Index

abcentricity, 28
age
 breast height, 59, 109
 growth effective, 101–102
 stand, 55–57, 116
 tree, 94–95, 102, 106, 109
Akaike’s information criterion, 281
APA. see area potentially available
area potentially available, 25, 27–28, 33
artificial neural networks, 149
Bayesian information criterion, 281
Bayesian statistics, 292
Beer-Lambert equation, 228–229
Bertalanffy equation, 56, 60
best linear unbiased predictions, 132
biological realism, 296, 297, 299–303
biomass, 130–131
 belowground, 131
 branch, 131
 foliage, 131
BIOME-BGC, 242, 250–251
bole surface area, 22
CABALA, 11, 240, 262
CACTOS, 35, 51, 79, 90, 102, 108, 314
calibration, model, 249, 307–308
California Climate Action Registry, 9
CAPSIS, 317
carbon allocation, 236–238, 241–242
carbon sequestration, 9
CC_{66}. see crown closure at 66% of tree height
CCF. see crown competition factor
CCFL. see crown competition factor
 in larger trees
CCH. see crown closure at top of tree
CC_{p}. see crown closure at percent of tree height
CENTURY, 244–245
CenW, 11, 244–245, 251
Chicago Climate Exchange, 9
Clark and Evans index, 22
classification and regression trees, 149
climate change, 9
climate-vegetation potential, 50
cohort models, 67
combined prediction methods, 181–182
compatible growth and yield equations, 56–58
competition, 15–36, 74, 76, 86, 259
 aboveground, 15
 belowground, 15
 components of, 15
 distance-dependent, 22, 24–31, 72, 111
 distance-independent, 16–22, 23–24, 111
 interspecific, 15
 intraspecific, 15
 one-sided, 15–16, 22–31, 72, 86, 96
 relative measures, 23–24
 two-sided, 15, 16–22, 72, 86, 96
competition indices, 90
 area potentially available, 25, 27–28, 33
 basal area in larger trees, 23, 90, 96, 102, 104, 136
 competitive influence zones, 25, 27, 72
 crown competition factor, 21, 79, 94–95, 96–97, 102, 111, 147, 163–165, 192
 in larger trees, 23, 79, 97, 134–135
 crown interference, 72
 Curtis’ relative density, 18–10
 growing space, 27–28
 light-interception, 25, 30–31, 72
 limitations, 31–35
 open-sky view, 25, 28–29, 72
 percentile in distribution, 24
 point density, 22
 predictive power, 32
 relative density, 18–19
 sample design, 34–35
 size-distance relationships, 24–26
 stand density, 18–20
 tree-area ratio, 21
 virtual-reverse-cone, 77
computer interface, 317–318
conductance
 leaf and canopy, 235
CONIFERS, 83, 162, 192–193, 317
constrained prediction methods, 180–181
copulas, 314
CORONA, 230
CR. see crown ratio
CROBAS, 12, 259–260, 319
crown
 area, 105–108
 largest width, 123–125
 length, 109, 119–123, 259
 maximum width, 123–124
 profile, 123–127
 ratio, 83, 90, 94–95, 96, 102, 104, 109, 119–123
 recession, 108–114
 shape models, 76–77, 123–127
 surface area, 76, 131, 259
 width, 96, 123–127
 crown class, 55, 90
 crown closure
 at 66% of tree height, 23, 90, 97, 104
 at percent of tree height, 23, 97, 104, 109
 at top of tree, 23, 97, 104, 146, 192
 crown competition factor, 21, 94–95, 96–97, 102, 111, 147, 164–166, 192
 in larger trees, 23, 96, 134–135
 crown volume
 foliated, 73
data
 edge effects, 274
 empirical, 7
 fixed vs variable radius plots, 78
 for implementing models, 312–314
 increment cores, 267
 for initialization of models, 314–315
 management, 278
 measurements, 275–277
 errors, 277–279
 mining techniques, 281
 missing values, 132–136
 mortality, 149
 permanent plots, 271–279
 plot configuration, 272–274
plot network design, 271–272
plot size, 78, 272–274
quality, 7, 119
requirements, 266–279
sample size requirements, 148–149
stem analysis, 42, 266
stem location, 276
temporary plots, 267–271
variability, 267–270
DAYMET, 49, 248
DBH. see diameter at breast height
DEM. see digital elevation models
density
Curtis’ relative, 18–19
point, 22
relative, 17
stand, 16, 59, 94–95, 103, 140, 200, 202
deterministic
model, 4
DF.HGS, 240, 258–259
DFSIM, 11, 35, 51, 57–58, 188
diameter
average, 55, 91
at breast height (DBH), 17, 85, 90, 94–95, 97, 102, 109, 116–117, 134–136, 193–194
class, 61–65, 66–67
increment, 86, 87–100
measurement, 275
minimum, 81
potential increment, 89–92
quadratic mean, 18, 59, 102, 109, 140, 194, 195
realized increment, 92–100
relative, 96
relative increment, 88
diameter-class models, 66–67
diameter distributions
parameter prediction, 170–173
parameter recovery, 170–173
differential equations, 56
digital elevation models, 49, 52, 248
disaggregation methods, 174–180
distance-dependent models, 70–77
distribution methods
parameter prediction, 170–173
parameter recovery, 170–173
distributions
Johnson’s S_B, 171
Weibull, 171–173
DLL. see dynamic link libraries
doubling, 80
dynamic link libraries, 304–305
eccircularity, 28
Eichorn’s effect, 301
empirical
data, 7
model, 2
yield tables, 55
ENVISION, 318
equation
additive fertilization effects, 210, 214, 218
additive thinning effects, 199–204
Akaike’s information criterion, 281
allometric, 115
Bayesian information criterion, 281
Beer-Lambert, 228–229
Bertalanffy, 56, 60, 86
biomass, 130–131
branch recession, 111
Chapman-Richards, 116
crown profile, 135
crown ratio, 136
crown recession, 108–114
diameter increment modifier, 90–91
genetic gain multipliers, 190
Gompertz, 86
height-diameter, 115–119, 134
height to crown base, 134
individual-tree-level mortality, 142–148, 152–153
individual-tree static, 115–137
largest crown width, 135
logit link, 285
maximum crown width, 134, 136
mean bias, 280
model form, 279–281, 297, 298
equation (Continued)
multiplicative fertilization effects, 209–210, 213, 218
multiplicative thinning effects, 195–202
net primary production, 260
photosynthesis, 231
potential diameter increment, 88–93
potential height, 101–105
potential height modifier, 102
potential × modifier, 89–92, 101–105
limitations, 92
realized diameter increment, 92–100, 112–113
realized height increment, 105–108, 112–113
Richards, 86
root mean square error, 280
seedling ground line diameter, 257
sigmodal forms, 86
soil water holding capacity, 239
stand-level mortality, 142, 152–153
stem taper, 127–130
stem volume, 127–130, 135
stomatal conductance, 234–235
treated vs untreated, 184
equivalence tests, 306
even-aged stands, 19, 55
expansion factor, 19, 69–70, 79–80
fertilization, 208–221
FIBER, 11, 35, 51, 65, 152, 188
foliage clumpiness, 229–230
foliage distribution, 228–231
effects on light interception, 229–231
foliar volume, 73
Forest-BGC, 11, 240–243
forest vegetation simulator
see FVS
FORGRA, 167
Furnival’s index, 282
FVS, 19, 66, 79, 84, 90, 92, 102, 107, 108, 154, 167, 190, 192, 205, 254, 267, 312, 313, 315, 317–318, 319
GADA. see generalized algebraic difference approach
gap
model, 2, 5
Gaussian integration, 232
GEA. see age, growth effective
generalized algebraic difference approach, 43–44, 57, 289–290
generalized matrix models, 64
genetic improvement, 82
gain multipliers, 189–190
geographic information systems, 248
GIS. see geographic information systems
graphical user interface, 82, 317–318
gross primary production, 236, 243, 260–261, 315
growth, 1, 85
annual, 79
branch, 73
height, 73
periodic, 79
relative, 175
growth intercept, 46
GUI. see graphical user interface
habitat type, 44–45, 98
harvesting effects, 162–163, 222–224
heat sum index, 90
height
average, 59, 102
crown base, 120, 267, 271
diameter equations, 115–119
dominant and top, 21, 90, 94–95, 101, 102, 116
effects of measurement errors on site index, 40
growth, 73
increment, 86, 102–107
measurement, 275
potential increment, 101–105
realized increment, 105–108
relative, 96, 102
tree, 85, 94–95, 102–108, 115–119, 134–136, 267
height-age equations, 42
height to crown base measurement, 275
hybrid model, 2, 5, 6, 8, 157, 253–264
allometric, 259–262
comparison to statistical models, 263
physiological derived covariates, 254–257
types, 254–262

imputation
most similar neighbor, 163
increment, 1, 85
basal area, 88, 93
bole volume, 73
cores, 267
cross-sectional area, 74
at base of live crown, 74
diameter, 86, 87–100, 93, 269
distribution of radial, 74
height, 86, 101–108
potential diameter, 89–92
potential height, 101–105
radial, 73, 270
realized diameter, 92–100
realized height, 105–108
relative diameter, 88
ingrowth. see recruitment
interface
computer, 317–318

IVY, 257

JABOWA, 12, 89
Johnson’s S_B distribution, 171

Langsaeter’s hypothesis, 301
largest crown width, 123–125
leaf area index, 228, 242, 247, 250
Leslie matrices, 64

LiDAR. see light detection and ranging
light
extinction coefficient, 228–229
interception, 228–231, 241–242
light detection and ranging, 72, 75, 84, 248, 315
linked stand and size-class models, 169–172
linked stand and tree-level models, 174–182
additive, 178
combined prediction methods, 181–182
constrained prediction methods, 180–181
disaggregation methods, 174–180
proportional growth, 176
proportional yield, 176
LMS, 318
L-VIS, 319

MAESTRO, 230, 254–256
MAI. see mean annual increment
Markov chain, 60, 64, 249
matrix models, 64–66
maximum crown width, 123–124
maximum size-density, 18
mean annual increment
maximum, 45–46
mean bias, 280
mechanistic
model, 2
MELA, 19
MGM, 94, 102, 106
missing values
prediction, 132–136
mixed effects models, 287–289
best linear unbiased predictions, 287
mixed species stands, 19, 97
model benchmarking
equivalence tests, 306
error characterization, 307
nonparametric tests, 306
observed vs predicted observations, 305
statistical tests, 305–306
model calibration, 249, 295–309, 307–308
model criticism, 298–305
model evaluation, 279–281, 295–309
adaptability, 304–305
Akaike’s information criterion, 281
Bakuzis matrix, 300
Bayesian information criterion, 281
model evaluation (Continued)
biological realism, 296, 297, 299–303
compatibility, 303
criteria, 295–296, 297
Eichorn’s effect, 301
equation form and parameterization, 296–297, 298
Langsaeter’s hypothesis, 301
mean bias, 280
model benchmarking, 305–309
model criticism, 296–297
model simplicity, 298–299
prediction comparison, 302
Reineke’s self-thinning rule, 301
reliability, 303
root mean square error, 280
selecting components, 295–296
-3/2 self-thinning rule, 301
sensitivity analysis, 303–304
size-density trajectory, 301
Sukachev effect, 301
variable selection, 298–299
yield-age effect, 301
model form, 279–281, 297–298
potential × modifier, 35
realized, 35
model implementation and use, 311–320
model output, 319–320
model resolution, 169–182
apparent, 169
functional, 169
linked stand and size-class models, 169–172
linking models of different resolution, 169–182
stand and tree-level models, 174–181
model(s)
classification, 2–6
components, 7
crown shape, 76–77
definition, 1
deterministic, 4
development, 7–8
distance-dependent, 70–77
dynamic recruitment, 164–166
empirical, 2
gap, 2, 5, 6, 8, 157
hybrid, 2, 5, 6, 8, 157, 253–264
initialization, 132–136
mechanistic, 2
mechanistic mortality, 148
parameter prediction, 170–173
parameter recovery, 170–173
for prediction, 7
process-based, 2, 4, 5, 6, 8, 115, 157, 227–252, 255
recruitment, 163–166
regeneration, 161–163
seeding, 158–161
size-class, 6, 53, 61–67
statis recruitment, 163–164
statistical, 2, 5, 6, 8, 157
stochastic, 4, 73, 80, 124–125, 157, 306
stochastic mortality, 72
tree-level, 6, 69–84, 174–181, 255
for understanding, 7
uses, 5, 8–13
validation, 7–8
model sensitivity, 249, 250–251
MODIS, 315
Monte Carlo simulation, 249
mortality, 139–155, 241–242
data requirements, 148–149
individual tree, 73, 75, 83, 142–148
individual-tree-level equations, 142–148, 152–153
irregular, 139
mechanistic models, 148, 241–242
probability, 143–146
regular, 139
stand-level, 61–63, 64, 65, 66–67, 127, 140–142, 259
stand-level equations, 142, 152–153
stochastic models, 72, 80
tree- and stand-level factors, 144–145
most similar neighbor, 163
MOTTI, 107
NED, 318
net ecosystem production, 258
net primary production, 236, 243, 249, 256, 257, 260–261
NIRM, 91
nitrogen index, 91
nonparametric statistics, 292–293
nonparametric tests, 306
normal yield tables, 54–55
NuCM, 240
NUTREM, 239–240

Occam’s principle of parsimony, 7, 298–299

parameter estimation, 281–294
annualization, 293–294
Bayesian, 292
best linear unbiased, 283
Furnival’s index, 282
generalized algebraic difference approach, 289–290
generalized linear regression, 285–287
log bias, 282
maximum likelihood estimates, 282
mixed effects models, 287–289
moment-based, 171–172
nonparametric, 292–293
percentile, 171–172
quantile regression, 285
receiver operator curve, 286
regression, 282–285
simultaneous equations, 56
systems of equations, 290–292
unbiased, 283
uniformly minimum variance unbiased, 283

parameterization
process-based models, 249–250
parameter prediction, 170–173
parameter recovery, 170–173, 314
3-PG, 11, 253, 260–262
photosynthesis, 231–233, 241–242, 259
physiographic class, 91
PICUS, 160, 161
pipe model theory, 237–238, 259
plant indicators in forest productivity, 44–45
plots
permanent, 271–279
temporary, 267–271
PnET-II, 258
physiological derived external modifiers, 258–259
Pressler’s hypothesis, 73
process-based models, 2, 4, 5, 6, 8, 115, 157, 227–252, 255
carbon allocation, 236–238
initialization, 247–249
key processes, 228–240
light interception, 228–231, 241–242
limitations, 247–251
parameterization, 249–250
photosynthesis, 231–233, 241–242
respiration, 235–236, 241–242
scale, 250
sensitivity, 250–251
soil water and nutrients, 238–240, 241–242
stomatal conductance, 233–235, 241–242
production
gross primary, 236, 243, 260–261, 315
net ecosystem, 258
net primary, 236, 243, 249, 256, 257, 260–261
PROGNAUS, 12, 35, 51, 71, 81–82, 107, 113, 136, 153, 154, 181, 188, 203
Prognosis, 94–95, 105, 106
PTAEDA2, 254–256
QMD. see diameter, quadratic mean
radiation use efficiency, 233, 260–261
receiver operator curve, 286
recruitment, 157
dynamic models, 164–166
influence of threshold diameter, 165
models, 163–166
static models, 163–164
regeneration, 157
models, 161–163
regression, 282–285
assumptions, 282–285
autoregressive error structure, 284
effects of measurement errors, 283
generalized least squares, 282
generalized linear, 285–287
logistic, 143, 148–150
logit link, 285
log-transformation, 282
multi-collinearity, 284
ordinary least squares, 282
Poisson, 285–286
quantile, 285
seemingly unrelated equations, 290–292
three-stage least squares, 291–292
trees, 149
two-stage least squares, 291–292
variance inflation factor, 284
weighted, 284–285
Reineke’s self-thinning rule, 301
relative density
Curtis’, 18–19
resolution
linking models of different, 169–182
spatial, 4, 6, 316–317
temporal, 4, 315–316
respiration, 235–236, 241–242
root mean square error, 280
RUE. see radiation use efficiency
-3/2 rule of self thinning, 18
RVMM, 83
sampling design
edge effects, 274
fixed vs variale radius plots, 78, 271
plot network design, 271–272
plot size, 78, 272–274
plot stratification, 271–272
rectangular vs. circular plots, 272
sample error, 278–279
sapwood area, 131
Scube, 12, 35, 51, 152, 188
SDI. see stand density index
seed dispersal, 160
seed germination, 160–161
seeding, 157
flowering and pollination, 158
models, 158–161
seed dispersal, 160
seed germination, 160–161
seed production, 158–160
seed production, 158–160
self-thinning, 18, 140
trajectories, 140
-3/2 self-thinning rule, 301
sensitivity
model, 249, 250–251
sensitivity anaylysis, 303–304
shade tolerance, 108, 141
SILVA, 12, 26, 35, 51, 71, 76–81, 153, 188
silvicultural interventions, 73–74, 82,
183–225
combined effects, 221–222
early stand treatments, 191–193
fertilization, 208–221
 genetic gain multipliers, 189–190
 genetic improvement, 82, 188–190
harvesting, 222–223
mortality effects, 191
pre-commercial thinning, 163
stand-level effects of thinning, 194–202
stand-level genetic effects, 188–189
thinning, 193–208
tree-level effects
genetic effects, 189–190
of thinning, 202–208
vegetation control, 191
SILVISO, 319
SIMEX algorithm, 283
single species stands, 19, 55, 140
single-tree models, 70–77
site index, 38–44, 56, 76, 79, 90–91, 94–95, 98,
102, 105, 121, 142, 162–163
anamorphic equations, 43, 134
base age, 43
dominant height - age, 40–41
estimation in uneven-aged stands, 39–40
generalized algebraic difference approach, 43–44
genetic effects, 188–189
guide curves, 42
individual tree height - age, 39–40
influence of height damage, 42
influence of silviculture, 40
limitations, 39–41
polymorphic equations, 42–43
stem analysis, 42
variation over time, 40
site productivity, 37, 55, 74, 76, 86, 98, 105, 106
biophysical site index, 49–50
climatic measures, 49–50, 76, 79, 99
direct vs. indirect measures, 37
geocentric measures, 37, 47–52, 79, 99
growth intercept, 46
habitat type, 44–45, 99, 106
height-index diameter, 46
individual tree growth measures, 46–47
maximum mean annual increment, 45–46
physiographic measures, 48–49, 79, 91, 99
phytocentric measures, 37–47
plant indicators, 44–45
site index, 38–44, 56, 66, 90–91
soil measures, 50–52, 99
topographic measures, 48–49, 52, 76, 99
yield-based measures, 46
size-class models, 6, 53, 61–67, 169–172
cohort, 67
diameter-class, 66–67
matrices, 64–66
silvicultural interventions, 188
stand table projection, 61–64
size-density
maximum, 18, 140
trajectory, 301
soil drainage index, 91
SORTIE, 12, 29, 160
spacing
 relative, 21–22, 96
spatial
 resolution, 4, 6, 69–70, 80
species
 basal area, 94–95
SPS, 95, 102
Spurr’s point density index, 22
STAG, 314
Stage’s percentile in distribution index, 24
STAND-BGC, 254
stand density, 16, 59, 94–95, 102, 140, 199, 202
 management diagrams, 18, 20
stand density index
 additive, 19, 92
 maximum, 18
 Reineke’s, 18–19
 specific gravity weighted, 19
stand structure
 generators, 77
stand table projection, 61–64
 limitations, 62–64
 modified, 173–174
 movement ratio, 62
state-space models, 59–61
statistical, model, 2, 5, 6, 8, 157
stem analysis, 42, 266
STEMS, 79, 90, 92, 164, 258
stochastic, model, 4, 73, 80, 124–125, 157, 306
stocking, 16
 average, 21
 full, 21
stomatal conductance, 233–235, 241–242
STRUGEN, 77, 318
Sukachev effect, 301
support vectors, 149
Suppose, 317
suppression index, 199
sustainability, long-term, 9
SVS, 318
Swiss needle cast, 82
SYSTEM-1, 83
systems of equations, 59, 290–292

tabular approaches, 163
taper, 127–130
TAR. see tree-area ratio
TASS, 12, 35, 51, 71, 72–76, 188, 190
temporal, resolution, 4
thinning, 193–208
from above, 193
from below, 193
crown, 193
free, 193
pre-commercial, 163
row, 193
shock, 194
strip, 193
TIPSY, 75, 190
tolerance, shade, 108
TPH. see stand density
TRAGIC + + , 317, 319
transition matrix models, 61
tRAYci, 230, 257
tree
age, 79
vigor, 79, 86
tree age
effects of measurement errors on site
index, 40
tree-area ratio, 21
TREE-BGC, 242
tree-level models, 6, 69–84, 174–181, 255
fertilization effects, 216–221
silvicultural interventions, 188
single-tree, distance-dependent, 70–77
thinning effects, 202–208
tree-list, distance-independent, 77–83, 139
tree-list models, 77–83
components, 78–79, 85–114
crown recession, 107–111
diameter increment, 87–100
growth prediction, 79
height increment, 101–107

key processes, 77–81
mortality prediction, 79–80
plot size influences, 78
record doubling, 80
record tripling, 80
spatial resolution, 80
stochastic predictions, 80
use of expansion factors, 79
trees per ha. see stand density
TREEVIEW, 318
tripling, 80, 81
two-stage prediction approach, 110, 151

understory
cover percent, 106
height, 106
uneven-aged stands, 55, 66
Usher matrices, 64
variable density yield tables, 55
variable selection, 298–299
variation explained
 diameter increment, 96–97
visualization
 landscape, 77, 319
 stand, 74, 77, 83, 124, 315, 318–319
VIZ4ST, 315, 318
volume
 foliar, 73
 stand, 22, 55, 59
 tree, 55, 59–61, 127–131
Weibull distributions, 171–173
whole-stand models, 6, 53–61, 169–172, 174–181, 255
compatible growth and yield equations, 56–58
empirical yield tables, 55
fertilization effects, 208–216
genetic effects, 188–189
normal yield tables, 54–55
silvicultural interventions, 188
state-space, 59–61
systems of equations, 59
thinning effects, 194–202
transition matrices, 61
variable density yield tables, 55
yield tables, curves, and equations, 54–56
Woodstock, 317

yield
table projection, 55
tables, curves, and equations, 54–56
yield-age effect, 301
ZELIG, 160