CONTENTS

Preface xiii

1 ANTIBIOTICS: THE GREATEST TRIUMPH
OF SCIENTIFIC MEDICINE 1

Selectivity 3
Development of Resistance 4
Sulfonamide: The First Antibacterial Agent Acting
Selectively 5
Chemotherapeutics and Antibiotics 9
Penicillin: The First Antibiotic 9
The First Therapeutic Trial 12
Rediscovery of Penicillin by a Basic Scientific
Approach 13
Betalactams 14
Streptomycin: The Second Antibiotic in the History
of Antibacterial Agents 16
The First Remedy for Tuberculosis 18
Conclusion 19
CONTENTS

2 DISTRIBUTION OF ANTIBIOTICS

Quantitative Evaluation of Antibiotics Consumption
 Defined Daily Doses
 International Distribution of Antibiotics:
 A Scandinavian Example
Control of Antibiotics Overuse

3 SULFONAMIDES AND TRIMETHOPRIM

General Aspects Regarding the Development of Resistance
Sulfonamides
 Sulfonamides as Remedies
 Resistance to Sulfonamide
 Resistance to Sulfonamides in *Neisseria meningitidis*
 Characterization of the Sulfonamide-Resistant Dihydropteroate Synthase in N. meningitidis
 Characterization of the Other Sulfonamide-Resistant Dihydropteroate Synthase in N. meningitidis
 Resistance to Sulfonamides in *Streptococcus pyogenes*
 Resistance to Sulfonamides in *Campylobacter jejuni*
 Resistance to Sulfonamides in *Streptococcus pneumoniae*
 Resistance to Sulfonamides in *Pneumocystis jiroveci* (carinii)
 Resistance to Sulfonamides in *Staphylococcus aureus* and *S. haemolyticus*
 Resistance to Sulfonamides in *Mycobacterium leprae*
 Plasmid-Borne Resistance to Sulfonamides
 Trimethoprim
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innate Resistance to Trimethoprim</td>
<td>55</td>
</tr>
<tr>
<td>Chromosomal Resistance to Trimethoprim</td>
<td>56</td>
</tr>
<tr>
<td>Plasmid-Borne Resistance to Trimethoprim</td>
<td>59</td>
</tr>
<tr>
<td>Possible Pathogenicity Change in C. jejuni by Acquiring Trimethoprim Resistance Genes</td>
<td>65</td>
</tr>
<tr>
<td>Experimental Test of the Reversibility of Trimethoprim Resistance</td>
<td>66</td>
</tr>
<tr>
<td>Conclusion</td>
<td>67</td>
</tr>
</tbody>
</table>

4 PENICILLINS AND OTHER BETALACTAMS 69

- The Betalactam Ring: The Characteristic of all Betalactams 70
- The Antibacterial Mechanism of Betalactams 73
- Penicillins 74
 - Penicillins with an Enlarged Spectrum 75
 - Penicillins Stable to Penicillinases 77
 - Counteracting Resistance by the Inhibition of Betalactamases 80
- Other Antibacterial Betalactams 81
 - Cephalosporins 81
 - Monobactams 84
 - Thienamycins 85
- Betalactamases 87
 - Horizontal Spread of Betalactamases 87
 - Penicillin-Binding Proteins 90
 - Resistance to Betalactams by Changes in the PBPs 91
- A Very Old Prophecy Came True 94

5 GLYCOPEPTIDES 95

- Mechanism of Antibacterial Action 96
6 AMINOGLYCOSIDES
The Antibacterial Mechanism of Streptomycin 104
Bactericidal Effect 106
Clinical Side Effects 106
Bacterial Resistance to Aminoglycosides 109
Horizontal Spread of Aminoglycoside Resistance 110
Conclusion 113

7 OTHER ANTIBIOTICS INTERFERING WITH BACTERIAL PROTEIN SYNTHESIS
Chloramphenicol 115
 Clinical Side Effects 117
 Bacterial Resistance to Chloramphenicol 117
Tetracyclines 119
 Mechanism of Action 120
 Clinical Side Effects 121
 Bacterial Resistance to Tetracyclines 121
Erythromycin and Related Antibiotics 123
 Macrolides 123
 Resistance to Erythromycin 124
 Clinical Use of Macrolides 125
 Lincosamides 125
 Streptogramins 126
Fusidic Acid 128
CONTENTS

Linezolid 129
Conclusion 131

8 QUINOLONES 133

The Effect of Quinolones on Bacteria 134
Clinical Use of Quinolones 136
Bacterial Resistance to Quinolones 139
 Mutational Resistance 139
 Resistance by Quinolone Efflux 140
 Transferable Plasmid-Borne Resistance 140
Conclusion 145

9 ANTIBACTERIAL AGENTS NOT RELATED TO THE LARGE ANTIBIOTIC FAMILIES 147

Remedies for Tuberculosis 147
 Rifampicin 149
 Mechanism of Action 150
 Resistance 151
 Plasmid-Borne Resistance 151
Other Agents Against Tuberculosis 152
 Isoniazid or Isonicotinic Acid Hydrazide 153
 Pyrazinamide 154
 Ethambutol 155
 Cycloserine 156
 para-Aminosalicylic Acid 157
Tuberculostatic Drugs Recruited from Earlier Known Groups of Antibiotics Found Originally with Other Antibacterial Spectra 158
CONTENTS

Diarylquinolines

159

The Battle Against Tuberculosis

159

Nitrofurantoin

161

Nitroimidazoles

161

Phosphomycin

163

Conclusion

165

10 MECHANISMS FOR THE HORIZONTAL SPREAD OF ANTIBIOTIC RESISTANCE AMONG BACTERIA

167

Transferable Resistance: Conjugation

167

Mutational Resistance

170

Plasmid-Borne Resistance Against Antibacterial Agents

171

Plasmids

173

The Origin of R Plasmids

176

Transposons

178

Integrons

182

11 HOW TO MANAGE ANTIBIOTIC RESISTANCE

187

Cross Resistance Between Related Antibiotics

188

The Evolution of Antibacterial Resistance

188

How to Counteract Resistance Development

190

Curtailing the Use of Antibiotics

191

Introduction of Truly New Antibacterial Agents

193

Antibacterial Peptides

193

Inhibition of Pathogenicity

197

Inhibition of Bacterial Fatty Acid Synthesis

198

Resistance Development Accelerates

200

Index

203