INDEX

ABB Lummus, 216
Aboul-Gheit model, for hydrocracking, 89–90
Acid catalysts
 in alkylation, 23
 in heavy petroleum feed upgrading, 29
Acid gas removal, 15
Acidic support catalyst, in residue hydrocracking, 46
Acidity, in hydrocracking, 259
Activation energies
 in catalytic cracking simulation, 385
 for hydrodesulfurization, 248
 in kinetic-factor scale-up simulation, 391
 for kinetic models, 91
 in microactivity test data, 383–384
Actual control law, using state estimation, 426–438
“Additive coke,” 397
Adiabatic diesel hydrotreating trickle-bed reactor, simulation of, 127
Adiabatic FCC regenerators, 417. See also Fluid catalytic cracking (FCC)
Adiabatic FCC units, controlling, 415
Adiabatic hydroprocessing TBR, 121. See also Trickle-bed reactors (TBRs)
Adiabatic mode, 456
Adiabatic model, predictions with, 359–361
Advanced catalyst evaluations (ACE) reactor, 392–393
Advanced partial conversion unicracking (APCU), 47
Akgerman et al. model, 125
Akgerman–Netherland model, 125
Al Adwani et al. model, 135
Albermarle Q-Plex quench mixer, 240, 241
Algebraic equations, for reactor models, 146
Alkali aromatics, dealkalization of, 375
Alkali side chains, breaking of, 376
Alkanolamines, in acid gas sweetening, 15
Alkylation, from alkylation, 21, 23
Alkylation, 21–23
 isomerization and, 21
 polymerization versus, 23
Alkylation unit, process scheme of, 22
Alumina, in catalytic hydrotreating, 25
γ-Alumina
 in hydrocracking, 256–257
 hydrotreating catalysts supported on, 258, 331
η-Alumina, hydrotreating catalysts supported on, 331
Alvarez–Ancheyta model, 137

Jorge Ancheyta.
Amine, in acid gas sweetening, 15
Amine gas-treating process, 15
Aminoethoxyethanol, in acid gas sweetening, 15
Ammonia (NH₃)
countercurrent gas–liquid flow TBRs and, 59
downflow TBRs and, 58
removal in sour water treatment, 16
Ancheyta et al. catalytic naphtha reformer model, 326
Anode-grade coke, 37
Anti-knocking index (AKI), 373
Aoyagi et al. model, for hydrocracking, 90–92
API gravity
in crude oil assays, 5, 6, 7, 9
of heavy crude oil, 2
of heavy oils, 30
of light crude oil, 2, 3
Apparent activation energy
in catalytic cracking simulation, 385
in kinetic-factor scale-up simulation, 391
Apparent diffusivity (AD) model, 117–118
Apparent frequency factor, in microactivity test data, 383
Apparent kinetic rate constant, in hydrodynamic-based models, 110–111
Aquaconversion, 44
Arlan crude oil distillates, kinetics of hydrocracking, 88–90
Aromatic crude oil, 5–7
from solvent deasphalting, 15
Aromatic hydrocarbons, as hydrodesulfurization inhibitors, 251–252
Aromatic ring compounds, hydrogenation of, 245
Aromatics. See also Polyaromatic entries breaking of alkali side chains of, 376 in catalytic reforming reaction modeling, 322–323 in crude oil, 3
extended proposed kinetic model rate constants for, 345 in Krane et al. model, 325, 332 in naphtha feed, 315 kinetic parameters for, 332–335 removal of, 252–255
Aromatic saturation, 242
effect of H₂ partial pressure on, 223
Aromatization, of paraffins, 319, 320
Arrhenius plots, 379, 383
for feedstock conversion, 383
Arrhenius-type equations, 326
Artificial neural networks (ANNs), 144–146
Asphalt, in carbon rejection processes, 34
Asphaltene conversion, in hydroprocessing, 41
Asphaltene molecule, 30
hypothetical structure of, 31
Asphaltene precipitation, 36
Asphaltenes, 255
in crude oil, 2, 3, 8
in ebullated-bed hydroprocessing, 49
in heavy oils, 30–31
in heavy petroleum feed upgrading, 29
hydrocracking of, 118, 242, 243
hydrogenation of, 242, 243
in hydroprocessing, 41, 42
hydroprocessing of, 255–256
in packed bubble-flow reactors with co-current gas–liquid upflow, 62
in solvent deasphalting, 35–36
Assays
petroleum/crude oil, 4–9
types of, 5
Asymptotic solution approach, axial mass dispersion and, 71
Athabasca bitumen
hydrotreating of, 123
in two-stage micro-TBR, 129
Athabasca crude oil, 2
kinetic approaches to modeling hydrocracking of, 87–88, 90–92
Atmospheric distillation, 10, 12–13
Atmospheric distillation units, in crude oil assays, 4–5
Atmospheric residua (AR)
as feed in bench-scale TBRs, 122
properties of, 32
vacuum distillation and, 13
in visbreaking, 39
Atmospheric residue desulfurization (ARDS), in one-dimensional pseudohomogeneous plug-flow reactor model, 128
Atmospheric residue hydrotreating with Canmet process, 50–51
in ebullated-bed hydroprocessing, 49
in hydroprocessing, 43
Hyvahl processes for, 45–46
with LC-finishing process, 50
with MRH process, 51
RDS process for, 45
Average bed voidage, wall effects and, 83
Average pore radius, 187
Average reaction rate, in catalytic cracking simulation, 386
Avraam et al. model, Jiménez et al. model and, 135–136
Avraam–Vasalos model, 133, 163
Axial average liquid molar concentration profiles, 161
Axial dispersion, 213
in countercurrent reactor model, 295
wall effects and, 84
Axial-dispersion coefficient, in axial mass dispersion, 70–71
Axial dispersion effects, 121
Axial dispersion models, 119–121
Axial dispersion reactor model, pseudohomogeneous, 128
Axial eddy dispersion, 119
Axial H₂ and H₂S partial pressures/concentration profiles, 290
Axial heat dispersion, 67, 69, 74
in generalized heat balance equations, 167
Axial mass dispersion, 63, 64, 65, 70–76
in generalized mass balance equation, 160, 162
rules of thumb for, 74, 75–76
Axial pressure gradient, 389
Axial profiles, of mass fractions, 388–389
Backmix flow conditions
in packed bubble-flow reactors with co-current gas–liquid upflow, 62
in slurry-bed reactors, 63
Backmixing, 119, 120
in catalyst-wetting models, 115
in ebullated-bed reactors, 219–220
in holdup models, 113
Base hydrotreater, 275
Basic uncracking, 47
Batch operation, in moving-bed hydroprocessing, 48
Bed channeling, 84. See also Wall effects
Bed density, 261
Bed grading, in HDT units, 218
Bed porosity, predicting variation of, 156–157
Bed void fraction (bed porosity), 186, 261
Bellos et al. model, 145
Bellos–Papayannakos model, 127
Bench-scale reactor composition of reformate obtained in, 349
molar composition of feed for, 346
Bench-scale reactor experiments, kinetic model validation with, 345–350
Bench-scale reactor simulations, 272–273
versus commercial HDT reactor simulations, 273
Bench-scale TBR, 56. See also Trickle-bed reactors (TBRs)
Bench-scale unit, for catalytic reforming experiments, 347
Benzene formation, 314. See also BTX (benzene, toluene, xylene)
effect of temperature on, 361
reaction network for, 337
reactions for, 335
Benzene precursors, simulation of the effect of, 357–361
Benzene production rate, 361
Berger et al. model, 144
β-dibenzothiophenes (DBTs) desulfurized middle distillates and, 121
in pseudohomogeneous reactor model, 128
in stage models, 140–141
Bhaskar et al. models, 133, 134
Binary diffusion coefficient, estimation of, 178
Binary interaction parameters, 183
Biot number, modified, 386
Bischoff–Levenspiel criterion in axial mass dispersion, 71
in radial mass dispersion, 69–70
Bitumen, in MRH process, 51. See also Athabasca bitumen
Bodenstein number (Bo) in axial mass dispersion, 70–71
in plug-flow reactor models, 125–126
Boiling-point curve, of Mexican crude oils, 8
Bollas et al. models, 145
Bondi procedure, catalyst-wetting models and, 114–115
Bondi relationship, catalyst-wetting models and, 115
Bosanquet’s formula, estimation of, 177
Boscan crude oil, in steady-state pseudohomogeneous plug-flow model, 129
Botchwey et al. models for hydrocracking, 90, 92, 94
for two-stage micro-TBR, 129
Boundary conditions for co-current and countercurrent operation simulation, 296–298
for dynamic simulation, 286–287
in generalized mass and heat balance equations, 169–174
Bromide number (Br No), in hydrocracking, 257
BTX (benzene, toluene, xylene), from naphtha, 18
Bubble cap trays, in HDT reactors, 236, 237
Bubble-flow reactors
advantages and disadvantages of, 61–62
with co-current gas–liquid upflow, 60–62
Bubble operation mode, of PBRs, 53, 60–62
Buffham et al. model, 120
“Bunker” reactors, in Hycon process, 48
Burners, in fluid coking and flexicoking, 38–39
Burnett et al. pseudo-first-order kinetic model, 326
i-Butane/butenes ratios, 451. See also Isobutane
in FCC products, 441
Butanes
in alkylation, 23
in FCC products, 441
in isomerization, 21
Butanethiol, 259
n-Butyl mercaptan (NBM), 259

C4 olefins, 447–450
Calcium (Ca)
in crude oil desalting, 11
in crude oils, 10
California gas oil, hydrocracking of, 96, 97
Canadian crude oil, 2
Canmet hydrocracking process, 50–51
Carbon (C), 326. See also Conradson carbon; Ramsbottom carbon
in catalytic reforming, 18
in FCC products, 441
in fluid catalytic cracking, 27–28
in heavy oils, 29–30
in heavy petroleum feed upgrading, 29
kinetic parameters for hydrocarbons with up to 11 atoms of, 332–335, 336
in petroleum, 1, 6
in residue fluid catalytic cracking, 40
Carbon dioxide (CO2), removal from refinery gas streams, 15
Carbon disulfide (CS2), 259
Carbonium ion, in fluid catalytic cracking, 28
Carbon mobilization (CM), in hydrogen addition and carbon rejection processes, 32, 33
Carbon rejection processes, 32, 33–40
advantages and disadvantages of, 40
visbreaking as, 39–40
Carboxylate salts, in crude oil desalting, 11
Cassanello et al. criterion
in axial mass dispersion, 76
wetting effects and, 81
Catalyst activity response
for step decreases of coke precursors, 401
for step increases of coke precursors, 399
Catalyst beds
fixed, 56
mass transfer and equilibrium in, 180–184
parameters relative to, 185–188
pressure drop in, 268
Catalyst cycle life
in hydroprocessing, 42
maintaining, 231–232
Catalyst deactivating species, in hydroprocessing, 41
Catalyst deactivation, during hydrotreating, 261
Catalyst deactivation model, 124
Catalyst deactivation rate, in catalytic hydrotreating, 222
Catalyst drying, 260
Catalyst effectiveness factors. See also Liquid–solid contacting efficiency/contact effectiveness
in catalyst-wetting models, 116
estimation of, 177–180
Catalyst geometry, 385
Catalyst life, in catalytic reforming processes, 319. See also Catalyst cycle life
Catalyst particle diameter, intrareactor temperature gradients and, 66, 67–68
Catalyst particles. See also Catalytic particles; Particle entries
external surface area of, 186
external volume and surface of, 261, 262
liquid phase–solid phase mass transfer and, 264
Catalyst particle shapes
effects of, 261–268
modeling effects of, 134–135
Catalyst pellet, in generalized mass balance equation, 160
Catalyst porosity, 186–187
Catalyst regeneration
in continuous regeneration catalytic reforming process, 318
in cyclic regeneration catalytic reforming process, 316–318
in semiregenerative catalytic reforming process, 316
Catalyst replacement, on-stream, 218–219
Catalysts
- in alkylation, 21–23
- in aquaconversion, 44
- atmospheric residue and, 122
- axial heat dispersion and, 69
- for bench-scale reactor experiments, 347
- in bench-scale reactor simulations, 272–273
- in catalytic cracking, 374
- in catalytic cracking simulation, 385–387
- in catalytic hydrotreating, 25, 212–213
- in catalytic reforming, 18
- in catalytic reforming reactions, 330–331
- in continuous heterogeneous models, 130–138
- in countercurrent operation simulation, 293–294
- in ebullated-bed hydroprocessing, 49
- in ebullated-bed reactors, 219–220
- in EST process, 52
- in fixed-bed hydroprocessing, 44–45
- in fluid catalytic cracking, 27–29
- for fluidized-bed catalytic cracking, 368–369
- in generalized mass balance equation, 165
- in heavy petroleum feed upgrading, 29, 30, 31
- in H-Oil process, 49
- in holdup models, 113–114
- in Hycon process, 48
- in hydrocracking, 256–258
- in hydrodynamic-based models, 111
- in hydrogen addition and carbon rejection processes, 32, 33
- in hydrotreating, 216, 220–229, 258–261
- in hydrotreating reactor steady-state simulation, 269
- in Hyvahl-M process, 49
- with Hyvahl processes, 45–46
- in kinetic hydrocracking models, 91–92
- in Lababidi et al. model, 126
- in LC-finishing process, 50
- in liquid holdup models, 112–114, 115
- in Microcat-RC process, 51
- for Mostoufi et al. model, 136
- in moving-bed hydroprocessing, 48
- in MRH process, 51
- in packed bubble-flow reactors with co-current gas–liquid upflow, 62
- partial external wetting and, 81
- in PBRs, 53, 54
- in plug-flow reactor models, 125–126
- in plug-flow reactors, 66
- in polymerization, 23–25
- properties of, 443
- in pseudohomogeneous models, 110, 124
- reactor temperature and, 223–224, 225
- reactor internal hardware design and, 231
- in residue fluid catalytic cracking, 40
- in residue hydrocracking, 46
- rivulet liquid flow and, 79–80
- in selecting multiphase reactor type, 107
- in single-stage multiphase reactor types, 122–123
- in slurry-bed hydroprocessing, 50
- in slurry-bed reactors, 63
- in slurry-phase reactors, 220
- in TBR with downflow co-current operation, 56, 57, 58
- in T-Star process, 49–50
- for typical feedstock versus hydrotreated feedstock, 443–453
- in VCC and HDH Plus technologies, 51
- wall effects and, 82, 84
- wetting effects and, 77–80, 81
- zeolites as, 368

Catalyst soaking, 260

Catalyst stability, during hydrotreating, 260

Catalyst stripper, modeling, 410–411

Catalyst systems, in hydroprocessing, 41–42

Catalyst utilization
- effect of irrigation on, 79
- reactor internal design and, 235–236

Catalyst utilization fraction, wetting effects and, 77

Catalyst wetting
- efficiency of, 79, 175
- in holdup models, 113
- incomplete, 114, 115
- models for, 114–119

Catalytic bed, in dynamic simulation, 285

Catalytic cracking
- detailed mechanisms in, 378
- finding controlling reaction steps during, 385–387
- fluid, 27–29
- lumping of feedstock and products in modeling, 376–378
- reaction mechanism of, 374–378
- thermodynamic aspects of, 374–376

Catalytic cracking of residue (RFCC), carbon rejection via, 34, 35. See also Fluid catalytic cracking (FCC); Residue fluid catalytic cracking (RFCC)

Catalytic distillation, LGO HDS via, 128

Catalytic fixed-bed reactors, analysis of multiphase, 106–107

Catalytic hydroprocessing, 41
grades of, 37
during hydrotreating, 260
predicted mass fractions for, 390
sulfur content of, 464
Coke burning, simulation of side reactions
during heterogeneous, 402–409
Coke combustion mechanism, 393–394
Coke drums, in delayed coking, 37–38
Coke formation, 376, 445–446
HDT reaction exothermality and, 273
plug-flow model of, 142
Coke generation, 381
Coke precursors, 395–396, 396–397, 397–402
heavy oils and, 31
Coke production, 449
excessive, 447
Coker naphtha, 315
Coking, 321
catalytic reforming reactions and, 330–331
Coking processes, 37–39
carbon rejection via, 34–35
visbreaking versus, 40
Cold shot cooling, 230
Combined distillation, 13
Commercial catalytic reforming reactors,
main characteristics of, 354–354
Commercial HDT reactor simulations,
270–273. See also Hydrotreating (HDT)
dynamic, 289–293
with quenching, 273–283
versus bench-scale reactor simulations, 273
Commercial reforming reactor, operation
simulation of, 360
Commercial semiregenerative reforming
reactors
model of, 350–351
reaction conditions of, 351
Commercial semiregenerative reforming
reactor simulation, 350–357
reformate composition in, 351–356
results of, 351–357
Commercial simulator/optimizer, 418
Commercial TBR, 56. See also Trickled-bed
reactors (TBRs)
Commercial value profiles, 356
CoMo catalysts, 258
Hycar process and, 44
for Mostoufi et al. model, 136
in single-stage hydrodesulfurization,
122–123
Complete wetting, 77
Complexity, of reactor models, 106
Complex reactions, kinetic lump models of, 102
Computational fluid dynamics (CFD), 238
Computational fluid dynamics models,
138–139, 148
advantages and disadvantages of, 152–153
Concentration function, Laxminarasimhan–
Verma hydrocracking model and, 100
Concentration gradients
external, 264
internal, 264–266
Concentration profiles
in HDT reactors, 215
for isothermal HDT small reactor, 289,
290–292
Condensation, in general, 12
Conditioning package, with Hyvahl processes,
46
Conductive heat flux, in generalized heat
balance equations, 168
Conradson carbon, 393
in FCC products, 441
in heavy petroleum feed upgrading, 29
in residue fluid catalytic cracking, 40
Conradson carbon removal (CCR)
with H-Oil process, 49
in hydrotreating, 41
Conservation-of-volume equations, 186
Contacting effectiveness/efficiency (CE),
wetting effects and, 77, 80
Contacting efficiency, 114. See also Liquid–
solid contacting efficiency/contact
effectiveness
Continuous heterogeneous models, 130–138
Continuous mixtures, lump models based on,
99–101, 102, 126
Continuous models, 141–143
advantages and disadvantages of, 151, 152
advantages and disadvantages of, 152
Continuous pseudohomogeneous models,
123–130
dynamic, 129–130
steady-state, 123–129
Continuous reactors
perfectly mixed, 66
plug-flow, 65–66
Continuous regeneration catalytic reforming
process, 318
Continuous regeneration unit, 331
Continuous-stirred tank reactor (CSTR), 56,
139, 140, 369, 370, 410
axial mass dispersion in, 70, 71
as ideal flow reactor, 64
in neural network, 145
as perfectly mixed reactor, 66
Continuous thermodynamic approach, in kinetic models, 148–149
Continuum kinetic lumping, 147–148
Continuum kinetic models, 147–148
Control laws/techniques, 423–438
Controlled FCC unit, simulation of, 411–438. See also Fluid catalytic cracking (FCC)
Controllers
block diagram of, 429
for FCC process, 423–438
Control policies, industrial, 419–423
Convective flow, in gas phase mass balance equation, 159
Conventional distributors, in HDT reactors, 238–239
Conventional quenching, 232
Conversion, of FCC products, 441
C/O (carbon/oxygen) ratio, 382, 383, 384–385, 446–450. See also Oxygen-to-carbon (O/C) ratio
Coria–Maciel Filho model, 126
Correlations
empirical, 187
hydrodynamic, 187
Cost function optimization, Al Adwani et al. model in, 135
Cotta et al. model, 127
Countercurrent commercial HDT reactor, simulation of, 301–304. See also Hydrotreating (HDT)
Countercurrent flow, in generalized heat balance equations, 166
Countercurrent gas–liquid flow advantages and disadvantages of, 59–60 in TBRs, 58–60
Countercurrent isothermal HDT small reactor, simulation of, 298–301. See also Hydrotreating (HDT)
Countercurrent MBRs, 212. See also Moving bed reactors (MBRs)
Countercurrent operation
boundary conditions for, 296–298
in moving-bed hydroprocessing, 48, 49
simulation of, 293–304
of trickle-bed reactors, 53, 54, 57
Countercurrent reactor model, description of, 295–296
Cracking. See also Catalytic cracking entries;
Fluid catalytic cracking (FCC);
Hydrocracking (HCR, HDC, HYC) in atmospheric distillation, 12 in delayed coking, 38 of olefins, long paraffins, and naphthenes, 37
Cracking kinetic process, 466
Cracking products, sulfur content of, 403
Cracking reactions, 460
CREC riser simulator, 393
Crine et al. model, 108, 117
Crine et al. model classification, 103–105
Criterion SynSat catalysts, 216
Cross-flow dispersion (PDE) model, 107, 120
Cross-flow (PE) models, 107, 143–144 advantages and disadvantages of, 153
Crude oil(s)
composition and sources of, 1, 2
desalting and atmospheric and vacuum distillations of, 10
properties of, 2
recent worldwide quality change of, 1–2
Crude oil assays, 4–9
described, 4–5
Crude oil pretreatment, 10–12
Cumulative yields, comparison of, 452, 453
Cyclohexane (N6), isomerization from methylcyclopentane, 335
Cyclones, in FCC units, 370
Cycloparaffins, in hydrodearomatization, 253
Cylinder, as particle shape, 261, 262
Danckwerts boundary condition, 171–174
Dassori–Pacheco model, for hydrocracking, 97
Data, for learning models, 145
Databases, for reactor modeling parameters, 187
Deactivation, 467
Deactivation function, in microactivity test data, 383
Deactivation model, 135
Dealkalization, of alkali aromatics, 375
Deans–Lapidus model, 103
Deasphalted oil (DAO), 14–15
Deasphalting oil (DAO), 14–15 in solvent deasphalting, 35, 36–37
Deasphalting, 14–15
gasification and, 36–37
Deep conversion, in continuous heterogeneous models, 132
Defluorination, in alkylation, 23
Degrees API, 5
Dehydration efficiency, in crude oil desalting, 11

Dehydrocyclization
 in catalytic reforming, 18
 of paraffins, 321, 348

Dehydrogenation, 330
 of aromatics, 253
 in catalytic reforming, 18
 of naphthenes, 319, 320, 321
 of naphthenes to aromatics, 323
 of paraffins, 319, 320, 321

Delayed coking, 37–38
 advantages and disadvantages of, 38, 40
 carbon rejection via, 35

Demetallization, with H-Oil process, 49. See also Hydrodemetallization (HDM)

Demetalized oil (DMO), 135

Demulsifier, in crude oil desalting, 11

Dense phase, 369, 417
 mathematical model for, 412–413

Dense regions (dp), 394, 395
 in FBRs, 409, 410

Deposition, of fine particles, 142

Desalting, 10–12
 electrostatic, 11–12
 principal steps in, 11

Desulfurization processes. See also Hydrodesulfurization (HDS); Residue desulfurization processes (RDS/VRDS)
 in continuous heterogeneous models, 131–132
 H-Oil, 49
 in hydroprocessing, 42–43
 steady-state trickle-bed reactor model for, 133–134

Desulfurized middle distillates, 121

Deterministic models with random perturbation, 103

Deterministic models, 103

Deterministic quasi-steady-state model, 126

Dewaxing, solvent, 13–14

Diaromatics (DA), in hydrodearomatization, 253, 254

β-Dibenzothiophenes (DBTs)
 desulfurized middle distillates and, 121
 in pseudohomogeneous reactor model, 128
 in stage models, 140–141

Diesel fuel, from unicracking, 47

Diesel hydrotreating trickle-bed reactor, simulation of adiabatic, 127

Diesel quenching, 275, 277

Diethanolamine (DEA), in acid gas sweetening, 15

Differential equations. See also Korsten–Hoffman differential equations;
 Navier–Stokes equations model;
 Ordinary differential equations (ODEs);
 Partial differential equations (PDEs);
 Steady-state one-dimensional differential equations
 for continuous heterogeneous models, 131–132
 for deterministic models, 103
 for reactor models, 146

Diglycolamine (DGA), in acid gas sweetening, 15

Diisopropylamine (DIPA), in acid gas sweetening, 15

Dilute regions, 394, 395
 in FBRs, 409, 410

Dilution parameter (ζ), wall effects and, 82

Dimethyl disulfide (DMDS), 259

Dimethyl sulfide (DMS), 259

Dimethyl sulfoxide (DMSO), 259

Direct HDS (DD) reaction path, 251. See also Hydrodesulfurization (HDS)

Discharge pattern, of distributor trays, 238–239

Discrete lumping, 94–98

Discrete models, 139–141

Dispersion models, 103

Distillates
 API gravity versus average volume percentage of, 9
 in petroleum assays, 4, 9
 sulfur content versus average volume percentage of, 9
 upgrading of, 17–29

Distillation
 atmospheric, 10, 12–13
 combined, 13
 TBP, 4–5
 vacuum, 13

Distillation curve, 5
 for kinetic lump models, 102

Distillation trays, vacuum distillation and, 13

Distillation units
 atmospheric, 4–5
 vacuum, 4–5

Distribution systems, in HDT reactors, 237–238

Distributor tray levelness, in HDT reactors, 239

Distributor trays
 discharge pattern of, 238–239
 in HDT reactors, 236–238
INDEX

Diteriary nonyl polysulﬁde (TNPS), 259
Döhler–Rupp model, 125
Downﬂow operation mode, of ﬁxed-bed reactors, 53, 55–56
Downstream sectors, in heavy petroleum feed upgrading, 33
Dry gases (DG), 448, 449
from FCC units, 370, 373, 448–450
predicted mass fractions for, 389–390
Dry gas yields, 463
Duduković et al. models, 138–139
Duplex tray, in HDT reactors, 238
Dynamic continuous pseudohomogeneous models, 129–130
Dynamic heterogeneous models, 141–144
Dynamic heterogeneous one-dimensional model, 143
Dynamic liquid holdup, 113
Dynamic liquid viscosity, estimation of, 178
Dynamic mass balance equation, 285
Dynamic models, steady-state models versus, 141–142
Dynamic simulation, 283–293
of a commercial HDT reactor, 289–293
of an isothermal HDT small reactor, 287–289
using generalized mass balance equation, 164
Dynamic simulation model equations, 283–286
Dynamics modeling, 468
Dynamic temperature proﬁles, 302
Ebullated-bed hydroprocessing, 42, 49–50
Ebullated-bed reactors (EBRs), 62, 214, 212, 219–220. See also Expanded bed reactors (EBRs)
in hydroprocessing, 42, 43
slurry-bed reactors versus, 50
slurry-phase reactors versus, 220
Effective catalyst wetting, 114
Effective diffusion, in generalized mass balance equation, 165
Effective diffusivity estimation of, 178
estimation of parameters for, 177, 178
Effective mass radial dispersion, in generalized mass balance equation, 161–162
Effectiveness factors in axial dispersion models, 120–121
in catalyst-wetting models, 116
estimation of, 177–180
Effective radial thermal conductivity, in generalized mass and heat balance equations, 176
Effective transport, in generalized mass balance equation, 161
Effective wetting, 79
Effective yields, for coke, 397
Effectivity factor, in catalytic cracking simulation, 385, 386
Efficient catalyst utilization, reactor internal design and, 235–236
Electric current, in crude oil desalting, 11
Electrostatic desalting, 11–12
Empirical correlations advantages and disadvantages of, 151
in pseudohomogeneous models, 121–123
Empirical functions, related to feedstock conversion, 403
Emulsifiers, in crude oil desalting, 11
End-of-run (EOR), 126, 128
End-of-run temperature (WABT_{EOR}), 225
Endothermality, of cracking reactions, 368–369, 370
Energy balance in hydrotreating reactor steady-state simulation, 269
simulation of, 409–410
Energy balance equation, 425
in countercurrent reactor model, 295–296
ENI slurry technology (EST) process, 52
Enthalpies, of hydrotreating reactions, 244
Equation of state (EoS), 182
computational ﬂuid dynamics models and, 139
Equilibrium catalyst, 456–457
Equilibrium constants (K, K_e) calculation of, 340
effect of temperature on, 337
extrapolation procedure to calculate, 335
of hydrotreating reactions, 243, 244
values of, 254
Equivalent particle diameter, deﬁned, 261
Ethylbenzene (EB), 328
Ethyl mercaptan (EM), 259
Euler–Euler formulation, for computational ﬂuid dynamics models, 138–139
Eulerian–Eulerian multﬂuids models, 139, 157–158
Euler–Lagrange approach, for computational ﬂuid dynamics models, 138–139
Even irrigation, 80
Exothermality in FCC units, 370–371
of HDT reactions, 273
Exothermic hydrotreating reactions, 243
Expanded bed reactors (EBRs), 212. *See also* Ebullated-bed reactors (EBRs)
Experimental data
versus isothermal model predictions, 358–359
Ex situ sulfiding, 259
Extended Kalman-type estimators, temperature stabilization using, 429–438
Extended proposed kinetic model, 341–345
kinetic parameters of, 343
External holdup (EH) model, 117, 118–119
External liquid mixing, in pseudohomogeneous models, 108
External recycle reactor, as perfectly mixed reactor, 66
External wetting, partial, 81
Extraction
solvent, 13–14
via solvent deasphalting, 14–15
Extra-heavy crude oil, 2
Extra-light crude oil, 2
FCC converter products, fractionation of, 373. *See also* Fluid catalytic cracking (FCC)
FCC feedstock, 460, 467
hydrotreatment of, 438, 439, 452
FCC gasoline, 460
FCC kinetic schemes, 377
FCC naphtha, 315
FCC operation, enhancing, 441
FCC pilot plant equipment, 455
FCC pilot-plant operation, 457
FCC process, 370–371, 423–424
common yields and product quality from, 373
technological improvements and modifications of, 438–466
variables in, 454
FCC products
postprocessing of, 441
sulfur content of, 403, 406, 440–441, 464
FCC regenerators, 411
dynamic behavior of, 419–422
modeling of, 410
nonlinear, 417
FCC units, 369–370, 440. *See also* Controlled FCC unit
characteristics of, 444, 462
coke precursors and, 397–398, 402
in estimating kinetic parameters, 378
location in the refinery, 371–373
operating data for, 417
present and future opportunities for, 467–468
products from, 447–448
Feed
for catalytic reforming, 314
in fluid catalytic cracking, 28–29
molar composition of, 358
preparation of, 357
simulation of the effect of benzene precursors in, 357–361
Feedback law, linearizing state, 425
Feed properties, for kinetic lump models, 102
Feedstock(s)
axial profiles of, 405, 463
in FCC lumping schemes, 377–378
lumping of, 376–378
in MAT units, 379, 381
for pilot plant, 454
properties of, 456, 442
in riser reactor engineering, 368–369
Feedstock adaptation, 467
Feedstock composition, 439–440
Feedstock conversion, 444, 460–462
Arrhenius plot for, 383
empirical functions related to, 403
Feedstock cracking reaction rate, from microactivity test data, 383–384
Feedstock pretreatment, effect of, 438–453
Feedstock quality, in ultradeep HDS, 122
Feed system, in catalytic reforming unit, 315–316
Feed volatility, influence of, 148
Fickian diffusion, in Verstraete et al. model, 137
Fick’s law, 165, 177
Filters, in HDT units, 218. *See also* Kalman filtering
Filtration, in slurry-bed reactors, 63
Final boiling point (FBP), of hydrocracking products, 94
Fine particles, deposition of, 142
First control policy, 419–421
First macroscopic level, modeling at, 105
First operating policy, 419–423
First-order kinetic constant values, 247
First-order power law, in pseudohomogeneous models, 109
First-order rate constants, for kinetic model, 95
First-order reaction model, 118
Five-lump models, for hydrocracking, 93–94
Five-lump scheme, 377
Fixed adiabatic beds, downflow TBRs and, 57
Fixed-bed hydroprocessing, 41, 44–47
 in residue hydrocracking, 46–47
 with Hyvahl-F process, 45–46
Fixed-bed reactors (FBRs), 56–62, 212
 analysis of multiphase catalytic, 106–107
catalyst-wetting models and, 114
 characteristics of, 213–218
 continuous models of, 141–143
 countercurrent gas–liquid flow TBRs and, 59
 flooded, 60, 61
 in gasoline blending, 18–21
 in Hycon process, 48
 in hydroprocessing, 42–43
 in hydrotreating heavy oils and residua, 216–218
 kinetic modeling of, 383
 in OCR process, 48–49
 one-dimensional heterogeneous model of, 134
 slurry-bed reactor versus, 50
 slurry-phase reactors versus, 220
Flash drum, in catalytic reforming unit, 315–316
Flash zone, in atmospheric distillation, 12
Flexicoking, 37, 38, 39
 carbon rejection via, 35
Flooded fixed-bed reactors, 60, 61
Flooding, countercurrent gas–liquid flow TBRs and, 60
Flow behavior, in holdup models, 113
Flow conditions, in packed bubble-flow reactors with co-current gas–liquid upflow, 61
Flow maldistribution, reactor internal design and, 235, 237
Flow patterns
 ideal, 63–64
 mass balance equation for, 65
Flow regimes, empirical correlations for predicting, 187
Flue gas, in fluid catalytic cracking, 29
Fluid catalytic cracking (FCC), 27–29, 40.
 See also FCC entries; Fluidized-bed catalytic cracking (FCC); Residue fluid catalytic cracking (RFCC)
in fluid coking and flexicoking, 39
 heavy oils and, 30
 in hydroprocessing, 42
 learning models for, 145
Fluid catalytic cracking feed, in catalytic hydrotreating, 25
Fluid catalytic cracking pretreatment, with T-Star process, 49–50
Fluid catalytic cracking units, 214–215
 naphthas from, 315
 process scheme of, 28
Fluid coking, 37, 38–39
 advantages and disadvantages of, 40
 carbon rejection via, 35
Fluid dynamics, in model limitations, 188
Fluid flow, in PBR operation, 53, 54, 55–56
Fluidized-bed catalytic cracking (FCC), 368, 466.
 See also FCC entries; Fluid catalytic cracking (FCC); Fluidized-bed reactors (FBRs)
as the primary conversion process, 439
Fluidized-bed catalytic cracking converters, 371
modeling and simulation of, 368–473
nomenclature related to, 472–473
Fluidized-bed reactors (FBRs), 105
 axial mass dispersion in, 70, 75–76
dense and dilute regions in, 409
intrareactor temperature gradients in, 66, 67
plug-flow reactors versus, 65–66
radial mass dispersion in, 70
three-phase, 62
wall effects and, 82, 83
wetting effects and, 81
Fluidized-bed technology
 carbon rejection via, 35
in fluid coking and flexicoking, 38–39
Fluid phase–interface convective energy transfer, in generalized heat balance equations, 166–168
Fouling prevention, in HDT units, 218
Four-lump model, for hydrocracking, 89–90, 92, 93
Four lumps, hydrocracking models with more than, 94
Four-parameter plug-flow one-dimensional heterogeneous model, 142–143
Fractional pore fill-up, in catalyst-wetting models, 116
Fractionation
 in alkylation, 23
during atmospheric distillation, 12
in delayed coking, 37–38
in fluid catalytic cracking, 27
in IFP hydrocracking, 47
in polymerization, 25
via solvent deasphalting, 14–15
Fraction effectively wetted, 81
Fractions in petroleum assays, 4
with wide distillation range, 86–94
Freeboard (fb), 369, 394
Free-drainage holdup, 113
Free-flowing fraction, in reactor models, 106–107
French crude oil, 2
Frequency factors
in kinetic-factor scale-up simulation, 391
in microactivity test data, 383
Fresh feed rate, 228–229
Frictional forces, in irrigation, 80
Froment approach, in kinetic models, 146
Froment–Bischoff model classification, 104, 105, 385, 386
Froment et al. model, 131
Froment kinetic model, 134
Froment model, for lump hydrocracking, 101
Front-end catalysts, in hydroprocessing, 41–42
Frye–Mosby equation, in pseudohomogeneous models, 109–110
Fuel-grade coke, 37
Fuels, upgrading of distillates to, 17–29
Furnaces, in visbreaking, 39
Galiasso model, for isothermal TBR, 129
Gas composition comparison, 459
Gaseous compounds in the liquid phase
(MB), in generalized mass balance equation, 163
Gas fraction, wall effects and, 86
Gas hourly space velocity (GHSV), 229
Gasification, 36–37
Gas impurities, countercurrent gas–liquid flow TBRs and, 59–60
Gas-limited reactions, downflow TBRs and, 56–57
Gas–liquid downflow, co-current, 56–58
Gas–liquid equilibrium, in catalyst bed, 180–184
Gas–liquid flow, countercurrent, 58–60
Gas–liquid interphase mass transfer flux, 180
Gas–liquid upflow, co-current, 60–62
Gas mass balance, in quench zone modeling, 276
Gas mixture heat capacity, 277
Gas oil hydrocracking, kinetic approaches to modeling, 87–88
Gas oils, in hydrodynamic-based models, 111
Gasoline, 376
from alkylation, 21–23
converting naphtha into, 18
from FCC process, 373
from FCC units, 369–370
from fluid catalytic cracking, 28
isomerization and, 18–21
from polymerization, 23–25
predicted mass fractions for, 389–390
sulfur content of, 464
yield to, 445, 447–450
Gasoline production, 444
maximum, 419, 422–423
Gasoline yield, 463, 466
Gas phase (HA)
in countercurrent reactor model, 295–296
in dynamic simulation, 286
in generalized heat balance equations, 166–168
generalized heat balance for, 174
in PBR operation, 53, 54
Gas phase (MA) mass balance equation, 158–163
Gas-phase friction, downflow TBRs and, 57
Gas phase–liquid phase mass transfer, in generalized mass balance equation, 162–163
Gas properties, correlations for, 284
Gas quench, liquid quench versus, 234–235
Gas recovery, from FCC process, 373
Gas recycle, 226–228
Gas–solid interphase, in kinetic-factor scale-up simulation, 391
Gas solubilities, correlations for, 284
Gas streams, acid gas removal from, 15
Gas sweetening, 15, 16
Gas-to-liquid flow ratio, wall effects and, 86
Gates et al. model, for hydrodesulfurization, 249–250
Gaussian-type distribution function, in lump hydrocracking models, 99
Generalized heat balance (H) equations, 158–159, 166–169
boundary conditions for, 169–174
initial conditions of, 170
Generalized heat transfer model, simplification of, 174–176
Generalized mass balance (M) equations, 156–157, 157–165, 160
boundary conditions for, 169–174
initial conditions of, 170
Generalized reactor model, 155–176
developing, 155–157
Generalized temperature function, 183
Generation term (HC11), in generalized heat balance equations, 168
Gibbs energy (ΔG˚), 337
INDEX

Gierman criterion
 in axial mass dispersion, 75–76, 121
 in generalized mass balance equation, 163
Global average approaches, in modeling catalytic reactions, 374–376
Global effectiveness factor, in catalytic cracking simulation, 386
Global gas–liquid mass transfer, in catalyst bed, 180
Global mass balances, 362
Gravitational forces, in irrigation, 80
Guard-bed reactor, in fixed-bed hydroprocessing, 44–45
Guard reactors, with Hyvahl processes, 46
Gunjal–Ranade model, 139
Guo et al. models, 140, 148

H₂/H₂S liquid phase molar concentration profiles, with quenching, 281–282. See also Hydrogen entries; Hydrogen sulfide (H₂S)

H₂/H₂S partial pressure profiles, 278–281. See also H₂S partial pressure profiles

H₂S partial pressures/concentrations, profiles of, 300
H₂/oil ratio, 225–228
 in catalytic reforming processes, 319
H₂ partial pressure
effect of, 223, 226
in hydrotreating, 221–223
H₂ partial pressure profiles
 for isothermal HDT small reactor, 289, 290–292
 with quenching, 278–281
H₂ quenching, 274. See also Hydrogen quenching
effect of quench position and reaction temperature for, 281, 283
H₂ quenching approach, effect of quench position and temperature for, 281, 283
H₂S partial pressure/concentration profiles, 303. See also Hydrogen sulfide (H₂S)
H₂S partial pressure profiles, 60. See also H₂/ H₂S partial pressure profiles
 for isothermal HDT small reactor, 289, 290–292
 with quenching, 278–281
H₂S partial pressure reduction, in hydrotreating, 216, 217
H₂S removal
 kinetics of, 249–251
 in two-stage micro-TBR, 129
Hastaoglu–Jibril model, 142

HD (high distribution) trays, in HDT reactors, 237–238
HDH Plus technology, 51
HDM catalysts, in hydroprocessing, 41–42. See also Hydrometallization (HDM)
HDM experiment, with plug-flow model, 142
HDM/HDS catalysts, in hydroprocessing, 41–42
HDS/HCR catalysts, in hydroprocessing, 41–42. See also Hydrocracking (HCR, HDC, HYC); Hydodesulfurization (HDS)
HDS reactions, sulfur in, 245, 246–248
HDS reactors, liquid holdup models for, 112
HDT catalysts, typical particle shapes of, 261, 262. See also Hydrotreating (HDT)
HDT/HCR catalysts. See also Hydrocracking (HCR, HDC, HYC); Hydrotreating (HDT)
 in ebullated-bed hydrotreating, 49
 in hydroprocessing, 42, 46
HDT reaction kinetics, 286
HDT reactions, exothermality of, 273
HDT reactors
 characteristics of, 213–220
 concentration profiles in, 215
 generalized heat balance equations for, 166
 internal design of, 235–241
 performance of, 222
 quench in, 231
 simplified heat transfer modeling for, 174–176
 simulations of, 269–270, 270–273
Heat. See also Radial heat dispersion;
 Temperature
 in atmospheric distillation, 12
 in catalytic reforming, 18
 of hydrotreating reactions, 245, 246
 in isomerization, 21
Heat balance, 455–456
Heat balance (H) equations, 427
 generalized, 158–159, 166–169, 169–174
Heat balance mode, 456
Heat capacity, gas mixture, 277
Heat dispersion, 63
 axial, 67, 69
 radial, 67–69
Heaters, in catalytic reforming unit, 315–316
Heat of reaction, closed-loop estimation of, 437
Heat of vaporization, in generalized heat balance equations, 168
Heat transfer coefficients, 184–185
Heat transfer effect, wall effects and, 83
Heavy crude oil, 1–2
 distillates from, 9
 in kinetic models, 147–148
 light crude oil versus, 1–3
Heavy cycle oil (HCO), 451
 from FCC process, 373
Heavy feeds, hydrotreating of, 260
Heavy gas oils (HGOs)
 kinetic approaches to modeling hydrocracking of, 87–88, 91–92
 Mostoufi et al. model and, 136
 Murali et al. model and, 137
Heavy oils
 composition of, 30
 in heavy petroleum feed upgrading, 29
 properties of, 29–31
 thermal conversion of, 34–35
Heavy oil upgrading
 with Canmet process, 50–51
 in ebullated-bed hydroprocessing, 49
 with MRH process, 51
 process alternatives for, 34
 via hydrogen addition and carbon rejection processes, 32
Heavy petroleum feed upgrading, 29–52
 process options for, 31–52
 technologies for, 33
Henningsen–Bundgaard-Nielson catalytic naphtha reformer model, 326, 328
Henry’s constant, 180, 182, 183
Henry–Gilbert holdup model, 112–113, 120
n-Heptane insolubles, in Mexican crude oils, 8
Heteroatom compounds, effects of presence of, 222
Heteroatom removals
 in hydrogen addition and carbon rejection processes, 32–33
 via catalytic hydrotreating, 211, 246, 247–248
Heteroatoms, concentrations in hydrocracking, 257
Heterocompounds, 459–460
Heterogeneous adiabatic plug-flow model reactor, 133
Heterogeneous coke burning, simulation of side reactions during, 402–409
Heterogeneous isothermal one-dimensional reactor model, catalyst particle sizes and shapes in, 263
Heterogeneous models, 130–144
 advantages and disadvantages of, 152–155
 continuous, 130–138
 dynamic, 141–144
 one-dimensional plug-flow, 135–136, 137
 pseudohomogeneous models versus, 105
 steady-state, 130–141
Heterogeneous reactor models, one-dimensional, 134
Heterogeneous TBR model, steady-state one-dimensional, 135. See also Trickle-bed reactors (TBRs)
Hexane isomerization
calculation of K_e for, 340
equilibrium constants and molar composition for, 341
High-octane gasoline, from alkylation, 21–23
High-pressure separator (HPS), in catalytic hydrotreating, 221
High-purity hydrogen stream, 171
Hlavacek–Marek criteria, in axial mass dispersion, 71
H-Oil ebullated-bed criteria, 49
LC-finining process versus, 50
T-Star process versus, 49–50
H-Oil reactor, 219
H-Oil technology, in hydroprocessing, 43
Holdup models, 112–114, 115
Ho–Markley correlation, for hydrodesulfurization of prehydrotreated distillates, 123
Ho–Nguyen model, 142–143
Hou et al. catalytic naphtha reformer model, 328
Hougen–Watson approach, for continuous heterogeneous models, 131
Hougen–Watson–Langmuir–Hinshelwood kinetics, 326
Hu et al. approach, in kinetic models, 147
Hu et al. catalytic naphtha reformer model, 327–328
Hybrid neural network model, 145
Hycon process, 43–44
Hycon process, 48
in hydroprocessing, 43
HyCycle unicracking, 47
Hydride transfer, 376
Hydrocarbon compounds, unstable sulfur-linked, 464–465
Hydrocarbon density, 277
Hydrocarbon fuels, from FCC units, 369–370
Hydrocarbons, 326
in alkylation, 21, 23
from atmospheric distillation, 12
in dynamic simulation, 285
extended proposed kinetic model rate constants for, 341–345
from FCC units, 370
in fluid catalytic cracking, 27
Hydrocarbons (cont’d)
fluidized-bed catalytic cracking of, 368–369 in heavy oils, 29–30
hydrocracking of paraffins and naphthenes to, 323
as hydrodesulfurization inhibitors, 251–252
kinetic constants for, 336
naphtha feed and, 315
in pseudohomogeneous models, 110
Hydrocarbon type, relationship to characterization factor, 8
Hydrochloric acid (HCl)
in crude oil desalting, 11
in pseudohomogeneous models, 124, 125, 128, 129
Hydrocrackable compounds, 258
Hydrocracked naphtha, 315
Hydrocracked products, 257
Hydrocracking (HCR, HDC, HYC), 46, 211, 242, 245, 256–258. See also Cracking:
HDS/HCR catalysts; HDT/HCR catalysts
of asphaltenes, 118
in catalytic hydrotreating, 25
in catalytic reforming, 18, 319
cell models and, 140
heavy oils and, 30
Hycar process and, 44
in hydroprocessing, 40–41, 42
kinetic approaches to modeling, 86–102
kinetic model equations for, 98
with LC-fining process, 50
in naphtha catalytic reforming models, 329
of naphthenes to lower hydrocarbons, 323
once-through, 96
of paraffins, 319, 320, 323
in quench zone modeling, 276
reaction scheme for, 96
Hydrocracking distillation hydrotreating (HDH) process, 51
Hydrocracking models, reaction schemes for, 92
Hydrocracking rates, 321
Hydrodearomatization (HDA), 242
Alvarez–Ancheyta model and, 137
computational fluid dynamics models and, 139
continuous models and, 143
countercurrent gas–liquid flow TBRs and, 59
Jiménez et al. model and, 135–136
Murali et al. model and, 137
in pseudohomogeneous axial dispersion reactor model, 128
Rodriguez–Ancheyta model and, 135
system dynamics model and, 137–138
Hydrodeasphalnenalization (HDA, HDAs, HDAsp, HDAsph), 41, 120, 128, 129, 211, 242, 255–256
Hydrodemetallization (HDM), 41, 120, 122, 211, 256, 242. See also HDM entries
in catalytic hydrotreating, 25
in holdup models, 113–114
Hycar process and, 43, 44
in hydrogen addition and carbon rejection processes, 32
with LC-fining process, 50
in pseudohomogeneous models, 124, 125, 128, 129
Hydrodemetallization of nickel (HDNi), 122, 129. See also Hydrodeniquestillation (HDNi)
Hydrodemetallization of vanadium (HDV), 122. See also Hydrodevanadization (HDV)
in pseudohomogeneous models, 124, 129
Hydrodeniquestillation (HDNi), 242. See also Hydrodemetallization of nickel (HDNi)
Hydrodenitrogenation (HDN), 41, 123, 126, 211, 242, 245, 251–252
in Al Alvarez–Ancheyta model, 137
in holdup models, 113–114, 118
in hydrogen addition and carbon rejection processes, 32
in simulation of adiabatic diesel hydrotreating TBR, 127
in system dynamics model, 137–138
Jiménez et al. model and, 135–136
Rodriguez–Ancheyta model and, 135
Hydrodeoxygenation (HDO), 242
in plug-flow reactor models, 125
Hydrodesulfurization (HDS), 41, 120, 123, 126, 211, 241–242, 245, 246–251. See also HDM/HDS catalysts; HDS entries
Al Adwani et al. model and, 135
in Al Alvarez–Ancheyta model, 137
catalyst-wetting models and, 114, 115, 118
catalytic hydrotreating and, 25
in cell models, 140–141
computational fluid dynamics models and, 139
in continuous heterogeneous models, 131, 132
in continuous models, 143
feedstock quality in ultradeep, 122
in fixed-bed residue hydroprocessing unit model, 129
gas phase mass balance equation and, 159
in holdup models, 113–114
in hydrogen addition and carbon rejection processes, 32
in hydrotreating unit, 226–227
Jiménez et al. model and, 135–136
kinetic modeling of, 134
with LC-finishing process, 50
learning models for, 144, 145
in Mostoufi et al. model, 136
in Murali et al. model, 137
of naphtha, 216
in plug-flow TBR model, 127
in pseudohomogeneous models, 110, 124, 125, 126
in pseudohomogeneous reactor models, 128
reaction orders and activation energies for, 248
in simulation of adiabatic diesel hydrotreating TBR, 127
in steady-state pseudohomogeneous plug-flow model, 128
straight-run naphtha, 55
in system dynamics model, 137–138
Yamada–Goto model and, 135
Hydrodevanadization (HDV), 242. See also Hydrodemetallization of vanadium (HDV)
Hydrodynamic-based models, 105, 110–121. See also Hydrodynamic models
Hydrodynamic conditions, in packed bubble-flow reactors with co-current gas–liquid upflow, 61
Hydrodynamic models, pseudohomogeneous, 108. See also Hydrodynamic-based models
Hydrodynamics
effects on reaction rates, 81–82, 83–84
pseudohomogeneous models based on, 150
Hydrodynamics-based pseudohomogeneous models, advantages and disadvantages of, 150
Hydrofluoric acid (HF), in alkylation, 21–23
Hydrogen (H). See also H2 entries
in aquaconversion, 44
balance equation coefficients of, 345
in catalytic hydrotreating, 25, 27
in catalytic reforming, 18, 319
in catalytic reforming reaction modeling, 322–323
in cyclic regeneration catalytic reforming process, 316–318
downflow TBRs and, 58
in EST process, 52
in fixed-bed TBRs, 56
in fluid catalytic cracking, 27–28
in heavy oils, 29–30
in Hycar process, 43–44
in hydroprocessing, 40–41
in hydrotreating reactor steady-state simulation, 269
in IFP hydrocracking, 47
in Microcat-RC process, 51
from naphtha feed, 315
in petroleum, 1, 6
in pseudohomogeneous models, 110
as quench fluid, 234, 235
Hydrogen addition processes, 32, 40–43
applications of, 42
Hydrogen amounts, determined from chemical reaction calculations, 364
Hydrogenation (HYD), 245
of aromatics, 252
cell models and, 140
continuous models and, 141–142
of naphthenes to paraffins, 323
residue hydrocracking and, 46
with VCC and HDH Plus technologies, 51
Hydrogenation of olefins (HGO), 126, 255, 321
Hydrogenation reactions, 242
Hydrogen consumption, during hydrotreating, 228
Hydrogen loop, in hydrotreating unit, 226–227
Hydrogen mass balances, 362, 363
Hydrogenolysis, 241, 330
in catalytic hydrotreating, 25
in hydroprocessing, 40–41
Hydrogenolysis reactions, 241–242
Hydrogen quenching, 275. See also H2 quenching
Hydrogen stream, high-purity, 171
Hydrogen sulfide (H2S). See also H2S entries
in catalytic hydrotreating, 27
countercurrent gas–liquid flow removal of, 58–59
countercurrent gas–liquid flow TBRs and, 59–60
downflow TBRs and, 58
in hydrotreating reactor steady-state simulation, 269
in hydrotreating unit, 226–227, 228
inhibitory effect of, 272–273
in pseudohomogeneous models, 110, 126
removal from refinery gas streams, 15
removal in sour water treatment, 16
Hydrogen-to-carbon (H/C) ratio
in carbon rejection processes, 33–34, 35
in FCC products, 441
in hydroprocessing, 41
in heavy oil upgrading, 30
in heavy petroleum feed upgrading, 31–33
Hydrogen utilization (HU), in hydrogen
addition and carbon rejection processes, 32, 33
Hydroisomerization, 330
Hydroprocessing, 40–43. See also
Hydrovisbreaking
ebullated-bed, 42, 49–50
fixed-bed, 41, 44–47
moving-bed, 42, 47–49
residue fluid catalytic cracking versus, 40
slurry-bed, 50–52
visbreaking versus, 39–40
Hydrothermal treatment, adding to steady-
state pseudohomogeneous plug-flow
model, 129
Hydrotreated feedstock (HF), 438, 442–443
versus typical feedstock, 443–453
Hydrotreated naphtha, 315
Hydrotreaters, holdup models for, 112
Hydrotreating (HDT), 25, 135. See also
Catalytic hydrotreating (HDT); HDT
entries: Hydrotreating process;
Hydrotreating reactions; Hydrocracking
(HDT); Used oil hydrotreating
catalytic, 25–27, 258–261
in cell models, 140
chemistry of, 241–243
in continuous heterogeneous models,
130–131
in continuous models, 143
countercurrent gas–liquid flow TBRs and,
59
in cross-flow models, 143–144
downflow TBRs and, 58
fundamentals of, 241–261
H₂S partial pressure reduction in, 216, 217
in holdup models, 113, 118
in hydrodynamic-based models, 111
kinetic hydrocracking models and, 91–92
in kinetic models, 147–148
kinetics of, 246–258
learning models for, 144
Murali et al. model and, 137
operating conditions and hydrogen
consumption during, 221
for packed bubble-flow reactors with
current gas–liquid upflow, 62
Hydrotreating catalysts, 258–261
process aspects of, 229–241
in pseudohomogeneous models, 124
quench systems in, 232–234
simple pseudohomogeneous models for,
108
system dynamics model and, 138
wall effects and, 82
wetting effects and, 81
Hydrotreating catalysts, 258–261
shape and size of, 260
Hydrotreating process, 211–241
Hydrotreating reactions
enthalpies of, 244
equilibrium constants of, 243, 244
examples of, 243
exothermic, 224, 243
heats of, 245, 270
rate equations, kinetic parameters, and
heats of, 270
Hydrotreating reactors, steady-state
simulation of, 269–273
Hydrotreating trickle-bed reactor, simulation
of adiabatic diesel, 127
Hydrotreating unit, process scheme of, 26
Hydrotreatment (HDT), of FCC feedstock,
438, 439
Hydrovisbreaking, 41, 43–52. See also
Visbreaking
aquaconversion as, 44
Hysys process simulator, 277
Hyvahl-F process, 45–46, 219
in hydroprocessing, 42–43
Hyvahl-M process, 49, 219
Hyvahl-S process, 45, 46, 219
Hyvahl-S reactor, in hydroprocessing, 43
Iannibello et al. model, 117–118
Iannibello et al. model classification, 104, 105,
117–118
i-butane/butylenes ratios, 451. See also
Isobutane
in FCC products, 441
Ideal control law, 425–426
Ideal flow patterns, 63–64
Ideal flow reactors, 63–66
Ideal integral reactors, plug-flow reactors as,
65–66
Ideal plug flow, mass balance equation for,
65
Ideal plug-flow behavior, axial mass
dispersion and, 71
IFP hydrocracking, 46–47
Impingement quench box systems, in HDT
reactors, 239–240
Impurities
countercurrent gas–liquid flow TBRs and, 59–60
in crude oil, 1–2
in hydrogen addition and carbon rejection processes, 32–33
in naphtha, 213–214
removal via catalytic hydrotreating, 211
in solvent extraction and solvent dewaxing, 13–14
Impurity concentration(s)
axial profiles of, 291
dynamic profiles of, 292
in hydrotreating reactions, 271, 272
for isothermal HDT small reactor, 288
Incomplete catalyst wetting, 114, 115
Incomplete wetting, 77
Indirect HDS (ID) reaction path, 251. See also Hydrodesulfurization (HDS)
Industrial FCC units, 388. See also Fluid catalytic cracking (FCC)
Industrial mass fractions, 390
Industrial plant emulation, 457–459
Industrial unit operation, data from, 384–385
Ineffective wetting, 77–79
Inhibitors, countercurrent gas–liquid flow removal of, 58–59
Initial catalyst activity, during hydrotreating, 260
Initiation, of fluid catalytic cracking, 27
Injection flow rate, 381
Integration method, in dynamic simulation, 287
Interbed hardware designs, in HDT reactors, 239
Interior of the solid phase (MG-MH), in generalized mass balance equation, 165
Interparticle criterion, radial heat dispersion and, 68
Interparticle phenomena, in hydrodynamic-based models, 111
Interphase temperature gradients, radial heat dispersion and, 67
Intraparticle diffusion rate, in slurry-bed reactors, 63
Intraparticle mass transfer, in kinetic-factor scale-up simulation, 390–391
Intraparticle phenomena, in hydrodynamic-based models, 111
Intraparticle temperature gradients, radial heat dispersion and, 67
Intraparticle transport, in generalized mass balance equation, 165
Intrareactor mass gradients, 69–76. See also Mass intrareactor gradients
for the criteria for, 72–73
Intrareactor temperature gradients, 66–69
equations for the criteria for, 68
Iridium (Ir), in catalytic reforming reactions, 331
Irregular shapes, of particles, 261, 262
Irrigation
catalyst utilization and, 79
effect on catalyst utilization, 79
even, 80
uneven, 77
Isobutane. See also i-butane/butyl enes ratios
in alkylation, 21, 23
in isomerization, 21
Isocracking, 47
Isomeric compounds, 328
Isomerization, 18–21. See also Hexane isomeriza tion; Hydroisomerization;
Paraffin isomerization reaction
in catalytic reforming, 18
of cyclohexane from methylocyclopentane, 335
of paraffins, 319, 320, 321, 335–340, 348
Isomerization units, process scheme of, 20
Isothermal bench-scale reactor, 272
experiments in, 345–350
Isothermal HDT reactor simulation, 261–268. See also Hydrotreating (HDT)
Isothermal HDT small reactor, dynamic simulation of, 287–289
Isothermal heterogeneous reactor model, in studying catalyst particle shapes, 134–135
Isothermal model predictions, versus experimental data, 358–359
Isothermal reactor equation, in pseudohomogeneous models, 109–110
Isothermal reactor operation, 67–69
Isothermal solid phase (HC), in generalized heat balance equations, 168
Isothermal TBR, 129. See also Trickle-bed reactors (TBRs)
Isothermal trickle-bed reactor model, 133–134
Isthmus crude oil, 2
assays of, 6, 7
naphthas in, 314
Jakobsson et al. model, 140
Jiménez et al. model, 135–136
Joshi et al. catalytic naphtha reformer model, 327
Juraidan et al. model, 129
Kalman filtering, uncertainty estimation by, 427–429
Kalman-type estimators, temperature stabilization using, 429–438
Kam et al. model, 128, 129
Kero-HDS reactor, 126. See also Hydrodesulfurization (HDS)
K factors. See Characterization factors (K_{OUP}, K_{Watson})
Khadilkar et al. models, 132
Kinematic viscosity, in crude oil assays, 6, 7
Kinetic-based models, 105
Kinetic constants, in axial dispersion models, 120–121
Kinetic data, for various lump models, 88
Kinetic equations for pseudohomogeneous models, 109–110 for Smith model, 324
Kinetic factors scale-up of, 390–393 simulation to scale-up, 390–393
Kinetic FCC schemes, 377. See also Fluid catalytic cracking (FCC)
Kinetic model. See also Kinetic models chemical reactions in, 332 development of, 331–345 extended proposed, 341–345 validation of, 348–350
Kinetic model equations, for hydrocracking, 98
Kinetic modeling, of fixed-bed reactors, 383
Kinetic modeling approaches, 86–102 types of, 86
Kinetic models activation energies reported for, 91 advantages and disadvantages of, 146–149 based on continuous mixtures, 99–101, 102 catalyst particle sizes and shapes in, 261–263 first-order rate constants for, 95 power-law, 123, 124 pseudohomogeneous, 108–110 second-order, 117–118 structure-oriented lumping, 101–102
Kinetic model validation, with bench-scale reactor experiments, 345–350
Kinetic parameters effects of pressure and temperature on, 340–341, 350 simulation to estimate, 378–385
Kinetic rate constant, in hydrodynamic-based models, 110–111
Kinetic rate parameters, estimating, 381
Kinetics-based pseudohomogeneous models, advantages and disadvantages of, 149–150
Kmak–Stuckey catalytic naphtha reformer model, 326
Knudsen diffusivity, estimation of, 177, 178
Kodama et al. model, 124, 126
Korsten–Hoffman differential equations, 131–132
Murali et al. model and, 137
Rodriguez–Ancheyta model and, 135
Yamada–Goto model and, 135
Krane et al. reaction network model, 325, 331–334 improvements to, 333–345
Krishna–Saxena model, for hydrocracking, 94–95, 96
Kuwait vacuum gas oil, in lump hydrocracking model, 99
Lababidi et al. model, 126 in cost function optimization, 135 Laboratory microactivity plants, 453 Laboratory reactors, data from, 379–384 Laboratory-scale TBR model, 134. See also Trickle-bed reactors (TBRs)
Lagrange crude oil, 2
Langmuir–Hinshelwood approach, 146, 147–148
Langmuir–Hinshelwood–Hougen–Watson (LHHW)-type kinetic expressions, estimation of parameters for, 177
Langmuir–Hinshelwood kinetic models, 123, 124, 126, 130, 131–132, 132–133, 137, 246, 250 fixed-bed residue hydroprocessing unit and, 129
Langmuir–Hinshelwood kinetics, 386
Langmuir–Hinshelwood rate equation, 250
for nitrogen removal, 251
Langmuir–Hinshelwood reaction rate, 140
Langmuir isotherm, 123
Latent heat \((\Delta H_v)\), in generalized heat balance equations, 168
Laxminarasimhan–Verma model, for hydrocracking, 99–101
Layered catalyst systems, in hydroprocessing, 41–42
LC-fining, in hydroprocessing, 43
LC-fining ebullated-bed process, 50
H-Oil process versus, 50
LC-fining process, with ebullated-bed reactors, 219
Learning models, 103, 144–146
advantages and disadvantages of, 154–155
Lee et al. catalytic naphtha reformer model, 326–327
Léon–Becerril pseudohomogeneous model, 387–388, 389
Levenspiel–Bischoff criterion. See Bischoff–Levenspiel criterion
Liang et al. catalytic naphtha reformer model, 326
Lid–Skogestad catalytic naphtha reformer model, 326–327
Light crude oil, 1–2, 3
distillates from, 9
Light cycle oil (LCO), 214–215, 451
from FCC process, 373
in system dynamics model, 138
Light gases, in catalytic reforming reaction modeling, 322–323
Light gas oil (LGO)
from hydrocracking, 257
in plug-flow TBR model, 127
in pseudohomogeneous reactor model, 128
Light hydrocarbons (LHCs), 168
Light olefins
in alkylation, 21–23
in polymerization, 23–25
Light products yields, 450–451
Liguras–Allen model, for lump hydrocracking, 101
Linearized approximations, eigenvalues for, 416
Linearizing state feedback law, 425
Linear superficial liquid velocity; catalyst-wetting models and, 115
Liquid dispersion, in bench-scale HDT, 126
Liquid distribution, in liquid holdup models, 112, 115
Liquid flow, in packed bubble-flow reactors with co-current gas–liquid upflow, 62
Liquid flow texture, 55, 57
Liquid holdup, 112, 115, 263–264
in packed bubble-flow reactors with co-current gas–liquid upflow, 61
Liquid holdup models, 112–114, 115
Liquid hourly space velocity (LHSV), 41, 81, 109, 110, 112, 113–114, 120, 123, 125, 128, 229, 213
catalyst bed pressure drop and, 268
catalyst particles and, 264–265
in catalytic reforming processes, 319
effect on product sulfur content, 230
effect on sulfur content, 267
in learning models, 144
sulfur molar concentration and, 282
Liquid hydrocarbon density, 277
Liquid hydrocarbon/H₂ balances, with quenching, 282–283
Liquid-limited reactions, in packed bubble-flow reactors with co-current gas–liquid upflow, 61
Liquid-loading sensitivity, in HDT reactors, 239
Liquid maldistribution, 57
Liquid mass balance, in quench zone modeling, 276
Liquid-petroleum gas (LPG)
from FCC units, 370
predicted mass fractions for, 389–390
Liquid phase (HB)
in countercurrent reactor model, 295–296
in dynamic simulation, 285, 286
gaseous compounds in, 163
generalized heat balance equations, 168
generalized heat balance for, 174
nonvolatile compounds in, 163–164
in PBR operation, 53, 54, 55
Liquid-phase fugacity coefficient, 183
Liquid-phase gas (LPG), 439
from FCC units, 447–450
in FCC products, 406, 407
Liquid-phase holdup, in generalized mass balance equation, 163
Liquid phase organic sulfur molar concentration profiles, 282
Liquid phase–solid phase mass transfer catalyst particles and, 264
in generalized mass balance equation, 163
Liquid-phase sulfidation, 259
Liquid-phase temperature profiles, 303
Liquid quench, recycle gas quench versus, 235
Liquid quench-based processes, 233. See also Quenching with liquids
Liquid quenching, 274, 275
Liquid residence-time distribution (RTD) studies, 119
Liquid saturation, empirical correlations for predicting, 187
Liquid–solid contacting efficiency/contact effectiveness. See also Catalyst effectiveness factors in holdup models, 113–114 in hydrodynamic-based models, 111 in pseudohomogeneous models, 108
Liquid–solid mass transfer coefficients, 184
Liquid–solid sulfur concentration gradients, effect of LHSV and particle shape on, 265
Liquid-source layout, in HDT reactors, 238
Liquid sweetening, 15, 16
Liquid viscosity, estimation of, 178
Liu et al. model, 137–138
Lloydminster crude oil, 2
Long paraffins, cracking, 375
Lopez–Dassori model, 132–133
Lopez et al. models, 144–145, 146
Lumping, 86
catalytic cracking and, 376–378
continuum kinetic, 147–148
defined, 376
discrete, 94–98
in kinetic models, 146–148
traditional, 86–98
Lumping approach, in naphtha catalytic reforming models, 329–330
Lump (lumping) models, 467
based on continuous mixtures, 99–101, 102, 126
based on fractions with wide distillation range, 86–94
based on pseudocomponents, 94–98
kinetic data reported for, 88
single-event, 101–102
Lumps, 86
defined, 376
Lyapunov function, 413, 414
Macias–Ancheyta model, in studying catalyst particle shapes, 134–135
Macroporous materials, in HDT units, 218
Macroscopic levels, modeling at, 105
Macroscopic maldistribution of liquid wall effects and, 83, 84
wetting effects and, 77, 80
Magnesium (Mg)
in crude oil desalting, 11
in crude oils, 10
Maldistribution of liquid wall effects and, 83, 84
wetting effects and, 77, 80
Maltenes, in heavy oils, 30
Marin–Froment catalytic naphtha reformer model, 327
Marroquín–Ancheyta model, 269
Marroquín et al. model, 133
Martens–Marin model, for lump hydrocracking, 101
Mass balance(s), 381, 382, 394–395
global, 362
hydrogen, 362, 363
Mass balance (M) equations, 65
Mass dispersion
axial, 70–76
in generalized mass balance equation, 162
radial, 69–70
Mass flow \((m_f) \), 381
Mass fraction differences, during pressure balance modeling, 389
Mass fractions
axial profile of, 388–389
industrial and predicted, 390
Mass gradients, in reactor models, 124
Mass intrareactor gradients, 66, 69–76. See also Intrareactor mass gradients
Mass radial dispersion, in generalized mass balance equation, 161–162
Mass transfer, in generalized mass balance equation, 162–163
Mass transfer coefficients
correlations for, 284
in packed bubble-flow reactors with co-current gas–liquid upflow, 62
Mass transfer effect, wall effects and, 83
Mass transfer limits, in kinetic-factor scale-up simulation, 390–391
MAT devices, 379. See also Microactivity test entries
MAT laboratory reactor, process emulation in, 443
MAT units
feedstock in, 379
operating aspects of, 380
Maximum gasoline production, 419, 422–423
Maya crude oil, 2
assays of, 6, 7
naphthas in, 314
sulfur removal versus metal removal in, 122

Magnesium (Mg)
in crude oil desalting, 11
in crude oils, 10
Maldistribution of liquid wall effects and, 83, 84
wetting effects and, 77, 80
Maltenes, in heavy oils, 30
Marin–Froment catalytic naphtha reformer model, 327
Marroquín–Ancheyta model, 269
Marroquín et al. model, 133
Martens–Marin model, for lump hydrocracking, 101
Mass balance(s), 381, 382, 394–395
global, 362
hydrogen, 362, 363
Mass balance (M) equations, 65
Mass dispersion
axial, 70–76
in generalized mass balance equation, 162
radial, 69–70
Mass flow \((m_f) \), 381
Mass fraction differences, during pressure balance modeling, 389
Mass fractions
axial profile of, 388–389
industrial and predicted, 390
Mass gradients, in reactor models, 124
Mass intrareactor gradients, 66, 69–76. See also Intrareactor mass gradients
Mass radial dispersion, in generalized mass balance equation, 161–162
Mass transfer, in generalized mass balance equation, 162–163
Mass transfer coefficients
correlations for, 284
in packed bubble-flow reactors with co-current gas–liquid upflow, 62
Mass transfer effect, wall effects and, 83
Mass transfer limits, in kinetic-factor scale-up simulation, 390–391
MAT devices, 379. See also Microactivity test entries
MAT laboratory reactor, process emulation in, 443
MAT units
feedstock in, 379
operating aspects of, 380
Maximum gasoline production, 419, 422–423
Maya crude oil, 2
assays of, 6, 7
naphthas in, 314
sulfur removal versus metal removal in, 122
Maya residue hydrocracking, kinetic approaches to modeling, 87
M-Coke process, 51
MeABP (mean average boiling point), characterization factor and, 5–7
Mean pore radius, estimation of, 178
Mears criterion
axial eddy dispersion/backmixing and, 119
in axial mass dispersion, 71, 75–76, 120, 121
in catalyst-wetting models, 116–117
in generalized mass balance equation, 163
Mechanical octane number (MON), 373
Mechanistic models, of naphtha catalytic reforming, 329
Mechanistic reactor modeling, 86
Mederos et al. model, 143
Mejdell et al. model, 127, 147
Melis et al. model, 128
Mercaptan oxidation (Merox) process, liquid sweetening via, 16
Mercaptans, removal in liquid sweetening, 16
Metal chlorides
in crude oil desalting, 11
in crude oils, 10
Metal-containing compounds, removal via catalytic hydrotreating, 211
Metal disposition profiles, with plug-flow model, 142
Metalloporphyrin, in asphaltenes, 31
Metal removal, sulfur removal versus, 122
Metals
in aquaconversion, 44
in catalytic hydrotreating, 25
in ebullated-bed hydroprocessing, 49
in FCC products, 441
in heavy oils, 30
in heavy petroleum feed upgrading, 29
in Hycar process, 43–44
in hydropyrolysis, 41, 42
during hydrotreating, 261
in packed bubble-flow reactors with co-current gas–liquid upflow, 62
in petroleum, 1, 3, 6
residue desulfurization processes and, 45
solvent deasphalting and, 15
in visbreaking, 39–40
meta-xylene (MX), 328
Methylcyclopentane (MCP)
complete separation of, 361
isomerization to cyclohexane, 335
Methyldiethanolamine (MDEA), in acid gas sweetening, 15
Methyl ethyl ketone (MEK), in solvent dewaxing, 14
Mexican crude oils, 2
assays of, 6
boiling-point curve of, 8
characterization factors of, 5–9
kinematic viscosities of, 7
naphthas in, 313, 314
Microactivity test (MAT) data, 379–384. See also MAT entries
Microactivity test reactors, 392–393, 438
catalytic activity for cracking in, 384, 387
Microcat-RC (→Coke) process, 51
Microscopic level, modeling at, 103
Middle distillates, reaction order for HDS of, 249
Middle-of-run (MOR), 126, 128
Mild cracking, in delayed coking, 38
Mild hydrocracking, 47
Mini-pilot-plant trickle-bed reactor, 144
Mixing-cell reaction network models
one-dimensional, 140
two-dimensional, 140
Model description, for dynamic simulation, 283–287
Modeling (model) parameters
 correlations to estimate, 181
databases for, 187
estimation of, 176–188
Models, in predicting process parameters, 361–364
Modifications, to FCC process, 438–466
Modified Biot number for mass transfer, 386
Modified mixing-cell model, 120
Mohanty et al. model, for hydrocracking, 95, 97
Molar balances, 362
Molar volume of solute, estimation of, 178
Molecular diffusivity, estimation of, 177, 178
Molybdenum (Mo), in catalytic hydrotreating, 25. See also CoMo catalyst; NiMo catalyst(s)
Monoaromatics (MA), in hydrodearomatization, 253
Monoethanolamine (MEA), in acid gas sweetening, 15
Montagna–Shah model, 120
Monte Carlo simulation, 328
Mosby et al. model, for hydrocracking, 92–93, 94
Mostoufi et al. model, 136
Moving-bed hydroprocessing, 42, 47–49
Moving bed reactors (MBRs), 212, 214
characteristics of, 218–219
in continuous regeneration catalytic reforming process, 318
in Hycon process, 48
in hydroprocessing, 42
in Hyvahl-M process, 49
in OCR process, 48
MRH hydrocracking process, 47, 51
Multifluids models, 139
Multilayer perception (MLP), 145
Multimetallic catalysts, in catalytic reforming reactions, 330
Multiphase catalytic fixed-bed reactors, analysis of, 106–107
Multiphase catalytic packed-bed reactors (PBRs), 53–56
Multiphase catalytic reactors, types of, 54
Multiple feed processes, in quenching, 232, 233
Murali et al. approach, in kinetic models, 147
Murali et al. model, 137, 162
Murphree et al. studies, catalyst-wetting models and, 114

Naphtha(s) (NA)
in catalytic hydrotreating, 25
catalytic reforming of, 314–316, 327
converting into gasoline, 18
from hydrocracking, 257
hydrodesulfurization of, 216
impurities in, 213–214
properties of, 314
reaction scheme for catalytic reforming of,
straight-run, 313–315
Naphtha feed, in catalytic reforming reaction modeling, 322–323
Naphthenes, 252, 253
in catalytic reforming reaction modeling,
322–323
cracking, 375
dehydrogenation of, 319, 320, 321
dehydrogenation to aromatics, 323
extended proposed kinetic model rate constants for, 344
hydrocracking to lower hydrocarbons, 323
hydrogenation to paraffins, 323
kinetic parameters for, 332–335
in Krane et al. model, 325, 332
in naphtha feed, 315
Navier–Stokes equations, in reactor models, 106
Navier–Stokes equations model, 138
Needle-grade coke, 37
Neural network model, hybrid, 145
Neural networks, artificial, 144–146
Nguyen et al. model, 136–137
Nickel (Ni). See also Hydrodemetallization of nickel (HDNi); NiMo catalyst(s)
in catalytic hydrotreating, 25
in crude oil, 3, 6
in heavy oils, 30
in hydroprocessing, 41
removal via catalytic hydrotreating, 211
residue desulfurization processes and, 45
in single-stage hydrodesulfurization, 122–123
in visbreaking, 39–40
NiMo catalyst(s), 258, 269
in continuous models, 143
for Mostoufi et al. model, 136
in residue hydrocracking, 46, 123
in simulation of adiabatic diesel hydrotreating TBR, 127
Nitrogen (N)
in catalytic hydrotreating, 25
in FCC products, 441
in heavy oils, 30
in hydroprocessing, 41
in petroleum, 1, 2, 3, 6
removal of, 251–252
removal via catalytic hydrotreating, 211
solvent deasphalting and, 15
in solvent extraction and solvent dewaxing, 13–14
in visbreaking, 39–40
Nitrogen-containing compounds, as
hydrodearomatization inhibitors, 255
Nitrogen-to-carbon (N/C) ratio, in heavy oil upgrading, 30
Noble metals, 330
Nomenclature
for catalytic hydrotreating modeling, 308–312
catalytic-reforming-related, 366–367
FCC converter-related, 472–473
reactor-modeling-related, 203–210
Nonadiabatic operation, generalized heat balance equations and, 166, 167
Noncatalytic processes, of hydrogen addition and carbon rejection, 32, 33
Nonheterogeneous coke burning, simulation of, 393–402
Nonhomogeneous liquid flow, in TBRs, 79–80
Nonideal TBR, 57. See also Trickle-bed reactors (TBRs)
Nonisothermal reactor, geometry of, 70
Nonisothermal solid phase (HE), in generalized heat balance equations, 169
Nonlinearity, of FCC regenerators, 417
Nonlinear processes, regulation issues of, 411–412
Non-steady-state methods, in kinetic analysis, 107
Nonvolatile compounds in the liquid phase (MC), in generalized mass balance equation, 163–164
Normalized TBP, in Laxminarasimhan–Verma hydrocracking model, 99. See also True boiling point (TBP)
nth-order kinetics, of hydrotreating, 246
Numerical simulations, 403
Oh–Jang model, 130
Oil properties, correlations for, 284. See also Petroleum entries
Ojeda–Krishna model, 140–141
Olefin cyclization, 330
Olefin hydrogenation (HDO), 126 in simulation of adiabatic diesel hydrotreating TBR, 127
Olmea crude oil assays of, 6, 7 naphthas in, 314
Once-through hydrocracking of California gas oil, 96, 97 normalized TBP curves, cracking rate function, and yield comparison for, 96 Onda's correlation, in catalyst-wetting models, 115–116
One-dimensional dispersion (PD) model, 106–107. See also One-parameter piston diffusion (PD) model
One-dimensional heterogeneous models, 132–133 four-parameter plug-flow, 142–143 One-dimensional heterogeneous reactor models, 134 One-dimensional heterogeneous TBR model, steady-state, 135. See also Trickle-bed reactors (TBRs)
One-dimensional mixing-cell reaction network models, 140 One-dimensional plug-flow heterogeneous models, 135–136, 137, 142–143
One-dimensional pseudo-homogeneous adiabatic model, 350
One-dimensional pseudo-homogeneous plug-flow reactor model, 128
One-dimensional pseudohomogeneous reactor models, 130, 131
One-parameter piston diffusion (PD) model, in axial mass dispersion, 74. See also PD (one-dimensional dispersion) model
On-stream catalyst replacement (OCR) process, 48–49, 218–219
On-stream catalyst replacement system in hydroprocessing, 43 Open-loop simulation, 430–431
Operation modes in countercurrent operation simulation, 293–294 of PBRs, 53
Optimum ANN architecture, 145–146. See also Artificial neural networks (ANN)
Ordinary differential equations (ODEs) in dynamic simulation, 287 estimation of parameters and, 176 ortho-xylene (OX), 328 Overall conversion kinetic models, for hydrocracking, 90
Oxygen (O) in heavy oils, 30 in petroleum, 1, 3 removal via catalytic hydrotreating, 211
Oxygen-to-carbon (O/C) ratio, in heavy oil upgrading, 30. See also C/O (carbon/oxygen) ratio
Packed-bed reactors (PBRs), 53–56 axial mass dispersion in, 74–75 bubble-flow operation of, 60–62 countercurrent gas–liquid flow TBRs and, 59 plug-flow reactors versus, 65 pseudohomogeneous models of, 110 radial mass dispersion in, 69–70 wall effects in, 82
Packed-bubble columns, 60
Packed-bubble-flow reactors, 53, 54
 with co-current gas–liquid upflow, 60–62
Padmavathi–Chaudhuri catalytic naphtha reformer model, 327
Papayannakos–Georgiou model, 110
Paraffin hydrocracking, 330
Paraffinic crude oil, 5–7
 from solvent deasphalting, 15
Paraffin isomerization reaction, 348
Paraffins
 aromatization of, 319, 320
 in catalytic reforming reaction modeling, 322–323
 dehydrocyclization of, 319, 348
 dehydrogenation of, 319, 320, 321
 extended proposed kinetic model rate constants for, 341, 342–344
 in gasoline blending, 18–21
 hydrocracking of, 319, 320
 hydrocracking to lower hydrocarbons, 323
 isomerization of, 319, 320, 321, 335–340
 kinetic parameters for, 332–335
 in Krane et al. model, 325, 332
 in naphtha feed, 315
 in solvent deasphalting, 35
 thermodynamic data of, 338–339
n-Paraffins
 hydrocracking of, 319, 320
 isomerization of, 319, 320
Parameters
 correlations to estimate, 181
 databases for, 187
 estimation of, 176–188
 limitations to estimating, 188
 for reactor models, 146
para-xylene (PX), 328
Partial combustion mode, regulating $T_{\text{regenerator}}$
 in, 423–438
Partial differential equations (PDEs)
 boundary conditions for heat and mass balance equations and, 169, 174
 for computational fluid dynamics models, 138
 for dynamic simulation, 283–285, 287
 estimation of parameters and, 176
 generalized mass balance equation and, 162
Partial external wetting, 81
Partial pressure, in hydrotreating, 221–223
Partial surface-wetting effects, in catalyst-wetting models, 116
Partial vaporization, in delayed coking, 38
Particle diameter. See also Catalyst particle entries; Catalytic particles defined, 261
 intrareactor temperature gradients and, 66, 67–68
Particles
 reactions in, 374–376
 wetting effects and, 77
Particle shapes
 catalyst bed pressure drop and, 268
 catalyst effectiveness for, 266
 characteristics of, 263
 effect on sulfur content, 267, 266–268
 equations for calculating volume and surface of, 262
 liquid–solid sulfur concentration gradients and, 264–265
Particle size
 catalyst bed pressure drop and, 268
 defined, 261
PDE (cross-flow dispersion) model, 107. See also Cross-flow dispersion (PDE) model
PD (one-dimensional dispersion) model, 106–107. See also One-parameter piston diffusion (PD) model
Peclet number (Pe), 114, 119, 121
 in axial mass dispersion, 70–71, 76
 in countercurrent reactor model, 295
Pedernera et al. model, 134
Pellet, as particle shape, 261, 262
Pellet-scale level, in continuous heterogeneous models, 132
PE (cross-flow) model, 107. See also Cross-flow (PE) models
Peng–Robinson (PR) equation of state, 182, 184
Perfectly mixed continuous reactor, 66
Perfectly mixed pattern, 63–64
Perfect piston flow, 119
Perturbations, deterministic models with random, 103
Petroleum. See also Crude oil entries; Oil properties
 applications of, 1
 composition of, 1
 elemental composition of, 2
 properties of, 1–3
 properties of types of, 2
 SARA analysis and physical properties of, 2, 3
Petroleum assays, 4–9
 applications of, 4
 described, 4–5
 distillation range of fractions in, 4
Petroleum fractions, HDT reaction exothermality and, 273
Petroleum refinery, process scheme of, 17
Petroleum refining, 1–52
assay of crude oils, 4–9
distillate upgrading in, 17–29
properties of petroleum, 1–3
separation processes in, 10–17
upgrading of heavy petroleum feeds in, 29–52
Petroleum residue, in heavy oil upgrading, 31
Phase equilibria calculations, 148
Phases
in plug-flow reactor models, 125
in reactor models, 124
Phosphorus (P), hydrotreating catalysts supported on, 258
PI (proportional integral) control, of FCC units, 430–438
PI-IMC
closed-loop performance of regenerator control input using, 433
closed-loop performance of regenerator temperature using, 432
closed-loop performance of riser control input using, 433
closed-loop performance of riser temperature using, 432
Pilot-plant emulation, 453–459
methodology of, 456–457
Pilot-plant parameters, testing, 459
Pilot-plant reactors
axial dispersion models and, 120
holdup models and, 118–119
Pilot-plant scale equipment, 454
Pilot-plant scheme, description of, 454–456
Pilot-plant size, 454
Pilot-plant trickle-bed reactor, three-phase heterogeneous model of, 133
Pilot reactors, wall effects and, 84
Piston diffusion (PD) model, in axial mass dispersion, 74. See also PD (one-dimensional dispersion) model
Piston flow, perfect, 119
Platinum (Pt), in catalytic reforming, 18, 330, 331
Plug flow, in TBRs, 76
Plug-flow continuous reactor, 65–66
Plug-flow heterogeneous models, one-dimensional, 135–136, 137
Plug-flow kinetics, in continuous heterogeneous models, 132–133
Plug-flow models. See also Plug-flow reactor models
of coke formation, 142
heterogeneous adiabatic, 133
steady-state pseudohomogeneous, 128
Plug-flow one-dimensional heterogeneous model, four-parameter, 142–143
Plug-flow pattern, 63–64, 65
axial dispersion in, 119–121
in pseudohomogeneous models, 108–110
Plug-flow reactor models, 125. See also Plug-flow models
one-dimensional pseudohomogeneous, 128
Plug-flow reactors (PFRs), 63–64, 64–65, 65–66
axial mass dispersion in, 71
radial heat dispersion in, 67
wetting effects in, 80
Plug-flow TBR, modeling of, 127. See also Trickle-bed reactors (TBRs)
Plugging, in atmospheric distillation, 13
Polyaromatic hydrocarbons (PAHs), 222. See also Aromatic entries
Polyaromatics (PA). See also Polynuclear aromatics (PNAs)
in FCC products, 441
in hydrodearomatization, 253
Polylobes
catalyst bed pressure drop and, 268
internal concentration gradients and, 264–265
as particle shapes, 261, 262
total liquid holdup and, 263–264
Polymerization, 23–25
alkylation versus, 23
in delayed coking, 38
Polymerization unit, process scheme of, 24
Polynuclear aromatics (PNAs), removal via catalytic hydrotreating, 211
Pore diffusion effects, in pseudohomogeneous models, 108, 110
Pore fill-up, in catalyst-wetting models, 116, 117
Pore radius
average, 187
estimation of, 178
Porosity distribution, predicting, 156–157
Potassium (K), in aquaconversion, 44
Potassium carbonate, in acid gas sweetening, 15
Power-law approach, in kinetic models, 147–148
Power-law kinetic model, 123, 124, 125
Power-law kinetics
in continuous heterogeneous models, 132
in simulation of adiabatic diesel
hydrotreating TBR, 127
Power-law model
in hydrodeasphaltenization, 255, 256
for hydrodesulfurization, 249
for nitrogen removal, 251
Practical control law, 429
Practical stability, 429
Predicted mass fractions, 389–390
Predicted product yields, in kinetic-factor
scale-up simulation, 392
Predicted reactor temperature, profiles, 356
Prediction capabilities
of naphtha catalytic reforming models, 329
of reactor models, 105–106, 147
Predictive learning models, 145
Pressure
in catalytic reforming processes, 318
effect on kinetic parameters, 340–341, 350
Pressure balance modeling, mass fraction
differences during, 389
Pressure drop, 268
empirical correlations for predicting, 187
in HDT units, 218
Presulphiding, 259
Pretreatment
of crude oil, 10–12
of naphthas, 314
Primary distillation, 12. See also Atmospheric
distillation
Probabilistic models, 149
Process emulation, in a MAT laboratory
reactor, 442–443
Process parameters, use of models to predict,
361–364
Process simulation, 443
Process variables
in catalytic hydrotreating, 220–229
in catalytic reforming, 318–319
“Product coke,” 400–401
Product distribution functions,
Laxminarasimhan–Verma hydrocracking
model and, 100
Product quality, during hydrotreating, 260
Product recycle processes, in quenching, 233,
234
Products
axial profiles of, 405, 463
lumping of, 376–378
predicted yields of, 392
Product yield profiles, 462–463
Propagation, of fluid catalytic cracking, 27
Property–reactivity correlation, for
hydrodesulfurization of prehydrotreated
distillates, 123
Pseudocomponents, lump models based on,
94–98
Pseudo-first-order constants, in modeling
hydrocracking, 97
Pseudo-first-order kinetic model, 326
Pseudohomogeneous adiabatic model,
one-dimensional, 350
Pseudohomogeneous axial dispersion reactor
model, 128
Pseudohomogeneous first-order reactions, in
modeling hydrocracking, 97
Pseudohomogeneous heat balance, simplified,
175
Pseudohomogeneous models, 387–388
advantages and disadvantages of, 149–151
based on hydrodynamics, 150
based on kinetics, 149–150
continuous, 123–130
empirical correlations in, 121–123
generalized mass and heat balance
equations and, 175
heterogeneous models versus, 105
one-dimensional, 126
simple, 108–123
Pseudohomogeneous plug-flow models
to predict fixed-bed residue
hydroprocessing unit performance,
128–129
steady-state, 128
Pseudohomogeneous plug-flow reactor model,
one-dimensional, 128
Pseudohomogeneous radial heat dispersion
term, in generalized mass and heat
balance equations, 176
Pseudokinetic rate constants, 119
Pseudo rate constant, in hydrodynamic-based
models, 111
Pump-around system, in atmospheric
distillation, 12
Pump requirements, in packed bubble-flow
reactors with co-current gas–liquid
upflow, 62
Pure compounds, in reforming feed/products,
352–353
Quasi-steady-state model, 126
Quench(ing) approaches, 274–275
comparison of, 234–235
liquid and hydrogen balances for, 280
results of simulation of, 278–283
Quench box, operating principle of, 239–240
Quench fluids, advantages and disadvantages of, 234
Quenching, 230
 commercial HDT reactor simulation with, 273–283
Quenching alternatives, results of simulation for, 279
Quenching fluids, 230
Quenching methods, for trickle-bed reactors, 137
Quenching with liquids, 232–234
Quench position, effect in H₂ quenching, 281, 283
Quench rate, 277
Quench systems, 232–235
 designing, 230
Quench zones
 in HDT reactors, 239–241
 modeling, 275–278
Quick catalyst replacement (QCR) system, in hydroprocessing, 43
Radial aspect ratio, wall effects and, 83
Radial heat dispersion, 67–69
 in generalized heat balance equations, 167
Radial mass dispersion, 69–70
 in generalized mass balance equation, 161–162
 in generalized mass balance equation, 160
Radiation effects, in generalized mass and heat balance equations, 176
Radius of gyration/pore radius ratio, estimation of, 178
Ramage et al. kinetic model, 326–327, 328
Ramsbottom carbon, 393
Randomness, deterministic models and, 103
Random perturbations, deterministic models with, 103
Raschig rings, vacuum distillation and, 13
Rate-based stage model, 140
Rate constants, in hydrodearomatization, 253, 254
“Reaction mechanism,” of catalytic cracking, 374
Reaction models, first-order, 118
Reaction orders, for hydrodesulfurization, 248
Reaction patterns, in catalytic cracking, 374–376
Reaction rate, in holdup models, 113
Reaction rate constants, in Krane et al. model, 325
Reaction rate equations
 in catalytic reforming, 323
 for extended proposed kinetic model, 341–345
 for kinetic model, 333–334
Reaction rate expressions, in dynamic simulation, 286
Reaction rates, in catalytic reforming processes, 319
Reactions
 inside FCC reactors, 374
 in risers, 374–376
Reaction schemes
 for hydrocracking, 96
 for hydroprocessing, 92, 94
Reaction severity, in hydroprocessing, 41
Reaction standard Gibbs energy (ΔG°), 337
Reactivity function, Laxminarasimhan–Verma hydrocracking model and, 100
Reactor ΔT differences in, 361
 with quenching, 278
Reactor diameter, intrareactor temperature gradients and, 66, 67–69
Reactor internal hardware, 235–236, 237
Reactor internal hardware design, in hydrotreating, 231
Reactor model description
 for isothermal HDT reactor, 261–263
 for steady-state reactor operation, 269
Reactor modeling, 53–210, 261–304
catalyst particle sizes and shapes in, 261–263
 in catalytic reforming, 331–364
classification and selection of reactor models in, 102–106
description of reactors, 53–63
deviation from an ideal flow pattern in, 63–86
generalized, 155–176
heterogeneous models, 130–144
kinetic modeling approaches to, 86–102
mechanistic, 86
nomenclature related to, 203–210
Reactor models
advantages and disadvantages of, 146–149
commercial semiregenerative reforming, 350–351
description of, 106–155
detail required of, 106
difficulties of constructing, 107
one-dimensional heterogeneous, 134
one-dimensional pseudohomogeneous plug-flow, 128
Reactor models (cont’d)
 pseudohomogeneous axial dispersion, 128
 sophistication of, 105–106
Reactor operation, isothermal, 67–69
Reactor pressure, in catalytic reforming processes, 318
Reactors. See also Continuous reactors
 in Canmet process, 51
 in catalytic reforming unit, 315–316
 chloride-promoted fixed-bed, 18–21
 ΔT of, 356–357, 361
 described, 53–63
 in ebullated-bed hydroprocessing, 49
 fixed-bed, 56–62
 in fluid coking and flexicoking, 38–39
 in H-Oil process, 49
 in Hycon process, 48
 ideal flow, 63–66
 packed bubble-flow, 60–62
 slurry-bed, 50, 62–63
 types used in catalytic hydrotreating, 212
 wall effects in, 81–86
 wetting effects in, 77–81
Reactor-scale level, in continuous heterogeneous models, 132
Reactor-scale maldistribution, downflow TBRs and, 58
Reactor temperature, in hydrotreating, 223–225
Reactor-to-particle size ratio
 in radial mass dispersion, 69
 wall effects and, 78, 82, 84
Recirculation catalyst pilot plant, 453
Recycle gas quench, liquid quench versus, 234–235
Recycle gas rate, 225, 226–228
Refineries
 configuring for heavy crude oil, 1–2
 location of FCC unit in, 371–373
Refinery gas streams, acid gas removal from, 15
Refining, solvent, 13–14
Reformate, 18, 313
 experimental versus predicted molar composition of, 359
 molar composition profiles of, 355
Reformate composition, in commercial semiregenerative reforming reactor simulation, 351–356
Reforming, in atmospheric distillation, 12
Reforming experiments, 348
Reforming feed/products, pure compounds contained in, 352–353
Reforming reactions, thermodynamics of, 321–322
Regenerated catalysis, response of coke on, 396, 400
Regeneration
 in alkylation, 23
 in fluid catalytic cracking, 29
Regenerator control input, closed-loop performance of, 433, 436
Regenerator dense phase, mathematical model for, 412–413
Regenerator dynamics, 415–417
Regenerator flue gases, sulfur in, 402–409
Regenerator modes, 467
Regenerator reactor
 heat balance equation for, 427
 simulation of, 393–410
Regenerators, 368, 466–467
 in acid gas sweetening, 15
 closed-loop estimation of heat of reaction in, 437
 coke precursors and, 397, 398
 controllability of, 415–423
 energy balance equation for, 425
 in FCC units, 370–371
 risers and, 369
 simulation of the energy balance in, 409–410
Regenerator temperature, closed-loop performance of, 432, 434
Regenerator temperature behavior, during open-loop simulation, 430
Regenerator temperature inverse response, 416
Regenerator temperature response for increases of coke precursors, 397
 for step decreases of coke precursors, 400
Regenerator vessel, 455
Reid vapor pressure (RVP), 363
Relative gain array (RGA), 415
Relative gain array analysis, 411
Relative mass transfer resistances, 161
Relative reactor pressure drop, effect of particle size and shape on, 268
Research octane number (RON), 373
Residence-time distribution (RTD) patterns, in slurry-bed reactors, 63
Residence-time distribution studies, 119
Residue conversion (RC)
 carbon rejection for, 34
 in hydrogen addition and carbon rejection processes, 32
Residue desulfurization processes (RDS/VRDS), 42, 45
in hydroprocessing, 42–43
Residue fluid catalytic cracking (RFCC), 40. See also Catalytic cracking of residue (RFCC); Fluid catalytic cracking (FCC)
heavy oils and, 30–31
hydroprocessing versus, 40
with RDS/VRDS processes, 45
thermal cracking processes versus, 40
Residue HDS reaction, 124. See also Hydrodesulfurization (HDS)
Residue hydrocracking, 46–47
Resins
in crude oil, 2, 3
in heavy oils, 30
Restrictive factor, estimation of, 178
Retarded coking, 37–38. See also Delayed coking
Reynolds number (Re), 213, 261
in axial mass dispersion, 71, 75–76
in irrigation, 80
in plug-flow reactor models, 125–126
in radial mass dispersion, 69–70
wall effects and, 84
Rhenium (Re), in catalytic reforming, 18, 330, 331
Riccati equations, 427–428
Riser control input, closed-loop performance of, 433, 436
Riser outlet temperature (ROT), 405–409, 423. See also Riser temperature
coke, LP gas, and gasoline profiles as a function of, 407
product profiles as a function of, 465
sour gas, dry gas, and cycle oil profiles as a function of, 408
Riser reactor
dynamic behavior of, 426
engineering of, 368–369, 370
expressions for covariance errors for, 428
steady operation of, 387–390
Risers
analysis and design of, 466
axial profiles of feedstock and products in, 405
closed-loop estimation of heat of reaction in, 437
in kinetic-factor scale-up simulation, 390
reactions in, 374–376
Riser temperature, closed-loop performance of, 432, 435
Riser temperature behavior, during open-loop simulation, 431
Riser temperature response
for step decreases of coke precursors, 401
for step increases of coke precursors, 398
Rivulet liquid flow, in TBRs, 79–80
Rodriguez–Ancheyta model, 135
Romashkin crude oil distillates, kinetics of hydrocracking, 88–90
Ross holdup model, 112
Rules of thumb
for axial mass dispersion, 74, 75–76
for wall effects, 85
Runge–Kutta method, 287, 403
Salmi et al. model, 141–142
Salts
in crude oil desalting, 10–11
in crude oils, 10
Salvatore et al. model, 145
Sanchez et al. model, for hydrocracking, 93–94
SARA (saturate, aromatic, resin, asphaltene) analysis, 2, 3
Satterfield model, 111, 113, 115
Saturates, in crude oil, 3
Scale-up of catalytic cracking simulation, 387
of kinetic factors, 390–393
Schwartz–Roberts model, 119–120
Secondary distillation, 13. See also Vacuum distillation
Second control policy, 421–422
Second macroscopic level, modeling at, 105
Second operating policy, 422–423
Second-order kinetic models, 117–118
Sediments, in heavy oils, 30
Selenium (Se), removal in sour water treatment, 16
Semiempirical kinetic model, 328
Semiregenerative catalytic reforming process, 316
Semiregenerative reforming reactor model, commercial, 350–351
Semiregenerative reforming reactor simulation, commercial, 350–357
Semiregenerative units, 331
Separation
in alkylation, 23
during atmospheric distillation, 12
in fluid catalytic cracking, 29
in isomerization, 21
in solvent deasphalting, 14, 35, 36
during vacuum distillation, 13
Separation processes, in petroleum refining, 10–17
Sequential design of experiments (SDE), for Jiménez et al. model, 136
Sertić–Bionda et al. model, 128
Setpoint temperature, 166
Seven-lump kinetic scheme, 403, 460, 461, 466
Seven-lump models, for hydrocracking, 94–95, 96
Seven-lump scheme, 377
Shah et al. model, 125
Shah–Paraskos criterion, in axial mass dispersion, 75
Shah–Paraskos model, 121
Shangyinghu–Zhu catalytic naphtha reformer model, 328
Shinnar model classification, 104
Shokri et al. model, 136–137
Side reactions, during heterogeneous coke burning, 402–409
Sieving effects, 118
Silica (SiO₂), hydrotreating catalysts supported on, 258
Similar conditions, defined, 385
Single pseudohomogeneous models, 108–123
Simplified pseudohomogeneous heat balance, 175
Spiking agents, for activation of HDS catalysts, 259
Stage models, 140–141
 advantages and disadvantages of, 154
 rate-based, 140
Stagnant fraction, in reactor models, 106–107
Stagnant liquid phase (MD), in generalized mass balance equation, 164
Stagnant zones, 106–107
Standard conversions, 459
 instantaneous and averaged, 382
Standpipe, 369
Stangeland model, for hydrocracking, 95–97
Start-of-run (SOR), 126, 128
Start-of-run temperature (WABT\textsubscript{SOR}), 225
State estimation, actual control law using, 426–438
Steady-state continuous pseudohomogeneous models, 123–129
Steady-state heterogeneous models, 130–141
Steady-state models, dynamic models versus, 141–142
Steady-state one-dimensional differential equations, for continuous heterogeneous models, 132
Steady-state one-dimensional heterogeneous TBR model, 135. See also Trickle-bed reactors (TBRs)
Steady-state pseudohomogeneous plug-flow model, 128
Steady states
 in pseudohomogeneous models, 109
 in the region of maximum production of gasoline, 419
 in the region of maximum production of olefins, 418
Steady-state simulation, of hydrotreating reactor, 269–273
Steady-state trickle-bed reactor model, 133
Steam jet ejectors, vacuum distillation and, 13
Steam stripping, in solvent dewaxing, 14
Stefanidis \textit{et al.} model, 136
Stefan–Boltzmann constant, in generalized mass and heat balance equations, 176
Stefan–Maxwell equations, 165
Stijepovic \textit{et al.} catalytic naphtha reformer model, 328
Stochastic models, 103
Stoichiometric coefficient, of hydrocracking reactions, 97
Straight-run distillates
 in catalytic hydrotreating, 25
 upgrading to fuels, 17–29
Straight-run gas oil (SRGO), 214
Straight-run naphtha hydrodesulfurization, 55
Straight-run naphthas, 313–315
Strippers, 466
 in FCC units, 370
 modeling catalyst, 410–411
 risers and regenerators and, 369
Stripping, in fluid catalytic cracking, 29
Stripping units, in sour water treatment, 16
Structure-oriented lumping, 101–102
Sulfding, 259
Sulfur (S)
 in catalytic hydrotreating, 25, 27
 catalyst particle shapes and, 266–268
desulfurized middle distillates and, 121
 in ebullated-bed hydroprocessing, 49
 in HDS reactions, 245, 246–248
 in heavy oils, 30
 in hydroprocessing, 41
 liquid-phase molar concentration with quenching, 282
 in packed bubble-flow reactors with co-current gas–liquid upflow, 62
 in petroleum, 1, 2, 3, 6, 9
 predicting content of, 122
 in pseudohomogeneous models, 110
 in regenerator flue gases, 402–409
 removal via catalytic hydrotreating, 211
 solvent deasphalting and, 15
 in solvent extraction and solvent dewaxing, 13–14
 in spiking agents, 259
 in visbreaking, 39–40
Sulfur balance, 459–466
Sulfur compounds
 as hydrodearomatization inhibitors, 255
 in hydrotreating reactor steady-state simulation, 269
 removal in liquid sweetening, 16
Sulfur concentration, dynamic profiles of, 301
Sulfur content
 changes in, 298, 299
 effect of particle shape, LHSV, and temperature on, 267
 of FCC products, 403, 406, 440–441, 464
 LHSV and, 230
Sulfur conversion, 302
Sulfur dioxide (SO\textsubscript{2}), in catalytic hydrotreating, 25
Sulfur distribution, in FCC products, 441
Sulfuric acid (H\textsubscript{2}SO\textsubscript{4}), in alkylation, 21–23
Sulfur removal
 effect of H\textsubscript{2} partial pressure on, 223
 metal removal versus, 122
Sulfur-to-carbon (S/C) ratio, in heavy oil upgrading, 30
Support preparation, for catalysts, 258
Surface area, of catalyst particles, 261, 262
Surface of the solid phase (ME-MF), in
generalized mass balance equation, 164
Surface-wetting effects, in catalyst-wetting
models, 116
Suspended-bed reactors, 62
Suspended solids, removal during electrostatic
desalting, 11–12
Sweetened gas, 15
Sweetening, gas and liquid, 15–16
Swing reactor, in cyclic regeneration catalytic
reforming process, 316
Swing reactor system (SRS)
in hydroprocessing, 43
with Hyvahl-S process, 45, 46
Swirl cap tray, in HDT reactors, 238
SynSat technology, 216
Synthesis gas (syngas), in gasification, 36–37
System dynamics (SD) model, 137–138
Szczygiel catalytic naphtha reformer model,
327
Székely–Petersen criterion, axial mass
dispersion and, 71
Taskar–Riggs catalytic naphtha reformer
model, 327
TBP distillates, from Mexican crude oils, 9.
See also True boiling-point distillation
T_{dp}, control of, 425
Technology, in improving FCC process,
438–466
Temperature. See also Heat; Reactor
temperature; Riser outlet temperature (ROT); Viscosity–temperature
relationship
in atmospheric distillation, 12–13
in catalytic hydrotreating, 27
in catalytic reforming processes, 318–319
in catalytic reforming unit, 315–316
coke precursors and, 397, 398
in coking processes, 34, 35
effect in H2 quenching, 281, 283
effect on equilibrium constant, 337
effect on kinetic parameters, 340–341, 350
effect on sulfur content, 267
for FCC units, 369
in fluid catalytic cracking, 28–29
in fluid coking and flexicoking, 38–39
in gasification, 36–37
HDT reaction exothermality and, 273
for ideal flow reactors, 63–64
impurities removal and, 272
in Microcat-RC process, 51
in quench zone modeling, 276
in residue fluid catalytic cracking, 40
setpoint, 166
total liquid holdup and, 263–264
in visbreaking, 39
viscosity and, 5
Temperature change, of reactors, 356–357, 361
Temperature control, during hydrotreating,
230. See also Quenching entries
Temperature gradients
intrareactor, 66–69
in reactor models, 124
Temperature indicators (TIs), 224
Temperature profiles
in generalized heat balance equations,
166–168
for isothermal HDT small reactor, 293
Temperature stabilization, using extended
Kalman-type estimators, 429–438
10-lump scheme, 378
Termination, of fluid catalytic cracking, 27
Thermal conversion, of heavy oil, 34–35
Thermal cracking, 224
delayed coking as, 37
in delayed coking, 38
Thermal cracking processes
carbon rejection via, 34, 35
residue fluid catalytic cracking versus, 40
visbreaking versus, 40
Thermal hydrocarbon cracking, fluidized-bed cracking versus, 368
Thermodynamic equilibrium, 321
Thermodynamics
of catalytic reforming, 321–322
of hydrotreating, 243–246
in model limitations, 188
Thermowell (HD)
boundary conditions at, 174
in generalized heat balance equations, 169
Thiele modulus, 80, 263, 264, 386, 391
in catalyst-wetting models, 116–117
in kinetic-factor scale-up simulation,
390–391
Thiophene, removal in sour water treatment,
16
Three-lump kinetic model, for hydrocracking
reaction, 257
Three-lump model, for hydrocracking, 87–88,
92
Three-lump scheme, 377
Three-phase flow, in PBR operation, 53, 54,
55–56
Three-phase fluidized-bed reactors, 62
Three-phase heterogeneous model, of pilot-plant TBR, 133

Three-phase reactors
 ebullated-bed, 219–220
 modeling of, 141
Tin (Sn), in catalytic reforming reactions, 331
Toluene, in solvent dewaxing, 14. See also BTX (benzene, toluene, xylene)
Toluene insolubles (TIs), in Mexican crude oils, 8
Tortuosity factor, estimation of, 178
Total content of the heteroatom, in hydrotreating, 247–248
Total holdup (TH) model, 117
Total hydrogen consumption, 228
Total liquid holdup, 263–264
Total pore fill-up, in catalyst-wetting models, 117
Total pressure, in hydrotreating, 221–223
Toulhoat et al. model, 128–129
Traditional lumping, 86–98
 equations for kinetic models based on, 89
Training process, for artificial neural networks, 144
Trambouze simulations, in continuous heterogeneous models, 131
Transport phenomena, in catalytic cracking, 374–376
$T_{\text{regenerator}}$, regulating in partial combustion mode, 423–438
Trickle-bed reactors (TBRs), 53, 54, 55, 273, 298
 adiabatic hydroprocessing, 121
 advantages and disadvantages of, 294
 advantages and disadvantages of models of, 146–149
 advantages and disadvantages, with downflow co-current operation, 56–58
 atmospheric residue as feed in, 122
 axial mass dispersion in, 74, 76
 catalyst-wetting models of, 114–115, 116–117
 characteristics of, 213
 with co-current gas–liquid downflow, 56–58
 computational fluid dynamics models of, 138–139
 construction of, 56, 57
 continuous heterogeneous models for, 130–138
 continuous models of, 141–143
 with countercurrent gas–liquid flow, 58–60
 in countercurrent operation simulation, 293–294
 cross-flow models of, 143–144
 discrete models of, 139–141
 fixed-bed, 56–62
 gas phase mass balance equation for, 158–159, 162, 163
 holdup models of, 113
 ideal plug flow in, 64–65
 limitations on modeling, 188
 methods of quenching, 137
 mini-pilot-plant, 144
 models of, 107, 108, 109
 models of hydrodynamic-based, 111
 nonideal, 57
 plug-flow reactors versus, 65–66
 pseudohomogeneous models of, 124
 radial heat dispersion in, 67
 radial mass dispersion in, 69
 simulation of adiabatic diesel hydrotreating, 127
 stagnant zones in, 107
 wall effects in, 82, 84
 wetting effects in, 77–80
Trickle hydrotreaters, holdup models for, 112
Trickle operation mode, of PBRs, 53
T_{vap}, control of, 425, 426
True boiling point (TBP)
 of hydrocracking kinetic model pseudocomponents, 98
 in Laxminarasimhan–Verma hydrocracking model, 99
True boiling-point curves, of hydrocracking products, 94, 96
True boiling-point distillation, 4–5. See also TBP distillates
Tsamatsoulis–Papayannakos models, 125–126, 143–144
T-Star ebullated-bed process, 49–50
 H-Oil process versus, 49–50
t-van der Waals equation of state, 182
Two-dimensional mixing-cell reaction network models, 140
Two-dimensional pseudohomogeneous reactor model, 130
Two-lump models, 118
 for hydrocracking, 92
Two-phase flow, in PBR operation, 53, 54, 55
Two-region system, 369
Two-stage desalting, 11
Two-stage IFP hydrocracking, 47
Two-stage micro-TBR, 129. See also Trickle-bed reactors (TBRs)
Tyn–Calus correlation, in generalized mass balance equation, 165
Type HY catalysts, 368
Type X catalysts, 368
Type Y catalysts, 368
Typical feedstock (TF), 438, 442–443
versus hydrotreated feedstock, 443–453
UFQ quench ring, in HDT reactors, 240
“Ultraactive” catalysts, 386
Ultraflat quench (UFQ), in HDT reactors, 240–241
Ultra-low sulfur diesel (ULSD), 214
from advanced partial conversion unicracking, 47
from catalytic hydrotreating, 25
“Ultrastable” zeolite (USY), 368
Uncertainties, estimation of, 435
Uncertainty estimation, by Kalman filtering, 427–429
Uncertainty estimator, structure of, 428
Uneven irrigation, wetting effects and, 77
Unicracking, 47
Uniform liquid distribution, in HDT reactors, 238
Upflow co-current reactors, 60
Upflow operation mode, of fixed-bed reactors, 53, 55–56
Upflow packed-bubble columns, 60
Upflow reactors, 60
Upstream sectors, in heavy petroleum feed upgrading, 33
Used oil hydrotreating, in pilot TBR, 125
USY zeolite, 368
Vacuum distillates, kinetics of hydrocracking, 88–90
Vacuum distillation, 10, 13
Vacuum distillation units, in crude oil assays, 4–5
Vacuum gas oil hydrocracker, T-Star process as, 49–50
Vacuum gas oil (VGO) hydrocracking, 123, 149.
See also VGO entries
Jiménez et al. model and, 136
kinetic approaches to modeling, 87
Laxminarasimhan–Verma hydrocracking model and, 99
pseudocomponents in modeling of, 97
Rodriguez–Ancheyta model and, 135
Yamada–Goto model and, 135
Vacuum gas oils, vacuum distillation and, 13
Vacuum residua (VR)
in solvent deasphalting, 14
vacuum distillation and, 13
in visbreaking, 39
Vacuum residue hydrotreating
with Canmet process, 50–51
in ebullated-bed hydroprocessing, 49
with H-Oil process, 49
in hydroprocessing, 43
Hyvahl processes for, 45–46
with LC-fining process, 50
VRDS process for, 45
Vanadium (V). See also Hydrodemetallization of vanadium (HDV)
in crude oil, 3, 6
in heavy oils, 30
in hydroprocessing, 41
removal via catalytic hydrotreating, 211
residue desulfurization processes and, 45
in visbreaking, 39–40
Van den Bleek et al. criterion, wall effects and, 82
Van Hasselt et al. model, 132
Van Parijs–Froment model, 131
Vanrysselberghe–Froment model, 133
van’t Hoff equation, 250, 254
Vaporization, in delayed coking, 38
Vaporization effects, in kinetic models, 148, 149
Vapor-lift tray, in HDT reactors, 237–238
Vapor–liquid equilibrium (VLE), 110
in plug-flow reactor models, 125
Vargas–Villamil et al. model, 128
Veba Combi Cracking (VCC) process, 51
Venezuela, HDH Plus technology in, 51
Verstraete et al. model, 137
VGO feed quenching, 275, 277–278, 282–283.
See also Vacuum gas oil entries
VGO hydrotreating unit, 125, 131–132
Viñas et al. model, 325
Visbreaker naphtha, 315
Visbreaking, 39. See also Hydrovisbreaking
advantages and disadvantages of, 40
carbon rejection via, 34, 35
in delayed coking, 38
Hycar process and, 43
hydroprocessing versus, 39–40
Viscosity. See also Visbreaking
estimation of, 178
temperature and, 5
Viscosity–temperature relationship, in solvent extraction, 14
Vogelaar et al. model, 142
Voidage change, wall effects and, 83
Volatilization, in kinetic models, 148
Volume, of catalyst particles, 261, 262
Volume of solute, estimation of, 178
Voorhies exponential decay, coke precursors and, 397
Wall coverage capability, in HDT reactors, 238
Wall effects, 81–86
 equations for the criteria for, 78
 rule of thumb for, 85
Warńa–Salmi model, 141, 142
Washing, in acid gas sweetening, 15
Water. See also Aquaconversion; Hydro- entries
 in catalytic hydrotreating, 25
 in crude oil desalting, 10–11
 removal during electrostatic desalting, 11–12
 sour, 16
Water hydrolysis, 10
Water quenching, 275
Weekman–Nace lumping scheme, 376–377
Wei et al. catalytic naphtha reformer model, 328
Weighted-average bed temperature (WABT), 224–225
 in catalytic reforming processes, 318
Weighted-average inlet temperature (WAIT),
 in catalytic reforming processes, 318–319
Weight hourly space velocity (WHSV), 229
 in catalytic reforming processes, 319
Wetting
 complete, 77
 effective, 79
 incomplete, 77
 ineffective, 77–79
 partial external, 81
Wetting effects, 77–81
 equations for the criteria for, 78
 efficiency, catalyst, 79
 number \((W)\), 80
 Wide distillation range, fractions with, 86–94
 \(meta\)-Xylene (MX), 328. See also \(BTX\)
 (benzene, toluene, xylene)
 \(ortho\)-Xylene (OX), 328
 \(para\)-Xylene (PX), 328
Yamada–Goto model, 135
Ye et al. approach, in kinetic models, 146–147
Yield distribution function \([p(k,K)]\), in lump
 hydrocracking models, 99, 100
Yield to gasoline, 445, 447–450
Yield to products, values for, 404
Yield values, 462
Young–Finlayson boundary conditions, for
 heat and mass balance equations, 172–173
Young–Finlayson criterion
 in axial mass dispersion, 74–75
 in radial mass dispersion, 69, 70
Zahedi et al. model, 145–146
Zeolite catalysts, 368
 in residue desulfurization processes, 45
 in residue fluid catalytic cracking, 40
Zero dynamics, 412, 413–414
Zhorov et al. catalytic naphtha reformer
 model, 326