Contents

Foreword 11

Notations and Abbreviations 15

Introduction to MATLAB 19
1 Variables and constants .. 22
 1.1 Vectors and matrices 22
 1.2 Predefined matrices .. 25
 1.3 Constants and initialization 26
 1.4 Multidimensional arrays 26
 1.5 Cells and structures 27
2 Operations and functions 29
 2.1 Matrix operations .. 29
 2.2 Pointwise operations 31
 2.3 Mathematical functions 32
 2.4 Matrix functions .. 34
 2.5 Searching elements using min, max, find, etc.
 functions .. 34
 2.6 Other useful functions 36
3 Programming structures 37
 3.1 Logical operators on boolean variables 37
 3.2 Program loops .. 38
 3.3 Functions .. 39
4 Graphically displaying results 39
 4.1 2D display .. 39
 4.2 3D display .. 43
 4.3 Notes on plotting a curve 44
 4.4 Animations .. 45
5 Converting numbers to character strings 47
6 Input/output ... 47
7 Program writing .. 48
 7.1 Developing and testing performances 48
 7.2 Various functions .. 49
 7.3 Using other languages 51
Part I Deterministic Signals

Chapter 1 Signal Fundamentals
1.1 The concept of signal 55
1.1.1 A few signals 56
1.1.2 Spectral representation of signals 57
1.2 The concept of system 60
1.3 Summary ... 62

Chapter 2 Discrete Time Signals and Sampling
2.1 Fundamentals of sampling 66
2.1.1 The Poisson formula 66
2.1.2 Perfect reconstruction 68
2.1.3 Digital-to-analog conversion 79
2.2 Plotting a signal as a function of time 80
2.3 Spectral representation 82
2.3.1 Discrete-time Fourier transform (DTFT) 82
2.3.2 Discrete Fourier transform (DFT) 86
2.3.3 Fast Fourier transform 91

Chapter 3 Spectral Observation
3.1 Spectral accuracy and resolution 95
3.1.1 Observation of a complex exponential 95
3.1.2 Plotting accuracy of the DTFT 98
3.1.3 Frequency resolution 98
3.1.4 Effects of windowing on the resolution 101
3.2 Short term Fourier transform 104
3.3 Summing up 108
3.4 Application examples and exercises 110
3.4.1 Amplitude modulations 110
3.4.2 Frequency modulation 112

Chapter 4 Linear Filters
4.1 Definitions and properties 115
4.2 The z-transform 120
4.2.1 Definition and properties 121
4.2.2 A few examples 122
4.3 Transforms and linear filtering 123
4.4 Difference equations and rational TF filters . 125
4.4.1 Stability considerations 128
4.4.2 FIR and IIR filters 129
4.4.3 Causal solution and initial conditions 130
4.4.4 Calculating the responses 133
4.4.5 Stability and the Jury test 134
4.5 Connection between gain and poles/zeros .. 135
4.6 Minimum phase filters ... 144
 4.6.1 All-pass filters ... 145
 4.6.2 Minimum phase filters ... 146
4.7 Filter design methods ... 149
 4.7.1 Going from the continuous-time filter to the discrete-time filter 149
 4.7.2 FIR filter design using the window method 153
 4.7.3 IIR filter design .. 164
4.8 Oversampling and undersampling .. 167
 4.8.1 Oversampling ... 167
 4.8.2 Undersampling ... 171

Chapter 5 An Introduction to Image Processing 175
 5.1 Introduction .. 175
 5.1.1 Image display, color palette .. 175
 5.1.2 Importing images .. 179
 5.1.3 Arithmetical and logical operations .. 181
5.2 Color spaces ... 183
 5.2.1 RGB coding ... 187
 5.2.2 HSV coding .. 188
 5.2.3 CMYK coding ... 189
 5.2.4 How to extract the RGB information from an image 191
 5.2.5 Converting from color to grayscale 191
5.3 Geometric transformations of an image .. 192
 5.3.1 The typical transformations ... 192
 5.3.2 Image registration ... 195
5.4 Frequential content of an image .. 198
5.5 Linear filtering .. 204
5.6 Other operations on images .. 213
 5.6.1 Undersampling ... 213
 5.6.2 Oversampling ... 215
 5.6.3 Contour detection ... 217
 5.6.4 Median filtering ... 221
 5.6.5 Image binarization .. 222
 5.6.6 Modifying the contrast of an image 227
 5.6.7 Morphological filtering of binary images 231
5.7 JPEG lossy compression ... 233
 5.7.1 Basic algorithm ... 234
 5.7.2 Writing the compression function 235
 5.7.3 Writing the decompression function 238
Part II Random Signals 241

Chapter 6 Random Variables 243
 6.1 Random phenomena in signal processing 243
 6.2 Basic concepts of random variables 244
 6.3 Common probability distributions 253
 6.3.1 Uniform probability distribution on \((a, b)\) 253
 6.3.2 Real Gaussian random variable 254
 6.3.3 Complex Gaussian random variable 255
 6.3.4 Generating the common probability distributions 256
 6.3.5 Estimating the probability density 259
 6.3.6 Gaussian random vectors . 260
 6.4 Generating an r.v. with any type of p.d. 262
 6.5 Uniform quantization . 268

Chapter 7 Random Processes 271
 7.1 Introduction . 271
 7.2 Wide-sense stationary processes . 272
 7.2.1 Definitions and properties of WSS processes 273
 7.2.2 Spectral representation of a WSS process 276
 7.2.3 Sampling a WSS process . 285
 7.3 Estimating the covariance . 288
 7.4 Filtering formulae for WSS random processes 296
 7.5 MA, AR and ARMA time series . 302
 7.5.1 Q order MA (Moving Average) process 302
 7.5.2 P order AR (AutoRegressive) Process 304
 7.5.3 ARMA \((P, Q)\) process . 311

Chapter 8 Spectra Estimation 313
 8.1 Non-parametric estimation of the psd 313
 8.1.1 Estimation from the autocovariance function 313
 8.1.2 Estimation based on the periodogram 317
 8.2 AR estimation . 325
 8.2.1 AR parameters . 325
 8.2.2 Estimating the spectrum of an AR process 329
 8.3 Estimating the amplitudes and the frequencies 330
 8.3.1 The case of a single complex exponential 330
 8.3.2 Real harmonic mixtures . 332
 8.3.3 Complex harmonic mixtures . 334
 8.4 Periodograms and the resolution limit 336

Chapter 9 The Least Squares Method 349
 9.1 The projection theorem . 349
 9.2 The least squares method . 353
9.2.1 Formulating the problem 353
9.2.2 The linear model 354
9.2.3 The least squares estimator 355
9.2.4 Identifying the impulse response of a channel 360
9.3 Linear predictions of the WSS processes 362
 9.3.1 Yule-Walker equations 362
 9.3.2 Predicting a WSS harmonic process 364
 9.3.3 Predicting a causal AR-P process 365
9.4 Wiener filtering 366
 9.4.1 Finite impulse response solution 368
 9.4.2 Gradient algorithm 369
 9.4.3 Wiener equalization 377
9.5 The LMS (least mean square) algorithm 379
 9.5.1 The constant step algorithm 379
 9.5.2 The normalized LMS algorithm 388
 9.5.3 Echo canceling 391

Part III Appendices 397

Chapter 10 Hints and Solutions 399
 H1 Signal fundamentals 399
 H2 Discrete time signals and sampling 399
 H3 Spectral observation 405
 H4 Linear filters 415
 H5 An Introduction to image processing 437
 H6 Random variables 460
 H7 Random processes 466
 H8 Spectra estimation 472
 H9 The least squares method 475

Chapter 11 Appendix 479
 A1 Fourier transform 479
 A2 Discrete time Fourier transform 480
 A3 Discrete Fourier transform 481
 A4 z-Transform 482

Bibliography 485

Index 489