Contents

Series Preface XI
Preface of Volume 5 XV
List of Contributors XIX
Recommended Notation XXIII
EFCE Working Party on Drying: Address List XXIX

1 Impinging Jet Drying 1
Eckehard Specht
1.1 Application 1
1.2 Single Nozzle 4
1.3 Nozzle Fields 7
1.3.1 Arrays of Single Nozzles 7
1.3.2 Hole Channels 12
1.3.3 Perforated Plates 13
1.3.4 Nozzles for Cylindrical Bodies 14
1.4 Summary of the Nusselt Functions 16
1.5 Design of Nozzle Field 17
1.6 Conclusion 23
References 24

2 Pulse Combustion Drying 27
Ireneusz Zbicinski, Tadeusz Kudra, and Xiangdong Liu
2.1 Principle of Pulse Combustion 27
2.2 Pulse Combustors: Design and Operation 32
2.2.1 Pulse Combustors with Mechanical Valves 32
2.2.2 Pulse Combustors with Aerodynamic Valves 34
2.2.3 Frequency-Tunable Pulsed Combustors 35
2.3 Aerodynamics, Heat and Mass Transfer 36
2.3.1 Atomization 37
2.3.2 Heat and Mass Transfer 38
2.4 Modeling of Pulse Combustion Drying 42
2.5 Pulse Combustion in Drying 48
References 53
3 Superheated Steam Drying of Foods and Biomaterials 57
Sakamon Devahastin and Arun S. Mujumdar
3.1 Introduction 57
3.2 Principle of Superheated Steam Drying (SSD) 58
3.3 Atmospheric-Pressure Superheated Steam Drying 61
3.4 Low-Pressure Superheated Steam Drying (LPSSD) 69
3.5 Application of LPSSD to Improve the Quality of Foods and Biomaterials 76
3.6 Concluding Remarks 82
References 83

4 Intensification of Fluidized-Bed Processes for Drying and Formulation 85
Evangelos Tsotsas, Stefan Heinrich, Michael Jacob, Mirko Peglow, and Lothar Mörl
4.1 Introduction 85
4.2 Intensiﬁcation by Apparatus and Flow Design 86
4.2.1 Different Types of Spouted Bed 86
4.2.2 Operating Characteristics of Spouted Beds 93
4.2.3 Mass and Heat Transfer in ProCell Units 100
4.2.4 Discrete Particle Modeling 107
4.3 Intensiﬁcation by Contact Heating 112
4.3.1 General Principle 112
4.3.2 Main Effects and Influences 114
4.3.3 Further Remarks on Modeling 121
4.4 Further Methods of Intensiﬁcation 126
4.5 Conclusion 127
References 128

5 Intensification of Freeze-Drying for the Pharmaceutical and Food Industries 131
Roberto Pisano, Davide Fissore, and Antonello A. Barresi
5.1 Introduction 131
5.2 Exergetic Analysis (and Optimization) of the Freeze-Drying Process 133
5.3 Process Intensiﬁcation in Vacuum Freeze-Drying of Liquids 139
5.3.1 Regulation of Nucleation Temperature During Freezing 140
5.3.2 Use of Organic Solvents and Cosolvents 144
5.4 Atmospheric Freeze-Drying 146
5.5 Use of Combined Technologies for Drying Heat-Sensitive Products 150
5.5.1 Microwave-Assisted Drying 150
5.5.2 Ultrasound-Assisted Drying 152
5.6 Continuous Freeze-Drying 154
5.7 Conclusions 155
References 157
6 Drying of Foamed Materials 163

Ireneusz Zbicinski, Julia Rabaeva, and Artur Lewandowski

6.1 Introduction 163
6.2 Foam Properties 164
6.3 Foam Spray Drying 167
6.3.1 Processing Principles 167
6.3.2 Final Product Properties 172
6.4 Foam-Mat Drying 181
6.5 Summary 187

References 188

7 Process-Induced Minimization of Mass Transfer Barriers for Improved Drying 191

Henry Jäger, Katharina Schössler, and Dietrich Knorr

7.1 Introduction 191
7.2 Structural Characterization of Plant Raw Materials and Impact of PEF and Ultrasound 192
7.2.1 Methods for Analysis of Tissue Structure and Quantification of Cell Damage 192
7.2.2 PEF: Principles and Impact on Plant Tissue Structure 195
7.2.2.1 Introduction to PEF Technology 195
7.2.2.2 PEF: Impact on Plant Tissue Structure 196
7.2.3 Ultrasound: Principles and Impact on Plant Tissue Structure 199
7.2.3.1 Introduction to Ultrasound Technology 199
7.2.3.2 Ultrasound: Impact on Plant Tissue Structure 200
7.3 Pulsed Electric Field (PEF) Application as a Pretreatment 204
7.3.1 Osmotic Dehydration 205
7.3.2 Air Drying 206
7.3.3 Impact of PEF on Freezing and Freeze-Drying Behavior of Raw Materials 208
7.3.4 Quality Characteristics Affected by PEF Pretreatment 211
7.4 Contact Ultrasound for Combined Drying Processes 216
7.4.1 Ultrasound in Osmotic Dehydration 217
7.4.2 Contact Ultrasound in Air Drying 218
7.4.3 Contact Ultrasound in Freeze-Drying 221
7.4.4 Quality Characteristics Affected by Ultrasound-Combined Drying Processes 224
7.5 Conclusion 226

References 230

8 Drying Assisted by Power Ultrasound 237

Juan Andrés Cárceles, José Vicente García-Pérez, Enrique Riera, Carmen Rosselló, and Antonio Mulet

8.1 Introduction 237
8.2 Ultrasound 239
8.2.1 Ultrasound Waves

8.2.1.1 Power

8.2.1.2 Frequency

8.2.1.3 Attenuation

8.2.1.4 Acoustic Impedance

8.2.2 Effects of Ultrasound on Mass Transfer

8.3 Ultrasonic Equipment

8.3.1 Source of Energy

8.3.2 Transducers

8.3.3 Application Systems

8.3.3.1 Treatments in Liquid Media

8.3.3.2 Treatments in Gas Media

8.4 Influence of the Main Process Variables on Drying Intensification by Ultrasound

8.4.1 Ultrasonic Power Applied

8.4.1.1 Ultrasonic Field Measurements

8.4.1.2 Ultrasonic Intensity and Effects

8.4.1.3 Influence of the Characteristics of the Medium on Ultrasonic Intensity

8.4.2 Drying Air Temperature

8.4.3 Ultrasonic–Sample Interaction

8.5 Conclusions

References

9 Microwave-Assisted Drying of Foods – Equipment, Process and Product Quality

Yingqiang Wang, Min Zhang, and Arun S. Mujumdar

9.1 Introduction

9.2 Microwave-Assisted Drying of Foods

9.2.1 Basic Principles of Microwave-Assisted Drying

9.2.2 Energy Absorption by Products During Dielectric Heating

9.2.3 Dielectric Properties

9.2.4 Penetration Depth

9.3 Microwave-Assisted Drying Equipment

9.3.1 Microwave-Assisted Convective Drying Equipment

9.3.2 Microwave-Assisted Vacuum Drying Equipment

9.3.3 Microwave-Assisted Freeze-Drying Equipment

9.3.4 Microwave-Assisted Spouted Bed Drying Equipment

9.4 Microwave-Assisted Drying Process

9.4.1 Moisture Loss

9.4.2 Temperature Distributions

9.4.2.1 Temperature Variations at Fixed Levels of Microwave Power

9.4.2.2 Temperature Variations at Variable Levels of Microwave Power without Controlling Temperature
9.4.2.3 Temperature Change with Time-Adjusted Power in Feedback Temperature Control 299
9.4.3 Energy Consumption 299
9.4.4 Dielectric Breakdown 302
9.4.5 Changes in Dielectric Properties 304
9.4.6 Quality Changes in Food during Microwave-Assisted Drying 305
9.5 Microwave-Assisted Drying Process Control and Optimal Operation 308
9.5.1 Factors Controlling Microwave-Assisted Drying Processes 308
9.5.2 Optimal Operation Strategy 308
9.6 Concluding Remarks 310
References 312

10 Infrared Drying 317
German Efremov
10.1 Introduction 317
10.2 Radiation Heat Transfer 318
10.2.1 General Principles 318
10.2.2 Reflection, Absorption, and Transmission 319
10.2.3 Infrared Spectrum 321
10.3 Classification, Research, and Applications of Radiation Drying 323
10.3.1 Classification 323
10.3.2 Solar Drying 325
10.3.3 Infrared Drying 326
10.3.4 Catalytic Infrared Drying 329
10.4 Types of Radiators 332
10.4.1 General Considerations 332
10.4.2 Electric Radiators 333
10.4.3 Gas-Heated IR Radiators 335
10.5 Interaction between Matter and Infrared Radiation 337
10.5.1 General Relationships 337
10.5.2 Radiation Properties of Materials 339
10.6 Kinetics of Infrared Drying 342
10.7 Infrared Drying Combined with other Types of Drying 345
10.7.1 IR and Convective Drying 346
10.7.2 IR and Microwave Drying 347
10.7.3 IR and Freeze-Drying 348
10.7.4 IR with other Types of Drying 348
10.8 Conclusions 351
References 352

Index 357