CONTENTS

PREFACE

ABOUT THE AUTHOR

1 PETROLEUM REFINING

1.1 Properties of Petroleum, 1
1.2 Assay of Crude Oils, 4
1.3 Separation Processes, 10
 1.3.1 Crude Oil Pretreatment: Desalting, 10
 1.3.2 Atmospheric Distillation, 12
 1.3.3 Vacuum Distillation, 13
 1.3.4 Solvent Extraction and Dewaxing, 13
 1.3.5 Deasphalting, 14
 1.3.6 Other Separation Processes, 15
1.4 Upgrading of Distillates, 17
 1.4.1 Catalytic Reforming, 18
 1.4.2 Isomerization, 18
 1.4.3 Alkylation, 21
 1.4.4 Polymerization, 23
 1.4.5 Catalytic Hydrotreating, 25
 1.4.6 Fluid Catalytic Cracking, 27
1.5 Upgrading of Heavy Feeds, 29
 1.5.1 Properties of Heavy Oils, 29
 1.5.2 Process Options for Upgrading Heavy Feeds, 31

2 REACTOR MODELING IN THE PETROLEUM REFINING INDUSTRY

2.1 Description of Reactors, 53
 2.1.1 Fixed-Bed Reactors, 56
 2.1.2 Slurry-Bed Reactors, 62
2.2 Deviation from an Ideal Flow Pattern, 63
 2.2.1 Ideal Flow Reactors, 63
 2.2.2 Intrareactor Temperature Gradients, 66
 2.2.3 Intrareactor Mass Gradients, 69
 2.2.4 Wetting Effects, 77
 2.2.5 Wall Effects, 81
2.3 Kinetic Modeling Approaches, 86
 2.3.1 Traditional Lumping, 86
 2.3.2 Models Based on Continuous Mixtures, 99
 2.3.3 Structure-Oriented Lumping and Single-Event Models, 101
2.4 Reactor Modeling, 102
 2.4.1 Classification and Selection of Reactor Models, 102
 2.4.2 Description of Reactor Models, 106
 2.4.3 Generalized Reactor Model, 155
 2.4.4 Estimation of Model Parameters, 176
References, 188
Nomenclature, 203

3 MODELING OF CATALYTIC HYDROTREATING 211

3.1 The Hydrotreating Process, 211
 3.1.1 Characteristics of HDT Reactors, 213
 3.1.2 Process Variables, 220
 3.1.3 Other Process Aspects, 229
3.2 Fundamentals of Hydrotreating, 241
 3.2.1 Chemistry, 241
 3.2.2 Thermodynamics, 243
 3.2.3 Kinetics, 246
 3.2.4 Catalysts, 258
3.3 Reactor Modeling, 261
 3.3.1 Effect of Catalyst Particle Shape, 261
 3.3.2 Steady-State Simulation, 269
 3.3.3 Simulation of a Commercial HDT Reactor with Quenching, 273
 3.3.4 Dynamic Simulation, 283
 3.3.5 Simulation of Countercurrent Operation, 293
References, 304
Nomenclature, 308

4 MODELING OF CATALYTIC REFORMING 313

4.1 The Catalytic Reforming Process, 313
 4.1.1 Description, 313
 4.1.2 Types of Catalytic Reforming Processes, 316
 4.1.3 Process Variables, 318
4.2 Fundamentals of Catalytic Reforming, 319
 4.2.1 Chemistry, 319
 4.2.2 Thermodynamics, 321
 4.2.3 Kinetics, 322
 4.2.4 Catalysts, 330
4.3 Reactor Modeling, 331
 4.3.1 Development of the Kinetic Model, 331
 4.3.2 Validation of the Kinetic Model with Bench-Scale Reactor Experiments, 345
 4.3.3 Simulation of Commercial Semiregenerative Reforming Reactors, 350
 4.3.4 Simulation of the Effect of Benzene Precursors in the Feed, 357
 4.3.5 Use of the Model to Predict Other Process Parameters, 361
References, 364
Nomenclature, 366

5 MODELING AND SIMULATION OF FLUIDIZED-BED CATALYTIC CRACKING CONVERTERS 368
Rafael Maya-Yescas
5.1 Introduction, 370
 5.1.1 Description of the Process, 370
 5.1.2 Place of the FCC Unit Inside the Refinery, 371
 5.1.3 Fractionation of Products and Gas Recovery, 373
 5.1.4 Common Yields and Product Quality, 373
5.2 Reaction Mechanism of Catalytic Cracking, 374
 5.2.1 Transport Phenomena, Thermodynamic Aspects, and Reaction Patterns, 374
 5.2.2 Lumping of Feedstock and Products, 376
 5.2.3 More Detailed Mechanisms, 378
5.3 Simulation to Estimate Kinetic Parameters, 378
 5.3.1 Data from Laboratory Reactors, 379
 5.3.2 Data from Industrial Operation, 384
5.4 Simulation to Find Controlling Reaction Steps During Catalytic Cracking, 385
5.5 Simulation of Steady Operation of the Riser Reactor, 387
5.6 Simulation to Scale Up Kinetic Factors, 390
5.7 Simulation of the Regenerator Reactor, 393
 5.7.1 Simulation of the Burning of Nonheterogeneous Coke, 393
 5.7.2 Simulation of Side Reactions During the Burning of Heterogeneous Coke, 402
 5.7.3 Simulation of the Energy Balance in the Regenerator, 409
5.8 Modeling the Catalyst Stripper, 410
5.9 Simulation of a Controlled FCC Unit, 411
 5.9.1 Mathematical Background, 412
 5.9.2 Controllability of the Regenerator, 415
 5.9.3 A Technique to Regulate $T_{\text{regenerator}}$ in Partial Combustion Mode, 423

5.10 Technological Improvements and Modifications, 438
 5.10.1 Effect of Feedstock Pretreatment, 438
 5.10.2 Pilot-Plant Emulation, 453
 5.10.3 The Sulfur Balance, 459

5.11 Conclusions, 466

References, 468
Nomenclature, 472