Contents

Preface xvii
List of Contributors xix

CHAPTER 1 Humanistic Intelligence: “Wear Comp” As a New Framework and Application for Intelligent Signal Processing

1

INTRODUCTION
- Why Humanistic Intelligence? 2
- Humanistic Intelligence Does Not Necessarily Mean “user-friendly” 2

“WEAR COMP” AS MEANS OF REALIZING HUMANISTIC INTELLIGENCE 3
- Basic Principals of WearComp 3
 - **Operational modes of WearComp** 3
- The Six Basic Signal Flow Paths of WearComp 5

PHILOSOPHICAL ISSUES 6
- Fundamental Issues of WearComp 6
 - **Historical context** 6
 - The shift from guns to cameras and computers 6
 - The shift from draconian punishment to micro management 7
 - **Fundamental issues of WearComp** 8
- Aspects of WearComp and Personal Empowerment 9

PRACTICAL EMBODIMENT OF WEARCOMP 10
- Building Signal-Processing Devices Directly into Fabric 12
 - Remaining issue of underwearable signal processing hardware 13
- Multidimensional Signal Input for Humanistic Intelligence 14
 - **Safety first** 15
 - More than just a health status monitor 16

PERSONAL IMAGING APPLICATION OF HUMANISTIC INTELLIGENCE 16

- Some Simple Illustrative Examples 16
 - Always ready: From point and click to “look and think” 16
 - Personal safety device for reducing crime 17
 - The retro-autofocus example: Human in the signal processing loop 17
- Mathematical Framework for Personal Imaging 18
 - **Quantigraphic imaging and the Wyckoff Principle** 18
 - **Video orbits** 20

vii
Contents

Dynamic range and “dynamic domain” 24
Bi-foveated WearCam 30
Lightspace modeling for HI 31
BEYOND VIDEO: SYNTHETIC SYNESTHESIA AND PERSONAL IMAGING 34
Synthetic Synesthesia: Adding New Sensory Capabilities to the Body 34
Safety first 35
A true extension of the mind and body 36
CONCLUSIONS 36
ACKNOWLEDGMENTS 37
REFERENCES 37

CHAPTER 2 Adaptive Stochastic Resonance 40

ABSTRACT 40
STOCHASTIC RESONANCE AND ADAPTIVE FUNCTION APPROXIMATION 41
SR DYNAMICAL SYSTEMS 46
SR PERFORMANCE MEASURES 51
ADDITIVE FUZZY SYSTEMS AND FUNCTION APPROXIMATION 56
SR LEARNING AND EQUILIBRIUM 58
The Signal-to-Noise Ratio in Nonlinear Systems 58
Supervised Gradient Learning and SR Optimality 63
SR LEARNING: SIMULATION RESULTS 68
SR Test Case: The Quartic Bistable System 70
Other SR Test Cases 77
Fuzzy Sr Learning: The Quartic Bistable System 81
CONCLUSIONS 86
REFERENCES 89
APPENDIX A. THE STANDARD ADDITIVE MODEL (SAM) THEOREM 104
APPENDIX B. SAM GRADIENT LEARNING 106

CHAPTER 3 Learning in the Presence of Noise 108

ABSTRACT 108
INTRODUCTION 108
FINANCIAL TIME SERIES PREDICTION 110
IMPACT OF NOISE ON LEARNING 111
The Learning Problem 111
Performance of a Learning System 113
Estimating the Model Limitation 116
APPLICATION TO FINANCIAL MARKET FORECASTING 116
CONCLUSION 117
ACKNOWLEDGMENTS 118
APPENDIX 119
REFERENCES 125

CHAPTER 4 Incorporating Prior Information in Machine Learning by Creating Virtual Examples 127

ABSTRACT 127
LEARNING FROM EXAMPLES 128
Background: Learning as Function Approximation 128
PRIOR INFORMATION AND THE PROBLEM OF SAMPLE COMPLEXITY 129
VIRTUAL EXAMPLES: A FRAMEWORK FOR PRIOR INFORMATION 133
The General Framework 134
Techniques for Prior Information and Related Research 135
 Prior Knowledge in the Choice of Variables of Features 135
 Prior Knowledge in the Learning Technique 135
 Generating New Examples with Prior Knowledge 136
 Incorporating Prior Knowledge as Hints 137
VIRTUAL EXAMPLES AND REGULARIZATION 138
 Regularization Theory and RBF 138
 Regularization Theory in Presence of Radial Symmetry 140
 Radial Symmetry and “Virtual” Examples 141
VIRTUAL EXAMPLES IN VISION AND SPEECH 143
 Virtual Views for Object Recognition 144
 Symmetry as Prior Information 146
 More General Transformations: Linear Object Classes 147
 3D Objects, 2D Projections, and Linear Classes 148
 Implications 149
 Learning the Transformation 150
 Virtual Examples in Speech Recognition 152
CONCLUSIONS 158
REFERENCES 158

CHAPTER 5 Deterministic Annealing for Clustering, Compression, Classification, Regression, and Speech Recognition 163
ABSTRACT 163
INTRODUCTION 163
DETERMINISTIC ANNEALING FOR UNSUPERVISED LEARNING 166
 Clustering 166
 Principled Derivation of Deterministic Annealing 167
 Statistical Physics Analogy 169
 Mass-Constrained Clustering 172
 Preferred Implementation of the DA Clustering Algorithm 177
 Illustrative Examples 178
 Extensions and Applications 180
 Vector Quantization for Noisy Channels 180
 Entropy-Constrained Vector Quantizer Design 182
 Structurally Constrained Vector Quantizer Design 183
 Graph-Theoretic and Other Optimization Problems 185
DETERMINISTIC ANNEALING FOR SUPERVISED LEARNING 188
 Problem Formulation 188
 Basic Derivation 190
 Generality and Wide Applicability of the DA Solution 192
 Regression, Classification, and Clustering 192
 Structures 193
 Experimental Results 197
 VQ Classifier Design 197
 RBF Classifier Design 201
 MLP Classifier Design 201
 Piecewise Regression 202
 Mixture of Experts 206
Contents

CHAPTER 8

Semiparametric Support Vector Machines for Nonlinear Model Estimation

ABSTRACT 295
INTRODUCTION 295
PROBLEM SETTING 296
OPTIMUM LINE SEARCH FOR A GENERIC DIRECTION 297
SIMPLE ALGORITHMS FOR PURELY NONPARAMETRIC APPROACH 298
A Gradient-Based Approach 299
A Coordinate Descent Approach 299
THE CLASSIC SVM PROBLEM 300
GENERAL SEMIPARAMETRIC SVM 301
The Augmented Lagrangian Approach 301
Training Semiparametric SVM 301
A Possible Simplification 302
REGULARIZED PARAMETRIC SVM APPROACH 302
EXPERIMENTAL RESULTS 302
CONCLUSIONS 305
ACKNOWLEDGMENTS 305
REFERENCES 305

CHAPTER 9

Gradient-Based Learning Applied to Document Recognition

INTRODUCTION 306
Learning from Data 307
Gradient-Based Learning 308
Gradient Back-Propogation 308
Learning in Real Handwriting Recognition Systems 309
Globally Trainable Systems 309
CONVOLUTIONAL NEURAL NETWORKS FOR ISOLATED CHARACTER RECOGNITION 310
Convolutional Networks 311
LeNet-5 312
Loss Function 314
CHAPTER 10 Pattern Recognition Using A Family of Design Algorithms Based Upon Generalized Probabilistic Descent Method

ABSTRACT

INTRODUCTION

DISCRIMINATIVE PATTERN CLASSIFICATION

GENERALIZED PROBABILISTIC DESCENT METHOD

DERIVATIVES OF GPD

REFERENCES
Contents

Discriminative metric design 421
Minimum error learning subspace method 422
Speaker Recognition Using GPD 424

CHAPTER 11

An Approach to Adaptive Classification 455
ABSTRACT 455
INTRODUCTION 455
THE PROPOSED LEARNING METHOD 456
- Problem Statement 456
- Model Inference and Updates 457
- Restarting 458
- The Viterbi Algorithm 459
- Synopsis of Our Learning Method 459
- Relation to Other Learning Method 459

EXAMPLES 460
- Fixed Linear and Nonlinear Generating Function 460
- Time-Varying Functions 461

CONCLUSIONS AND FUTURE DIRECTIONS 463
REFERENCES 463

CHAPTER 12

Reduced-Rank Intelligent Signal Processing with Application to Radar 465
INTRODUCTION 465
BACKGROUND 466
KARHUNEN-LOÈVE ANALYSIS 467
- The Karhunen-Loève Transformation 467
- The Karhunen-Loève Expansion 467
- Implementing the KLT 468
THE MULTIPLE SIGNAL MODEL AND WIENER FILTERING 469
THE SIGNAL-DEPENDENT KLT FOR STATISTICAL SIGNAL PROCESSING 470
- The KLT and Principal-Components 470
- The Cross-Spectral Metic: An Intelligent and Signal-Dependent KLT 471
INTELLIGENT SIGNAL REPRESENTATION FOR STATISTICAL SIGNAL PROCESSING 472
- A New Criterion for Signal Representation and Its Implementation 473
- A Generalized Joint-Process KLT: Nonunitary Diagonalization of the Covariance Analysis of the JKLT 475
RADAR EXAMPLE 478
- Radar Signal Processing 478
- Estimation of the Statistics and Sample Support 479
- Simulation 480

ACKNOWLEDGMENTS 432
REFERENCES 433
APPENDIX 447

ABSTRACT 455
INTRODUCTION 455
THE PROPOSED LEARNING METHOD 456
Problem Statement 456
Model Inference and Updates 457
Restarting 458
The Viterbi Algorithm 459
Synopsis of Our Learning Method 459
Relation to Other Learning Method 459
EXAMPLES 460
Fixed Linear and Nonlinear Generating Function 460
Time-Varying Functions 461
CONCLUSIONS AND FUTURE DIRECTIONS 463
REFERENCES 463

Reduced-Rank Intelligent Signal Processing with Application to Radar 465
INTRODUCTION 465
BACKGROUND 466
KARHUNEN-LOÈVE ANALYSIS 467
The Karhunen-Loève Transformation 467
The Karhunen-Loève Expansion 467
Implementing the KLT 468
THE MULTIPLE SIGNAL MODEL AND WIENER FILTERING 469
THE SIGNAL-DEPENDENT KLT FOR STATISTICAL SIGNAL PROCESSING 470
The KLT and Principal-Components 470
The Cross-Spectral Metic: An Intelligent and Signal-Dependent KLT 471
INTELLIGENT SIGNAL REPRESENTATION FOR STATISTICAL SIGNAL PROCESSING 472
A New Criterion for Signal Representation and Its Implementation 473
A Generalized Joint-Process KLT: Nonunitary Diagonalization of the Covariance Analysis of the JKLT 475
RADAR EXAMPLE 478
Radar Signal Processing 478
Estimation of the Statistics and Sample Support 479
Simulation 480

xiv
Chapter 13

Signal Detection in a Nonstationary Environment Reformulated as an Adaptive Pattern Classification Problem

Abstract

484

Introduction

485

An Overview of Nonstationary Behavior and Time-Frequency Analysis

488

Theoretical Background

492

- Multiple Window Estimates
- Spectrum Estimation as an Inverse Problem

High-Resolution Multiple-Window Spectrograms

499

- Non-Stationary Quadratic-Inverse Theory
- Multiple Window Estimates of the Loeve Spectrum

Spectrum Analysis of Radar Signals

507

Modular Learning Machine for Adaptive Signal Detection

517

- How Does the Adaptive Receiver of Fig. 4 Respond to Nonstationary Environment

Case Study: Radar Target Detection of a Small Target in Sea Clutter

523

- Details of the Receiver
- Detection Results
- Robustness of the Detector

Cost Functions for Supervised Training of the Pattern Classifiers

532

Summary and Discussion

535

Acknowledgments

536

References

536

Chapter 14

Data Representation Using Mixtures of Principal Components

Abstract

541

Introduction

541

A Spectrum of Representations

542

- Principal Components
- Vector Quantization

A Mixture of Principal Components

542

Subspace Pattern Recognition

543

- Similarity Measure
- Class Prototype
- Norm Invariance

Training

544

- Topological Organization

Grey-Scale Feature Extraction

546

- Training Data
- Network Basis Vectors
- Segmentation Results
- Illumination Variations
CHAPTER 15 Image Denoising by Sparse Code Shrinkage 554

ABSTRACT 554
INTRODUCTION 554
MAXIMUM LIKELIHOOD DENOISING OF NONGAUSSIAN RANDOM VARIABLES 555
Maximum Likelihood Denoising 555
Modeling Sparse Densities 555
 Laplace Density 555
 Mildly Sparse Densities 556
 Strongly Sparse Densities 557
 Choice of Model 557
 Some Other Models 557
FINDING THE SPARSE CODING TRANSFORMATION 558
MEAN-SQUARE ERROR APPROACH 558
Minimum Mean-Square Estimator in Scalar Case 558
Analysis of Mean-Square Error 559
Minimum Mean Squares Approach to Basis Estimation 559
SPARSE CODE SHRINKAGE 560
COMPARISON WITH WAVELET AND CORING METHODS 560
EXTENSIONS OF THE BASIC THEORY 561
Nongaussian Noise 561
Estimation of Parameters from Noisy Data 561
Non-orthogonal Bases 561
EXPERIMENTS 561
Generation of Image Data 561
Remarks on Image Data 562
 Windowing 562
 The Local Mean 562
 Normalizing the Local Variance 562
Transform Estimation 563
 Methods 563
 Results 563
Component Statistics 564
Denoising Results 565
CONCLUSION 566
REFERENCES 567
APPENDIX 567

INDEX 569

ABOUT THE EDITORS 573