tests on the Communication Link for Technical Service
13.9 Nonstructured FATs
13.10 After FATs
Further Reading

14 Commissioning Process
14.1 Hardware Description
14.2 Software Identification
14.3 Test Instruments 157
14.4 Required Documentation 157
14.5 Engineering Tools 157
14.6 Spare Parts 157
14.7 Planned Commissioning Tests 158
 14.7.1 System Start-Up 158
 14.7.2 Displaying and Exploring the Main Menu Screen 158
 14.7.3 Displaying and Dealing with Single-Line Diagrams 158
 14.7.4 Displaying and Dealing with the SAS Scheme Screen 159
 14.7.5 Displaying and Dealing with Report Screens 160
 14.7.6 Displaying and Dealing with Measurement Screens 160
 14.7.7 Displaying and Exploring the Alarm List Screen 160
 14.7.8 Displaying and Exploring the Event List Screen 161
 14.7.9 Checking Peripheral Components 161
 14.7.10 Checking the Time Synchronization Mechanism 161
 14.7.11 Testing Communication with the Remote Control Center 161
 14.7.12 Checking System Performance 161
 14.7.13 Testing Functional Performance 162
14.8 Nonstructured Commissioning Tests 162
14.9 List of Pending Points 162
14.10 Re-Commissioning 163
Further Reading 163

15 Training Strategies for Power Utilities 165
 15.1 Project-Related Training 166
 15.1.1 Station Level Module 166
 15.1.2 Bay Level Module 167
 15.1.3 Process Level Module 169
 15.2 Corporate Training 169
 15.2.1 General Purpose Knowledge 169
 15.2.2 Learning from the Standard IEC 61850 171
 15.2.3 Dealing with Engineering Tools 172
Further Reading 173

16 Planning and Development of SAS Projects 175
 16.1 System Specification 176
 16.2 Contracting Process 176
 16.3 Definition of the Definitive Solution 178
 16.4 Design and Engineering 178
 16.5 System Integration 179
 16.6 Factory Acceptance Tests 179
 16.7 Site Installation 180
 16.8 Commissioning Process 180
 16.9 Project Management 181
 16.10 Security Issues 182
 16.10.1 Environmental Security 182
 16.10.2 Electromagnetic Security 183
16.10.3 Physical Security 183
16.10.4 Information Security 183
16.10.5 Software Security 184
16.11 Documentation and Change Control 184
Further Reading 185

17 Quality Management for SAS Projects 187
17.1 Looking for Quality in Component Capabilities and Manufacturing 188
 17.1.1 The Dilemma with Respect to Type Tests 188
 17.1.2 The Importance of Factory Conformance Tests 189
17.2 Looking for Quality during the Engineering Stage 189
17.3 Looking for Quality in the Cubicle Assembly Stage 191
17.4 Looking for Quality during FAT 192
17.5 Looking for Quality during Installation and Commissioning 192
17.6 Use of Appropriate Device Documentation 192
Further Reading 196

18 SAS Engineering Process According to Standard IEC 61850 197
18.1 SCL Files 197
18.2 Engineering Tools 198
18.3 Engineering Process 199
Further Reading 202

19 Future Technological Trends 203
19.1 Toward the Full Digital Substation 203
 19.1.1 Horizontal Communication as per IEC 61850 (GOOSE Messaging) 203
 19.1.2 Unconventional Instrument Transformers 204
 19.1.3 Process Bus as Defined by IEC 61850–9-2 204
19.2 Looking for New Testing Strategies on SAS Schemes 204
19.3 Wide Area Control and Monitoring Based on the IEC/TR 61850–90–5 205
19.4 Integration of IEC 61850 Principles into Innovative Smart Grid Solutions 206
Further Reading 206

Appendix A – Samples of Equipment and System Signal Lists 207
A.1 Signals List Related to Circuit Breakers (Each One) 207
A.2 Signals List Related to Collateral Devices 208
A.3 Signals List Related to the Auxiliary Power System 209
A.4 Signals List Related to the SAS Itself 210

Appendix B – Project Drawing List: Titles and Contents 211
B.1 General Interest Drawings 211
B.2 Electromechanical Drawings (High Voltage Equipment and Control Facilities) 213
Appendix C – Essential Tips Related to Networking Technology

C.1 Computer Network

C.1.1 Data

C.1.1.1 Meaning of Data, Information and Knowledge
C.1.1.2 Data Modeling
C.1.1.3 Data Type
C.1.1.4 Network Packet

C.2 Network Topology

C.2.1 Network Links
C.2.1.1 Wired Technologies
C.2.1.2 Wireless Technologies
C.2.2 Network Nodes
C.2.3 Network Interface Controllers
C.2.4 Repeaters and Hubs
C.2.5 Bridges
C.2.6 Switches
C.2.7 Routers
C.2.8 Modems

C.3 Network Structure
C.3.1 Common Network Layouts

C.4 Communication Protocols

C.4.1 Ethernet
C.4.2 The Internet Protocol Suite
C.4.3 SONET/SDH
C.4.4 Asynchronous Transfer Mode
C.4.5 Basic Requirements of Protocols

C.5 Geographical Scale of Network

C.5.1 Local Area Network
C.5.2 Backbone Network
C.5.3 Wide Area Network
C.5.4 Intranet
C.5.5 Extranet

C.6 Internetwork

C.6.1 Internet
C.6.2 Routing
C.6.3 Network Service
C.6.4 Network Performance

C.6.4.1 Quality of Service
C.6.4.2 Network Congestion
C.6.4.3 Network Resilience
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.6.5</td>
<td>Security Measures in Networks</td>
<td>243</td>
</tr>
<tr>
<td>C.6.5.1</td>
<td>Network Security</td>
<td>243</td>
</tr>
<tr>
<td>C.6.5.2</td>
<td>Network Surveillance</td>
<td>244</td>
</tr>
<tr>
<td>C.6.5.3</td>
<td>End-to-End Encryption</td>
<td>244</td>
</tr>
<tr>
<td>C.6.6</td>
<td>Views of the Network</td>
<td>244</td>
</tr>
<tr>
<td>C.7</td>
<td>Network Structure</td>
<td>245</td>
</tr>
<tr>
<td>C.8</td>
<td>Communication System</td>
<td>245</td>
</tr>
<tr>
<td>C.9</td>
<td>Object-Oriented Programming</td>
<td>245</td>
</tr>
<tr>
<td>C.10</td>
<td>Programming Tool or Software Development Tool</td>
<td>246</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>247</td>
</tr>
</tbody>
</table>