CONTENTS IN BRIEF

1 Introduction 1
2 Forecasting and Demand Modeling 5
3 Deterministic Inventory Models 29
4 Stochastic Inventory Models 63
5 Multi-Echelon Inventory Models 117
6 Dealing with Uncertainty in Inventory Optimization 143
7 Facility Location Models 183
8 Dealing with Uncertainty in Facility Location 209
9 Process Flexibility 241
10 The Bullwhip Effect 255
11 Supply Chain Contracts 277
12 Auctions 305
Appendix A: Multiple-Chapter Problems 321
Appendix B: How to Write Proofs: A Short Guide 327
Appendix C: Helpful Formulas 337
Appendix D: Lagrangian Relaxation 341
Bibliography 349
CONTENTS

List of Figures xvi
List of Tables xxi
Preface xxiii

1 Introduction 1
 1.1 Overview of Supply Chain Management 1
 1.2 Levels of Decision Making in Supply Chain Management 3
 1.3 Applications of Supply Chain Management 3

2 Forecasting and Demand Modeling 5
 2.1 Introduction 5
 2.2 Classical Demand Forecasting Methods 6
 2.2.1 Moving Average 6
 2.2.2 Exponential Smoothing 7
 2.2.3 Linear Regression 10
 2.3 Demand Modeling Techniques 11
 2.4 Bass Diffusion Model 12
 2.4.1 The Model 13
3 Deterministic Inventory Models

3.1 Introduction to Inventory Modeling
 3.1.1 Why Hold Inventory?
 3.1.2 Classifying Inventory Models
 3.1.3 Costs
 3.1.4 Inventory Level and Inventory Position
 3.1.5 Roadmap

3.2 Continuous Review: The Economic Order Quantity Model
 3.2.1 Problem Statement
 3.2.2 Cost Function
 3.2.3 Optimal Solution
 3.2.4 Sensitivity to Q
 3.2.5 Order Lead Times
 3.2.6 Power-of-Two Policies
 3.2.7 The EOQ with Quantity Discounts
 3.2.8 The EOQ with Planned Backorders

3.3 Periodic Review: The Wagner-Whitin Model
 3.3.1 Problem Statement
 3.3.2 Dynamic Programming Algorithm
 3.3.3 Extensions
 Problems

4 Stochastic Inventory Models

4.1 Preliminaries
4.2 Demand Processes
4.3 Continuous Review: (r, Q) Policies
 4.3.1 Problem Statement
 4.3.2 Approximate Model with Continuous Distribution
4.3.3 EOQB Approximation 73
4.3.4 Exact Model with Discrete Distribution 73

4.4 Periodic Review with Zero Fixed Costs: Base-Stock Policies 75
4.4.1 Base-Stock Policies 76
4.4.2 Single Period: The Newsvendor Model 76
4.4.3 Finite Horizon 85
4.4.4 Infinite Horizon 88

4.5 Periodic Review with Non-Zero Fixed Costs: \((s, S)\) Policies 90
4.5.1 \((s, S)\) Policies 90
4.5.2 Single Period 91
4.5.3 Finite Horizon 91
4.5.4 Infinite Horizon 92

4.6 Policy Optimality 95
4.6.1 Zero Fixed Costs: Base-Stock Policies 95
4.6.2 Non-Zero Fixed Costs: \((s, S)\) Policies 100
Problems 107

5 Multi-Echelon Inventory Models 117

5.1 Introduction 117
5.1.1 Multi-Echelon Network Topologies 118
5.1.2 Stochastic vs. Guaranteed Service 120

5.2 Stochastic Service Models 121
5.2.1 Serial Systems 121
5.2.2 Exact Approach for Serial Systems 122
5.2.3 Heuristic Approach for Serial Systems 124
5.2.4 Other Network Topologies 125

5.3 Guaranteed Service Models 127
5.3.1 Introduction 127
5.3.2 Demand 128
5.3.3 Single-Stage Network 128
5.3.4 Serial Systems 130
5.3.5 Tree Systems 132
5.3.6 Solution Method 134
Problems 139

6 Dealing with Uncertainty in Inventory Optimization 143

6.1 Introduction 143
6.2 The Risk-Pooling Effect 143
6.2.1 Overview 143
6.2.2 Problem Statement 144
6.2.3 Decentralized System 144
6.2.4 Centralized System 145
6.2.5 Comparison 145
6.2.6 Magnitude of Risk-Pooling Effect 146
6.2.7 Final Thoughts 148

6.3 Postponement 148
6.3.1 Introduction 148
6.3.2 Optimization Model 149
6.3.3 Relationship to Risk Pooling 150

6.4 Transshipments 151
6.4.1 Introduction 151
6.4.2 Problem Statement 152
6.4.3 Expected Cost 153
6.4.4 Benefits of Transshipments 156

6.5 Introduction to Supply Uncertainty 158

6.6 Inventory Models with Disruptions 159
6.6.1 The EOQ Model with Disruptions 160
6.6.2 The Newsvendor Problem with Disruptions 163

6.7 Inventory Models with Yield Uncertainty 167
6.7.1 The EOQ Model with Yield Uncertainty 168
6.7.2 The Newsvendor Problem with Yield Uncertainty 170

6.8 The Risk-Diversification Effect 171
6.8.1 Problem Statement 171
6.8.2 Notation 172
6.8.3 Optimal Solution 172
6.8.4 Mean and Variance of Optimal Cost 172
6.8.5 Supply Disruptions and Stochastic Demand Problems 174

7 Facility Location Models 183

7.1 Introduction 183
7.2 The Uncapacitated Fixed-Charge Location Problem 185
7.2.1 Problem Statement 185
7.2.2 Formulation 186
7.2.3 Solution Methods 188
7.2.4 Lagrangian Relaxation 189
7.2.5 Capacitated Version 197
7.3 A Multi-Echelon, Multi-Commodity Model 198
 7.3.1 Introduction 198
 7.3.2 Problem Statement 199
 7.3.3 Formulation 200
 7.3.4 Lagrangian Relaxation 201
 Problems 202

8 Dealing with Uncertainty in Facility Location 209
 8.1 Introduction 209
 8.2 The Location Model with Risk Pooling 210
 8.2.1 Introduction 210
 8.2.2 Problem Statement 211
 8.2.3 Notation 211
 8.2.4 Objective Function 212
 8.2.5 NLIP Formulation 213
 8.2.6 Lagrangian Relaxation 214
 8.2.7 Column Generation 221
 8.3 Stochastic and Robust Location Models 223
 8.3.1 Introduction 223
 8.3.2 The Stochastic Fixed-Charge Location Problem 224
 8.3.3 The Minimax Fixed-Charge Location Problem 226
 8.4 A Facility Location Model with Disruptions 228
 8.4.1 Introduction 228
 8.4.2 Notation 230
 8.4.3 Formulation 232
 8.4.4 Lagrangian Relaxation 233
 8.4.5 Tradeoff Curves 235
 Problems 236

9 Process Flexibility 241
 9.1 Introduction 241
 9.2 Flexibility Design Guidelines 243
 9.3 A Process Flexibility Optimization Model 247
 9.3.1 Formulation 247
 9.3.2 Lagrangian Relaxation 249
 Problems 251
10 The Bullwhip Effect

10.1 Introduction

10.2 Proving the Existence of the Bullwhip Effect

10.2.1 Demand Signal Processing

10.2.2 Rationing Game

10.2.3 Order Batching

10.2.4 Price Speculation

10.3 Reducing the Bullwhip Effect

10.3.1 Demand Signal Processing

10.3.2 Rationing Game

10.3.3 Order Batching

10.3.4 Price Speculation

10.4 Centralizing Demand Information

10.4.1 Centralized System

10.4.2 Decentralized System

Problems

11 Supply Chain Contracts

11.1 Introduction

11.2 Introduction to Game Theory

11.3 Notation

11.4 Preliminary Analysis

11.5 The Wholesale Price Contract

11.6 The Buyback Contract

11.7 The Revenue Sharing Contract

11.8 The Quantity Flexibility Contract

Problems

12 Auctions

12.1 Introduction

12.2 The English Auction

12.3 Combinatorial Auctions

12.3.1 The Combinatorial Auction Problem

12.3.2 Solving the Set-Packing Problem

12.3.3 Truthful Bidding

12.3.4 The Vickrey-Clarke-Groves Auction

Problems
Appendix A: Multiple-Chapter Problems

Problems

Appendix B: How to Write Proofs: A Short Guide

B.1 How to Prove Anything
B.2 Types of Things You May Be Asked to Prove
B.3 Proof Techniques
 B.3.1 Direct Proof
 B.3.2 Proof by Contradiction
 B.3.3 Proof by Mathematical Induction
 B.3.4 Proof by Cases
B.4 Other Advice

Appendix C: Helpful Formulas

C.1 Standardizing Normal Random Variables
C.2 Loss Functions
 C.2.1 General Distributions
 C.2.2 Standard Normal Distribution
 C.2.3 Non-Standard Normal Distributions
C.3 Differentiation of Integrals
 C.3.1 Variable of Differentiation Not in Integral Limits
 C.3.2 Variable of Differentiation in Integral Limits
C.4 Geometric Series
C.5 Normal Distributions in Microsoft Excel
C.6 Partial Means

Appendix D: Lagrangian Relaxation

D.1 Overview
D.2 Bounds
D.3 Subgradient Optimization
D.4 Stopping Criteria
D.5 Other Problem Types
 D.5.1 Inequality Constraints
 D.5.2 Maximization Problems
D.6 Branch and Bound
D.7 Algorithm Summary
<table>
<thead>
<tr>
<th>Bibliography</th>
<th>349</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>359</td>
</tr>
</tbody>
</table>