Index

barely, virus resistance
acreage, yields, 63
allele mining, future prospects, 69, 70f, 71
barely yellow dwarf, 65
barley yellow mild mosaic virus (BaMMV), 64–65
barley yellow mosaic virus (BaYMV), 64–65
breeding for virus resistance, sources and genetics of resistance, 65–66
cultivation, 63–64
genomic resources in marker saturation, 69, 70f, 71
genomic tools, 68–69
isolation of virus resistance genes, 67–68
mapped major virus resistance genes, 67f
molecular markers, 66–67
resistance/tolerance breeding, 63
Striga in, 4
virus resistance in, 3–4
Brassica, genetics and gene mapping of disease resistance
blackleg disease, pathogenicity groups and differentiated hosts, 335
blackleg disease resistance, gene mapping, 335–336
blackleg disease resistance, genetics, 335–336
blackleg resistance, avirulence genes in L. maculans mapping/cloning, 337
blackleg resistance, QTL mapping, 337–338
blackleg-resistance genes introduced from related species, mapping, 336–337
Brassica species, 327–329, 328f
clubroot, 331
clubroot resistance, comparative genomics, 333–334
clubroot resistance, genetic analysis, 332–333
clubroot resistance, genetic mapping, 333
clueing resistance sources availability, 331–332
clueing resistance genes, Chinese cabbage, 334–335
genetic mapping, resistance to other Brassica diseases, 338
marker-assisted selection (MAS), disease resistance in Brassica crop breeding, 339–340
sclerotinia stem rot resistance, 329
sclerotinia stem rot resistance, QTL mapping, 330–331
sclerotinia stem rot resistance, testing methods optimization, 329–330, 329f
cassava mosaic disease (CMD) resistance,
marker-assisted breeding (MAB)
Africa CMD situation, 297–299
breeding for CMD resistance, 299–300
breeding in absence of pathogen, in Americas, 305–306, 306f, 307f
cassava breeding, genetics, 293–295, 294f
cassava cultivation, production, yield increases, 291–293
CIAT shipment to Africa, Asia, 308f
CMD epidemic, 297–299
CMD resistance pyramiding, 312
CMD resistance sources, 300–301
CMD threat, 197f, 296–297
CMD1, 302, 304f
CMD2, 302–303, 302f, 304f, 305, 306f
CMD2 bacterial artificial chromosome (BAC) sequencing, CMD2 gene markers, 313–316, 315f, 316f
CMD2 resistance profile, 312–313
cassava mosaic disease (CMD) resistance, marker-assisted breeding (MAB) (Continued) CMD3, 303–304 
future MAB targets for CMD resistance, 319–321 
genetic mapping of CMD resistance diseases, 301–304, 302f, 304f 
germinoplast base broadening, in Africa, 306–309 
germinoplast screening for parent selection, CMD resistance breeding in Asia, 312 
heterosis, 309–310, 310f 
marker-assisted selection (MAS), fast track scheme, 318f 
MAS flowchart, 306, 306f 
molecular markers for genetic improvement, benefits, 295–296 
novel traits transfer, to Africa, 310–311, 311f 
significance, impact, 316–319, 318f 
chickpea, disease resistance 
AB, causal agent, 202–203, 203f 
AB, host resistance inheritance, 203–204 
Ascochyta blight (AB), breeding progress, 209–210 
BGM, host resistance inheritance, 207–208 
BGM, QTL mapping, 208 
Botrytis gray mold (BGM), causal agent, 207 
cultivation, 201 
Foc, causal agent, 204–206 
Foc, gene mapping, 207 
Foc, host resistance, 206–207 
Fusarium wilt (Foc), breeding progress, 211 
future prospects, 213–214 
genetic resources, breeding progress, 209 
integrated disease management, 212–213 
key diseases, resistance/tolerance sources, 210t 
MAS breeding programs, 201 
other diseases, 211–212 
resistance genes introgression progress, 212 
rust, causal agent, 208 
rust, host resistance, 208–209 
rust, QTL mapping, 208–209 
common bean, resistance to anthracnose 
C lindemuthianum, 152–153, 153f 
C lindemuthianum, resistance specificities directly/indirectly located in genetic map, 163–171, 164t 
Co-7 gene, 171 
Co-8 gene, 171 
Co-11 gene, 171–172 
Co-12 gene, 172 
Co-14 gene, 172 
Co-genes tagging with molecular markers, 161, 162t 
future prospects, 175–176 
gene nomenclature implication, 175 
genes conditioning resistance to C lindemuthianum, historical review, 158, 159t 
genes conferring resistance, modes of action, 157 
genetic analysis implication, 174–175 
genetic linkage map, common bean, 161, 163 
genomic organization, 172–174 
incompletely characterized resistance genes, 171–172 
linkage analysis, 160–161 
linkage group Pv01, 164–166 
linkage group Pv02, 166, 173 
linkage group Pv03, 166 
linkage group Pv04, 166–168, 173 
linkage group Pv07, 168–170 
linkage group Pv08, 170–171, 174 
linkage group Pv11, 171, 174 
linkage relationship use, 163 
pathogenic variability, 154–156, 155t 
pathogenic variability evolution, 156–157 
plant breeding implication, 175 
plant pathogen interaction, 151–152 
resistance to C lindemuthianum, classical genetic analysis, 158–160 
test response to pathogen methods, reaction score, 154 
test response to pathogen methods, resistance tests, 153–154 
cowpea, modern breeding for biotic stress resistance 
adoption challenges, 194–195 
cowpea aphid resistance markers, 192–193 
cultivars fingerprinting, other prospective parents, 188–189 
cultivation, MAS breeding schemes, 183–185 
genetic marker resources, 189–191, 190t 
genetically modified cowpea for control of Maruca pod borer, cowpea weevil, 192–193 
high quality consensus genetic map, 187–188, 188f 
high-throughput SNP genotyping platform, 186–187, 188t 
introgression of Striga resistance, simple sequence repeat (SSR) makers, 185–186 
MAS for pyramiding multiple pest, disease resistance traits, 195–196 
other insects resistance, markers, 192–193 
outsourced genotyping, 196–197 
phenotyping challenges, 195 
single nucleotide polymorphism (SNP) genotyping, 186
Striga weed resistance markers, 192
tools, genetic resources, 194, 194f
viruses resistance markers, 191–192

Fusarium head blight (FHB)
agronomic measures, 46
Fusarium ear blight (FEB), 45
genomics assisted breeding, 48
mapped QTL for, 47–48
MAS for FHB resistance QLT, European winter wheat, 57
MAS for improving FGB resistance, tetraploid wheat, 57–58
MAS for major FHB resistance gene Fhb1, 47, 54–55
MAS for QTL other than Fhb1 and MAS for multiple QTL simultaneously, 55–57
mycotoxins and, 45–46
occurrence, epidemics, 46
QTL validation, maker-assisted germplasm, 48, 49–53
t Quantitative trait loci (QTLs) for, 3
resistant breeding approach, 47
review articles, 46

lettuce, marker-assisted selection (MAS) for disease resistance
bacterial leaf spot, 279
dowymildew, 270–273, 271f
economically important diseases, 268–267
Fusarium wilt, 277–278
genome study, 279–280
lettuce anthracnose, 278
lettuce dieback, 274–275
lettuce drop, 278–279
lettuce mosaic virus (LMV), 271f, 274
LMV, assay for MAS, 282, 283f
mapped resistance genes, 275–279
mapped resistance genes, QTLs, 272f
MAS in private sector, 274–275
MAS with high-resolution DNA melting (HRM) assays, 281, 281f
molecular markers, MAS, 269–270, 271f
powdery mildew, 276–277
seven lettuce types, 268f
Turnip mosaic virus (TuMV), 276
verticillium wilt, 275–176

maize, genetic basis of disease resistance
Bacillus thuringiensis (Bt), 39
breeding for disease resistance, 37–39
disease resistance quantitative trait loci (dQTL), 34
diseases of maize, 32–33
genetic architecture, biological insights, 33–37
genome-wide association studies (GWAS), 35
Genomic selection (GS), 37–38
multiple disease resistance (MDR), 35–36
nested association mapping (NAM) population, 35
overview, 31–32
peanut, MAS for biotic stress resistance
aflatoxin resistance, 141
aphids resistance, 140–141
Arachis genetic linkage maps, molecular markers, 129–130
Arachis genus, 126–128
Arachis hypogaea origin, 128
crosses involving wild species, maps, 130–131
cultivated x cultivated crosses, genetic maps, 131–132
genetic structure of peanut, 126–128
identified QTLs, 125
introgression pathways, 128–129
leaf spot resistance, breeding, 137–138
leaf spot resistance, etiology, 136
leaf spot resistance, markers, 138–139
nematode resistance, breeding, 134
nematode resistance, etiology, 133–134
nematode resistance, markers use in selection, 134–136
peanut trade, use, 126
resistant gene analogs, 132–133
Sclerotinia blight, 141–142
section Arachis, 126–128
SNP-based maps, 132
tomato spotted wilt virus (TSWV), 141
potato, late blight resistance
breeding history, 222–225
crop losses, 222
Phytophthora infestans, 222
Phytophthora infestans, resistance sources, 225–233, 232f
potato cultivation, 221–222
Potato Rpi genes, genetic map, 232f
R genes, 226
potato, late blight resistance (Continued)

R1, 226–227
R2, 227–228
R3, 231–233
race-non-specific resistance, 224–225
race-specific resistance, 223
RB/Rpi-blb1, 229–230
Rpi1, 229
Rpi-ber, 231
Rpi-blb2, 228–229
Rpi-mcq1, 230–231
Rpi-phu1, 230

rice, bacterial blight (BB) resistance
breeding for, 24–25
conclusion, future prospects, 25
disease management, agronomic practices, 24
disease, pathogen, 11–13, 12f
fine-mapped MR genes, 16t, 21
molecular mechanisms, gene-mediated resistance
to Xoo, 15, 16t, 17–18
qualitative resistance, other genes contributing to, 23–24
qualitative resistance to Xoo, 15, 16t, 17–21
quantitative resistance to Xoo, 21, 22f, 23–24
resistance QTLs, characterized genes contributing to, 23
rice resistance QTLs to Xoo, physical map, 22f
Xa1, 15, 16t
Xa3/Xa26, 15, 16t, 17–18
xa5, 16t, 18–19
xa13, 16t, 19
xa21, 16t, 19–20
xa25, 16t, 20–21
xa27, 16t, 21
Xanthomonas oryzae pv. oryzae (Xoo), 12–13
Xoo pathogenicity, 13
Xoo resistance, 14–15

sorghum, Striga resistance
bioassay development, resistance mechanisms, 77, 79–81
cereal production and, 77–78
crop damage, 77–78
current technologies, strategies, 89–90
genomics approaches, 79
genomics advances, applications, 87–89
germination stimulants, 78
host-parasite biology, pathway stages, 81–82
integrated management practices, 78–79
 invitro growth systems, 80
parasitism monitoring, 80–81
QTL analysis, marker-assisted selection, 83–84
recent marker-assisted backcrossing (MABC), 84–85
sorghum simple sequence repeat (SSR), 85, 86t, 87–89
Striga diversity, racial differentiation, resistance
breeding implications, 82–83

soybean, nematode resistance
breeding strategy, variety development, 111–112
diseases, pests, 96
future research prospects, 117
genes cloned by map-based cloning, 107
genetic marker advances, 95
genomics-based crop improvement, 115–116
H. glycines, genetic variation for virulence, 100–101
H. glycines nematode life-cycle, parasitic biology, 99–100, 99f
host genes, 107–109
host-nematode interaction, 109–111, 109f, 110f
indicator lines for HG Type classification, 101t
new resistance cultivars, 96–97
other omics-based crop improvement, 116
reniform nematode (RN), 98–99
resistance to multiple species, 115
RKN life cycle, genetic variation for virulence, 103–104
RKN life cycle, parasitic biology, 103
RKN, QTL mapping, 104–105
RN life cycle, genetic variation for virulence, 105–106
RN life cycle, parasitic biology, 105
RN, QLT mapping, 106–107
root-knot nematodes (RKN), 97–98, 114–115
sources of resistance to SCN, QTL mapping, 101–103
soybean cyst nematode (SCN), 97, 101t, 113–114
soybean origins, 95–96
transcriptions analysis, 107–109
transgenic approaches, 116–117
tomato, light blight (LB)
crop species origin, production, 241–243
cultivated species, genetic diversity, 243–244
cultural practices, 251
disease control, 250–253
disease cycle, development, 245–247, 246f
fungicide application, 251–252
future prospects, genomic resources in P. infestans, 260–261
future prospects, genomic resources in tomato, 259–260
genetic resistance, breeding for resistance importance, 252–253
host plant defense, 246f, 249–250
LB, historical significance, 244–245
LB resistance, early studies, 253–254
LB resistance research implications, 257–259
LB resurgence, additional resistance genes and QTLs identification, 254–256
new LB-resistance genes, discovery and identification, 256–257
other breeding challenges, 257
P. infestans pathogenesis, 246f, 247–248
P. infestans symptoms, progression, 248–249
resistance sources, LB resistance breeding, 253–259, 255f
sustainable strategy, 261–262
tomato significance, 242–243