Contents

List of Figures xix

List of Tables xxiii

Preface xxv

Acknowledgements xxvii

1 Ubiquitous Computing: Basics and Vision 1

1.1 Living in a Digital World 1

1.1.1 Chapter Overview 2

1.1.2 Illustrative Ubiquitous Computing Applications 2

1.1.2.1 Personal Memories 3

1.1.2.2 Adaptive Transport Scheduled Service 5

1.1.2.3 Foodstuff Management 5

1.1.2.4 Utility Regulation 6

1.1.3 Holistic Framework for UbiCom: Smart DEI 7

1.2 Modelling the Key Ubiquitous Computing Properties 8

1.2.1 Core Properties of UbiCom Systems 9

1.2.2 Distributed ICT Systems 9

1.2.2.1 Networked ICT Devices 10

1.2.2.2 Transparency and Openness 10

1.2.3 Implicit Human–Computer Interaction (iHCI) 11

1.2.3.1 The Calm Computer 11

1.2.3.2 Implicit Versus Explicit Human–Computer Interaction 12

1.2.3.3 Embodied Reality versus Virtual, Augmented and Mediated Reality 12

1.2.4 Context-Awareness 13

1.2.4.1 Three Main Types of Environment Context: Physical, User, Virtual 14

1.2.4.2 User-Awareness 14

1.2.4.3 Active Versus Passive Context-Awareness 15

1.2.5 Autonomy 15

1.2.5.1 Reducing Human Interaction 16

1.2.5.2 Easing System Maintenance Versus Self-Maintaining Systems 16
1.2.6 Intelligence
1.2.7 Taxonomy of UbiCom Properties

1.3 Ubiquitous System Environment Interaction
1.3.1 Human–ICT Device Interaction (HCI)
1.3.2 ICT Device to Physical World Interaction (CPI)

1.4 Architectural Design for UbiCom Systems: Smart DEI Model
1.4.1 Smart Devices
1.4.1.1 Weiser’s ICT Device Forms: Tabs, Pads and Boards
1.4.1.2 Extended Forms for ICT Devices: Dust, Skin and Clay
1.4.1.3 Mobility
1.4.1.4 Volatile Service Access
1.4.1.5 Situated and Self-Aware
1.4.2 Smart Environments
1.4.2.1 Tagging, Sensing and Controlling Environments
1.4.2.2 Embedded Versus Untethered
1.4.2.3 Device Sizes
1.4.3 Smart Interaction
1.4.3.1 Basic Interaction
1.4.3.2 Smart Interaction

1.5 Discussion
1.5.1 Interlinking System Properties, Environments and Designs
1.5.2 Common Myths about Ubiquitous Computing
1.5.3 Organisation of the Smart DEI Approach

Exercises

References
2.3 Everyday Applications in the Virtual, Human and Physical World

2.3.1 Ubiquitous Networks of Devices: CCI

2.3.2 Human–Computer Interaction

2.3.2.1 Ubiquitous Audio-Video Content Access
2.3.2.2 Ubiquitous Information Access and Ebooks
2.3.2.3 Universal Local Control of ICT Systems
2.3.2.4 User-Awareness and Personal Spaces

2.3.3 Human–Human Interaction (HHI) Applications

2.3.3.1 Transaction-based M-Commerce and U-Commerce Services
2.3.3.2 Enhancing the Productivity of Mobile Humans
2.3.3.3 Care in the Community

2.3.4 Human-Physical World-Computer Interaction (HPI) and (CPI)

2.3.4.1 Physical Environment Awareness
2.3.4.2 (Physical) Environment Control
2.3.4.3 Smart Utilities
2.3.4.4 Smart Buildings and Home Automation
2.3.4.5 Smart Living Environments and Smart Furniture
2.3.4.6 Smart Street Furniture
2.3.4.7 Smart Vehicles, Transport and Travel
2.3.4.8 Pervasive Games and Social Physical Spaces

2.4 Discussion

2.4.1 Achievements from Early Projects and Status Today

2.4.1.1 Smart Devices
2.4.1.2 Smart Physical World Environments
2.4.1.3 Context-Awareness and Service Discovery
2.4.1.4 Wearable Smart Devices and Implants

Exercises
References

3 Smart Devices and Services

3.1 Introduction

3.1.1 Chapter Overview
3.1.2 Smart Device and Service Characteristics
3.1.3 Distributed System Viewpoints
3.1.4 Abstraction Versus Virtualisation

3.2 Service Architecture Models

3.2.1 Partitioning and Distribution of Service Components
3.2.2 Multi-tier Client Service Models
3.2.2.1 Distributed Data Storage
3.2.2.2 Distributed Processing
3.2.2.3 Client–Server Design
3.2.2.4 Proxy-based Service Access
3.2.3 Middleware
3.2.4 Service Oriented Computing (SOC)
3.2.5 Grid Computing
3.2.6 Peer-to-Peer Systems
3.2.7 Device Models

3.3 Service Provision Life-Cycle

3.3.1 Network Discovery
3.3.2 Service Announcement, Discovery, Selection and Configuration
3.3.2 Web Service Discovery

- 3.3.2.1 Web Service Discovery
- 3.3.2.2 Semantic Web and Semantic Resource Discovery

3.3.3 Service Invocation

- 3.3.3.1 Distributed Processes
- 3.3.3.2 Asynchronous (MOM) Versus Synchronous (RPC) Communication Models
- 3.3.3.3 Reliable versus Unreliable Communication
- 3.3.3.4 Caches, Read-Ahead and Delayed Writes
- 3.3.3.5 On-Demand Service Access
- 3.3.3.6 Event-Driven Architectures (EDA)
- 3.3.3.7 Shared Data Repository
- 3.3.3.8 Enterprise Service Bus (ESB) Model
- 3.3.3.9 Volatile Service Invocation

3.3.4 Service Composition

- 3.3.4.1 Service Interoperability

3.4 Virtual Machines and Operating Systems

- 3.4.1 Virtual Machines
- 3.4.2 BIOS
- 3.4.3 Multi-Tasking Operating Systems (MTOS)
- 3.4.4 Process Control
- 3.4.5 Memory Management
- 3.4.6 Input and Output

4 Smart Mobiles, Cards and Device Networks

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>115</td>
</tr>
<tr>
<td>4.1.1 Chapter Overview</td>
<td>115</td>
</tr>
<tr>
<td>4.2 Smart Mobile Devices, Users, Resources and Code</td>
<td>115</td>
</tr>
<tr>
<td>4.2.1 Mobile Service Design</td>
<td>116</td>
</tr>
<tr>
<td>4.2.1.1 SMS and Mobile Web Services</td>
<td>117</td>
</tr>
<tr>
<td>4.2.1.2 Java VM and J2ME</td>
<td>119</td>
</tr>
<tr>
<td>4.2.1.3 .NET CF</td>
<td>120</td>
</tr>
<tr>
<td>4.2.2 Mobile Code</td>
<td>121</td>
</tr>
<tr>
<td>4.2.3 Mobile Devices and Mobile Users</td>
<td>122</td>
</tr>
<tr>
<td>4.3 Operating Systems for Mobile Computers and Communicator Devices</td>
<td>123</td>
</tr>
<tr>
<td>4.3.1 Microkernel Designs</td>
<td>123</td>
</tr>
<tr>
<td>4.3.2 Mobility Support</td>
<td>123</td>
</tr>
<tr>
<td>4.3.3 Resource-Constrained Devices</td>
<td>124</td>
</tr>
<tr>
<td>4.3.4 Power Management</td>
<td>125</td>
</tr>
<tr>
<td>4.3.4.1 Low Power CPUs</td>
<td>125</td>
</tr>
<tr>
<td>4.3.4.2 Application Support</td>
<td>126</td>
</tr>
<tr>
<td>4.4 Smart Card Devices</td>
<td>126</td>
</tr>
<tr>
<td>4.4.1 Smart Card OS</td>
<td>127</td>
</tr>
<tr>
<td>4.4.2 Smart Card Development</td>
<td>128</td>
</tr>
<tr>
<td>4.5 Device Networks</td>
<td>128</td>
</tr>
<tr>
<td>4.5.1 HAVi, HES and X10</td>
<td>129</td>
</tr>
<tr>
<td>4.5.2 Device Discovery</td>
<td>129</td>
</tr>
<tr>
<td>4.5.3 OSGi</td>
<td>131</td>
</tr>
</tbody>
</table>

Exercises 132

References 133
5 Human–Computer Interaction

5.1 Introduction 135

5.1.1 Chapter Overview 135
5.1.2 Explicit HCI: Motivation and Characteristics 136
5.1.3 Complexity of Ubiquitous Explicit HCI 136
5.1.4 Implicit HCI: Motivation and Characteristics 137

5.2 User Interfaces and Interaction for Four Widely Used Devices 138

5.2.1 Diversity of ICT Device Interaction 138
5.2.2 Personal Computer Interface 139
5.2.3 Mobile Hand-Held Device Interfaces 140

5.2.3.1 Handling Limited Key Input: Multi-Tap, T9, Fastap, Soft keys and Soft Keyboard 140
5.2.3.2 Handling Limited Output 141
5.2.4 Games Console Interfaces and Interaction 142
5.2.5 Localised Remote Control: Video Devices 143

5.3 Hidden UI Via Basic Smart Devices 143

5.3.1 Multi-Modal Visual Interfaces 144
5.3.2 Gesture Interfaces 145
5.3.3 Reflective Versus Active Displays 147
5.3.4 Combining Input and Output User Interfaces 148

5.3.4.1 Touchscreens 149
5.3.4.2 Tangible Interfaces 149
5.3.4.3 Organic Interfaces 150
5.3.5 Auditory Interfaces 151
5.3.6 Natural Language Interfaces 151

5.4 Hidden UI Via Wearable and Implanted Devices 152

5.4.1 Posthuman Technology Model 152
5.4.2 Virtual Reality and Augmented Reality 152
5.4.3 Wearable Computer Interaction 153

5.4.3.1 Head(s)-Up Display (HUD) 154
5.4.3.2 Eyetap 154
5.4.3.3 Virtual Retinal Display (VRD) 154
5.4.3.4 Clothes as Computers 155
5.4.4 Computer Implants and Brain Computer Interfaces 155
5.4.5 Sense-of-Presence and Telepresence 157

5.5 Human-Centred Design (HCD) 157

5.5.1 Human-Centred Design Life-Cycle 158
5.5.2 Methods to Acquire User Input and to Build Used Models 159
5.5.3 Defining the Virtual and Physical Environment Use Context 160
5.5.4 Defining the Human Environment Use Context and Requirements 160

5.5.4.1 User Characteristics 160
5.5.5 Interaction Design 161
5.5.5.1 Conceptual Models and Mental Models 162
5.5.6 Evaluation 162

5.6 User Models: Acquisition and Representation 163

5.6.1 Indirect User Input and Modelling 164
5.6.2 Direct User Input and Modelling 164
5.6.3 User Stereotypes 165

5.6.4 Modelling Users’ Planned Tasks and Goals 165
5.6.5 Multiple User Tasks and Activity-Based Computing 166
5.6.6 Situation Action Versus Planned Action Models 167
5.7 iHCI Design 167
 5.7.1 iHCI Model Characteristics 167
 5.7.2 User Context-Awareness 168
 5.7.3 More Intuitive and Customised Interaction 168
 5.7.4 Personalisation 169
 5.7.5 Affective Computing: Interactions Using Users’ Emotional Context 171
 5.7.6 Design Heuristics and Patterns 171

Exercises 175
References 175

6 Tagging, Sensing and Controlling 179
 6.1 Introduction 179
 6.1.1 Chapter Overview 180
 6.2 Tagging the Physical World 180
 6.2.1 Life-Cycle for Tagging Physical Objects 181
 6.2.2 Tags: Types and Characteristics 181
 6.2.3 Physical and Virtual Tag Management 183
 6.2.4 RFID Tags 183
 6.2.4.1 Active RFID Tags 185
 6.2.4.2 Passive RFID Tags 185
 6.2.5 Personalised and Social Tags 186
 6.2.6 Micro Versus Macro Tags 187
 6.3 Sensors and Sensor Networks 187
 6.3.1 Overview of Sensor Net Components and Processes 187
 6.3.2 Sensor Electronics 189
 6.3.3 Physical Network: Environment, Density and Transmission 191
 6.3.4 Data Network: Addressing and Routing 192
 6.3.4.1 Sensor Networks Versus Ad Hoc Networks 193
 6.3.5 Data Processing: Distributed Data Storage and Data Queries 193
 6.4 Micro Actuation and Sensing: MEMS 194
 6.4.1 Fabrication 195
 6.4.2 Micro-Actuators 195
 6.4.3 Micro-Sensors 196
 6.4.4 Smart Surfaces, Skin, Paint, Matter and Dust 197
 6.4.5 Downsizing to Nanotechnology and Quantum Devices 198
 6.5 Embedded Systems and Real-Time Systems 199
 6.5.1 Application-Specific Operating Systems (ASOS) 200
 6.5.2 Real-Time Operating Systems for Embedded Systems 201
 6.6 Control Systems (for Physical World Tasks) 202
 6.6.1 Programmable Controllers 202
 6.6.2 Simple PID-Type Controllers 203
 6.6.3 More Complex Controllers 203
 6.7 Robots 204
 6.7.1 Robot Manipulators 205
 6.7.2 Mobile Robots 206
 6.7.3 Biologically Inspired Robots 206
 6.7.4 Nanobots 207
 6.7.5 Developing UbiCom Robot Applications 207

Exercises 209
References 210
7 Context-Aware Systems

7.1 Introduction

7.1.1 Chapter Overview
7.1.2 Context-Aware Applications

7.2 Modelling Context-Aware Systems

7.2.1 Types of Context
7.2.2 Context Creation and Context Composition
7.2.3 Context-Aware Adaptation
7.2.4 Environment Modelling
7.2.5 Context Representation
7.2.6 A Basic Architecture
7.2.7 Challenges in Context-Awareness

7.3 Mobility Awareness

7.3.1 Call Routing for Mobile Users
7.3.2 Mobile Phone Location Determination
7.3.3 Mobile User Awareness as an Example of Composite Context-Awareness
7.3.4 Tourism Services for Mobile Users

7.4 Spatial Awareness

7.4.1 Spatial Context Creation
7.4.1.1 Spatial Acquisition
7.4.1.2 Location Acquisition
7.4.2 Location and Other Spatial Abstractions
7.4.3 User Context Creation and Context-Aware Adaptation
7.4.3.1 Cartography: Adapting Spatial Viewpoints to Different User Contexts
7.4.3.2 Geocoding: Mapping Location Contexts to User Contexts
7.4.4 Spatial Context Queries and Management: GIS

7.5 Temporal Awareness: Coordinating and Scheduling

7.5.1 Clock Synchronization: Temporal Context Creation
7.5.2 Temporal Models and Abstractions
7.5.3 Temporal Context Management and Adaptation to User Contexts

7.6 ICT System Awareness

7.6.1 Context-Aware Presentation and Interaction at the UI
7.6.1.1 Acquiring the UI Context
7.6.1.2 Content Adaptation
7.6.2 Network-Aware Service Adaptation

Exercises

References

8 Intelligent Systems (IS)

With Patricia Charlton

8.1 Introduction

8.1.1 Chapter Overview

8.2 Basic Concepts

8.2.1 Types of Intelligent Systems
8.2.2 Types of Environment for Intelligent Systems
8.2.3 Use of Intelligence in Ubiquitous Computing
8.3 IS Architectures 249
 8.3.1 What a Model Knows Versus How it is Used 249
 8.3.1.1 Types of Architecture Model 250
 8.3.1.2 Unilateral Versus Bilateral System Environment Models 251
 8.3.1.3 Model Representations 252
 8.3.1.4 How System Models are Acquired and Adapt 252
 8.3.2 Reactive IS Models 252
 8.3.3 Environment Model-based IS 254
 8.3.4 Goal-based IS 255
 8.3.5 Utility-based IS 256
 8.3.6 Learning-based IS 256
 8.3.6.1 Machine Learning Design 257
 8.3.7 Hybrid IS 258
 8.3.8 Knowledge-based (KB) IS 260
 8.3.8.1 Production or Rule-based KB System 260
 8.3.8.2 Blackboard KB System 261
 8.3.9 IS Models Applied to UbiCom Systems 261
8.4 Semantic KB IS 263
 8.4.1 Knowledge Representation 263
 8.4.2 Design Issues 265
 8.4.2.1 Open World Versus Closed World Semantics 265
 8.4.2.2 Knowledge Life-cycle and Knowledge Management 266
 8.4.2.3 Creating Knowledge 266
 8.4.2.4 Knowledge Deployment and Maintaining Knowledge 267
 8.4.2.5 Design Issues for UbiCom Use 267
8.5 Classical Logic IS 268
 8.5.1 Propositional and Predicate Logic 268
 8.5.2 Reasoning 269
 8.5.3 Design Issues 270
8.6 Soft Computing IS Models 271
 8.6.1 Probabilistic Networks 271
 8.6.2 Fuzzy Logic 272
8.7 IS System Operations 272
 8.7.1 Searching 272
 8.7.2 Classical (Deterministic) Planning 274
 8.7.3 Non-Deterministic Planning 275
Exercises 276
References 276

9 Intelligent System Interaction 279
 With Patricia Charlton 279
9.1 Introduction 279
 9.1.1 Chapter Overview 279
9.2 Interaction Multiplicity 279
 9.2.1 P2P Interaction Between Multiple Senders and Receivers 281
 9.2.1.1 Unknown Sender and Malicious Senders 281
 9.2.1.2 Unknown Receivers 282
 9.2.1.3 Too Many Messages 282
 9.2.2 Interaction Using Mediators 282
 9.2.2.1 Shared Communication Resource Access 283
 9.2.2.2 Shared Computation Resource Access 283
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6</td>
<td>Artificial Life</td>
<td>336</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Finite State Automata Models</td>
<td>336</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Evolutionary Computing</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>339</td>
</tr>
<tr>
<td>11</td>
<td>Ubiquitous Communication</td>
<td>343</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>343</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Chapter Overview</td>
<td>344</td>
</tr>
<tr>
<td>11.2</td>
<td>Audio Networks</td>
<td>344</td>
</tr>
<tr>
<td>11.2.1</td>
<td>PSTN Voice Networks</td>
<td>344</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Intelligent Networks and IP Multimedia Subsystems</td>
<td>345</td>
</tr>
<tr>
<td>11.2.3</td>
<td>ADLS Broadband</td>
<td>346</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Wireless Telecoms Networks</td>
<td>346</td>
</tr>
<tr>
<td>11.2.5</td>
<td>Audio Broadcast (Radio Entertainment) Networks</td>
<td>347</td>
</tr>
<tr>
<td>11.3</td>
<td>Data Networks</td>
<td>347</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Network Protocol Suites</td>
<td>348</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Addressing</td>
<td>348</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Routing and Internetworking</td>
<td>349</td>
</tr>
<tr>
<td>11.4</td>
<td>Wireless Data Networks</td>
<td>350</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Types of Wireless Network</td>
<td>350</td>
</tr>
<tr>
<td>11.4.2</td>
<td>WLAN and WiMAX</td>
<td>352</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Bluetooth</td>
<td>353</td>
</tr>
<tr>
<td>11.4.4</td>
<td>ZigBee</td>
<td>353</td>
</tr>
<tr>
<td>11.4.5</td>
<td>Infrared</td>
<td>354</td>
</tr>
<tr>
<td>11.4.6</td>
<td>UWB</td>
<td>354</td>
</tr>
<tr>
<td>11.4.7</td>
<td>Satellite and Microwave Communication</td>
<td>354</td>
</tr>
<tr>
<td>11.4.8</td>
<td>Roaming between Local Wireless LANs</td>
<td>355</td>
</tr>
<tr>
<td>11.5</td>
<td>Universal and Transparent Audio, Video and Alphanumeric Data Network Access</td>
<td>356</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Combined Voice and Data Networks</td>
<td>357</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Combined Audio-Video and Data Content Distribution Networks</td>
<td>358</td>
</tr>
<tr>
<td>11.5.3</td>
<td>On-demand, Interactive and Distributed Content</td>
<td>360</td>
</tr>
<tr>
<td>11.6</td>
<td>Ubiquitous Networks</td>
<td>360</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Wireless Networks</td>
<td>360</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Power Line Communication (PLC)</td>
<td>361</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Personal Area Networks</td>
<td>362</td>
</tr>
<tr>
<td>11.6.4</td>
<td>Body Area Networks</td>
<td>362</td>
</tr>
<tr>
<td>11.6.5</td>
<td>Mobile Users Networks</td>
<td>363</td>
</tr>
<tr>
<td>11.6.5.1</td>
<td>Mobile Addresses</td>
<td>363</td>
</tr>
<tr>
<td>11.6.5.2</td>
<td>Single-Path Routing</td>
<td>364</td>
</tr>
<tr>
<td>11.6.5.3</td>
<td>Multi-Path Routing in Mobile Ad hoc Networks (MANETs)</td>
<td>364</td>
</tr>
<tr>
<td>11.7</td>
<td>Further Network Design Issues</td>
<td>365</td>
</tr>
<tr>
<td>11.7.1</td>
<td>Network Access Control</td>
<td>365</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Ubiquitous Versus Localised Access</td>
<td>366</td>
</tr>
<tr>
<td>11.7.3</td>
<td>Controlling Network Access: Firewalls, NATs and VPNs</td>
<td>367</td>
</tr>
<tr>
<td>11.7.4</td>
<td>Group Communication: Transmissions for Multiple Receivers</td>
<td>368</td>
</tr>
<tr>
<td>11.7.5</td>
<td>Internetworking Heterogeneous Networks</td>
<td>368</td>
</tr>
<tr>
<td>11.7.6</td>
<td>Global Use: Low-Cost Access Networks for Rural Use</td>
<td>369</td>
</tr>
<tr>
<td>11.7.7</td>
<td>Separating Management and Control from Usage</td>
<td>369</td>
</tr>
</tbody>
</table>
11.7.8 Service-Oriented Networks
11.7.8.1 Service-Orientation at the Network Edge 371
11.7.8.2 Content-based Networks 372
11.7.8.3 Programmable Networks 372
11.7.8.4 Overlay Networks 372
11.7.8.5 Mesh Networks 373
11.7.8.6 Cooperative Networks 375

Exercises 375
References 376

12 Management of Smart Devices 379
12.1 Introduction 379
12.1.1 Chapter Overview 380
12.2 Managing Smart Devices in Virtual Environments 380
12.2.1 Process and Application Management 380
12.2.2 Network-Oriented Management
 12.2.2.1 FCAPS 382
12.2.3 Monitoring and Accounting
 12.2.3.1 ICMP 384
 12.2.3.2 SNMP 384
12.2.4 Configuration Management 386
12.2.5 Security Management
 12.2.5.1 Encryption Support for Confidentiality, Authentication
 and Authorisation 388
 12.2.5.2 Securing the System and its Middleware 389
 12.2.5.3 Securing Access Devices 391
 12.2.5.4 Securing Information 392
12.2.6 Fault Management 393
12.2.7 Performance Management 394
12.2.8 Service-Oriented Computer Management
 12.2.8.1 Metrics for Evaluating the Use of SOA 395
 12.2.8.2 Distributed Resource Management and the Grid 396
 12.2.8.3 SLA Management of Services 397
 12.2.8.4 Policy-based Service Management 397
 12.2.8.5 Pervasive Work Flow Management for Services 398
12.2.9 Information Management
 12.2.9.1 Information Applications 399
 12.2.9.2 Rich Versus Lean and Soft Versus Hard Information 399
 12.2.9.3 Managing the Information Explosion 400
 12.2.9.4 Managing Multimedia Content 401
 12.2.9.5 Managing Lean and Hard Data Using RDBMSs 402
 12.2.9.6 Managing Metadata 403
12.3 Managing Smart Devices in Human User-Centred Environments 404
12.3.1 Managing Richer and Softer Data 404
12.3.2 Service Management Models for Human User and Physical Environments 404
12.3.3 User Task and Activity-Based Management 407
12.3.4 Privacy Management
 12.3.4.1 Biometric User Identification 408
 12.3.4.2 Privacy-Invasive Technologies versus Privacy-Enhanced Technologies 410
12.3.4.3 Entrusted Regulation of User Privacy to Service Providers 411
12.3.4.4 Legislative Approaches to Privacy 412
12.4 Managing Smart Devices in Physical Environments 412
12.4.1 Context-Awareness 412
12.4.1.1 Context-Aware Management of Physical and Human Activities 413
12.4.1.2 Management of Contexts and Events 413
12.4.2 Micro and Nano-Sized Devices 415
12.4.3 Unattended Embedded Devices 415
Exercises 416
References 416

13 Ubiquitous System: Challenges and Outlook 421
13.1 Introduction 421
13.1.1 Chapter Overview 421
13.2 Overview of Challenges 422
13.2.1 Key Challenges 422
13.2.2 Multi-Level Support for UbiCom Properties 423
13.2.3 Evolution Versus Revolution 424
13.2.4 Future Technologies 424
13.3 Smart Devices 425
13.3.1 Smaller, More Functional Smart Devices 425
13.3.2 More Fluid Ensembles of Diverse Devices 426
13.3.3 Richer System Interaction and Interoperability 427
13.3.3.1 Migrating from Analogue to Digital Device Interaction 427
13.3.3.2 Richer Digital Device Interaction 428
13.4 Smart Interaction 428
13.4.1 Unexpected Connectivity: Accidentally Smart Environments 428
13.4.2 Impromptu Service Interoperability 429
13.5 Smart Physical Environment Device Interaction 430
13.5.1 Context-Awareness: Ill-Defined Contexts Versus a Context-Free World 430
13.5.2 Lower Power and Sustainable Energy Usage 431
13.5.3 ECO-Friendly UbiCom Devices 433
13.6 Smart Human–Device Interaction 436
13.6.1 More Diverse Human–Device Interaction 437
13.6.2 More Versus Less Natural HCI 439
13.6.3 Analogue to Digital and Digital Analogues 439
13.6.4 Form Follows Function 440
13.6.5 Forms for Multi-Function Devices 441
13.7 Human Intelligence Versus Machine Intelligence 441
13.7.1 Posthuman: ICT Augments Human Abilities Beyond Being Human 443
13.7.2 Blurring of Reality and Mediated Realities 444
13.8 Social Issues: Promise Versus Peril 444
13.8.1 Increased Virtual Social Interaction Versus Local Social Interaction 446
13.8.2 UbiCom Accessible by Everyone 446
13.8.3 UbiCom Affordable by Everyone 447
13.8.4 Legislation in the Digital World and Digitising Legislation 448
13.9 Final Remarks 450
Exercises 451
References 452

Index 455