Index

Note: Page numbers in *italics* refer to figures, those in **bold** refer to tables

Abaco Island chain (Little Bahama Bank) 76–87
daily forces 85
geomorphological features 87, 88
hurricane events 85–6
tidal deltas 76, 78–9
currents 86–7
tropical cyclones 77

Acropora (coral) 343

Acropora palmata (coral) 1

accretion rates 3–4, 6, 7, 10, **14–16**
depth 6
growth position 9
sea-level curve 5, 8–9
sea-level rise 12
aeolianites 114, 115, 120
southern Australia 143–4

Akah interval (Paradox Basin, USA) 241

Al Gharbi shoals (Arabian Gulf) 339

Landsat image analysis 350–4

algae
Arabian Gulf 343–4, 351, 352–3
brown
Arabian Gulf 343–4, 351
on dead coral 343–4
green
calcareous 53, 54
codicean 239
on dead coral 343–4
macrolaegae of Highborne Cay (Bahamas) 155
photosynthesis 54
red
calcareous 53, 54, 239
on dead corals 343

see also coralline algae;
phyllloid algal mounds

Ampelis (seagrass) 125, 126, 129–30, 136–9, 141
calcereous epiphytes 130, 134
Andros Island (Great Bahama Bank) 29, 30
erosion 77
facies patterns 40
laminites 221
mineralogy 42
seadiments 34, 220

Anisian–Ladinian carbonate platforms 217–18, 221
annelids 133, 137

Appalachian foreland basin 259–60, 261, 262–71
Blountian phase 260
phases 260, 261
Taconic phase 260

Arabian Gulf
algae 343–4, 351, 352–3
biostrome 348, 349, 350, 351
brown algae 343–4, 351
coral assemblages 339, 343–4, 345, 352–3
accretion rate 355
digraph 346–7
facies
distribution 342–7
patterns 338
Landsat image analysis 350–4
neighbourhood pattern 344–5
oyster banks 345
sand transition to hardground 348–50
seagrass 344, 345, 351, 352–3
sea-level 353–4, 356–7
spatial transition digraph 348
study area 338–40
study methods 340–2
transition probability matrix 348, 349, 352–3
aragonite
Belize–Yucatan carbonate platform 64
carbon isotopes
composition 49
variation 52–3
carbonate platforms 69
cementation 21, 22, 23
fibrous 22
fracture fill 331
Great Bahama Bank 29, 30, 33–4, 37–8, 38, 41–2, 49
stable isotopes 55
Kuwait ramp area 67, 70
mud-dominated sediments 42
oxygen isotope composition 49
southern Australia 144
Arabulce mountains (Ardmore, Oklahoma) 363
Arcadia Formation (Tampa Bay, Florida) 181, 184, 186, 187
burying 192
Ari atoll (Maldive archipelago) 62, 63
stable carbon and oxygen isotopes 66–7, 68
Atar Group (Mauritania) 277–93
age 280–1
biostromes 277, 278–9, 281–6
development 281–2, 291
parasequence development 286–91, 292
carbon isotope data 281
cratonic deposition
regime 286–91
gеological setting 279–81
interstratolitic material 285, 287
deposition variability 290
lithology 281–2
marine cement 285–6, 287
Atar Group (Mauritania) (contd.)
platy breccia facies 290–1
reef
development 292
elements 282–6
margins 292
sea-level history 286–8
sequence stratigraphy 281–2
siliciclastics 280
stratigraphy 279–80
stromatolites 277–93
morphology 278
Atlantis 19, 20, 21
Australia, southern 123–44
continental shelf 124
oceanography 126–7
seagrasses 124–6
sediment deposition 142–4
sedimentology 127
study area 125, 126–7
study methods 127–9
back-beach areas 22
back-bulge basin 258, 269
bacteria
cyanobacterial mats 297, 298
halophilic aerobic 167
sulphate-reducing 168, 175–6
Bahamas
dune ridges 301
hurricane impacts on carbonate systems 75–88
see also Great Bahama Bank
Baicalia (stromatolite) 278, 281, 283, 284–5, 286
parasequences 289, 292
sea-level fall 291
transition from
Conophyton 290
Barker Creek interval
(Paradox Basin, USA) 241
beachrock 19–26
anthropogenic origins 19–22, 25–6
carbon dating 20, 21, 24
cementation 21, 22, 23
climate 212
creation 21–2
exposure by hurricanes 24
formation 22–6
natural origins 19–22
pattern 20, 21
Belize Barrier Reef 62, 63
stable carbon and oxygen isotopes 66, 67, 69
Belize–Yucatan carbonate platform
62, 63
bioturbation 71
sediments 64, 65, 66
stable carbon and oxygen isotopes 69
Bellview formation
(Kentucky) 369, 370–1
K-bentonites, Cincinnati Arch peripheral bulge (Taconic Orogeny) 266, 269
Bermuda Triangle 21
Berry Islands (Great Bahama Bank) 117–18, 301
Bimini Road (Bahamas) 19–26
anthropogenic origins 19–22
carbon dating 20, 21
creation 21–2
J-shaped structure 24
natural origins 19–22
pattern 20, 21
bioerosion 1, 2, 8, 10–12, 320
bioherms, accretion 355
biostromes
Arabian Gulf 348, 349, 350, 351
Atar Group (Mauritania) 277, 278–9, 281–6
development 281–2, 291
parasequence development 286–91, 292
Cincinnati Arch peripheral bulge (Taconic Orogeny) 265
Conophyton–Jacuphyton 277–93, 281
Lexington Limestone
(Cincinnati Arch) 265
stromatolite 277, 278–9, 281–6
development 281–2, 291
parasequence development 286–91, 292
bioturbation
Belize–Yucatan carbonate platform 71
carbonate sediments 71, 72
layering 300–1
birds-eye structures 21
Biscayne Bay (Florida) 300, 301
bivalves, bioerosion 11
Boiling Hole (Great Bahama Bank) 118, 119, 120
breccia facies 290–1
Brejo do Espinho Lagoon (Brazil) 167–76
carbonates
morphology 173, 174
precipitation mechanism 173–4
climate 169
dolomite formation 175–6
geological setting 168–9
hydrology 168
lagoon water 169
microbial mat formation 169
mineralogy 170–1
sediments 170–1
study methods 169–70
brown algae
Arabian Gulf 343–4, 351
on dead coral 343–4
bryozoans 133, 135, 136, 140–1
Cincinnati Arch peripheral bulge (Taconic Orogeny) 265
Bu Hasa Field
(Middle East) 311, 313, 314–15, 317
Bull Island (South Carolina) 26
byrozoans 133, 135, 136
δ13C
Brejo do Espinho Lagoon (Brazil) 170, 171, 172
facies on Great Bahama Bank 47–56
modern sediments 61–72
stratigraphic correlation 71–2
see also carbon stable isotopes
Caesar’s Creek Bank 300
calcification
light-mediated 8
limitations 12
reef accretion 11
calcite
spar 286, 287
see also high-magnesium calcite (HMC); low-magnesium calcite (LMC); magnesium-calcite
calcium carbonate precipitation 22
calcium–magnesium carbonates 175–6
see also dolomite; microbial dolomite
caliche soil formation 364, 365

Callianassa (burrowing shrimp) 71
Cape Sable (southwest Florida) 91–109
canals 92–3, 97–8
sediment source 107–8
changes 97–8
climate 93–4
coastal dynamics 105–6
creeks 97–8
depositional environments 95
flood velocities 101–2
geomorphological feature infilling 108
geomorphological patterns 98–100
grain-size of sediments 100–1, 102
historical stresses 97–8
hurricanes 98
hydrodynamic data 96–7
low-energy coastal system 92
rapid recycling 106–8
saline intrusion 93, 98
salinity 102
sea-level 105–6
oscillations 108
sediment 98–103, 104, 105
accumulation rate 98–100
characteristics 100–1
complex transport pathways 106–8
concentration 102, 103, 104
dynamic processes 101–3, 104, 105
sampling 95–6
suspended 102–3, 104, 105
sedimentary units 95
shallowing-upwards successions 108
study area 92–3
tidal prism 94
winds 94
Capitan reef (Texas/New Mexico) 332
carbon
total organic 170, 171
see also dissolved inorganic carbon (DIC)
carbon isotope stratigraphy 55–6
carbon stable isotopes
Atar Group (Mauritania) 281
Belize–Yucatan carbonate platform sediments 64, 65, 66
Brejo do Espinho Lagoon (Brazil) 170, 171, 172
facies on Great Bahama Bank 47–56
modern sediments 61–72
study methods 62, 64
carbonate(s)
aerobic process in mineral formation 176
anaerobic process in mineral formation 168, 176
biological processes 301
cementation 320
dissolution 322
early load-induced fracturing 327–35
erosion 320–1
frame-building 320, 322
grains 299
herringbone 286, 287, 290–1
interstromatolitic detrital 285, 287
laminated 297
microbial 150
microspar 285
molar-tooth 281
morphology 173, 174, 175
organic-rich 91–109
Paradox Basin (southwestern USA) 241
precipitation mechanism 173–4
production in falling-stage systems tract 307, 310–11, 312, 313, 321, 322
rapid recycling 91–109
study area 92–3
tropical 305–23
lithification 319
marine erosion 320
siliciclastic system differences 322
subaerial erosion 319–20
carbonate factory 200–1
erosional destruction 320
Florida Bay 101
Great Bahama Bank 117, 221
temperate water seagrass 142–4
tropical 322
carbonate mineralogy
Great Bahama Bank 32, 56
stable isotopes 49, 50, 52, 56
carbonate platforms
Anisian–Ladinian 217–18, 221
aragonite 69
carbon isotope variation 48, 52–3
cyclic succession 215–17
drowning by siliciclastics 194
facies mosaics 199–211
hurricane effects 78–9
karst sub-basins 179–94
lagoons 41
ooloid shoals 203, 205, 208, 209
accumulation rate 210
prograding margins 332, 334
sea-level high-frequency changes 205
low-amplitude changes 207
sedimentary record complexity 200, 203, 205
sedimentation rates 210
siliciclastics 199, 209
drowning 194
stable isotopes 56, 61–72
wave effects 83–4
wave propagation 81
wave-dominated systems 88
see also Belize–Yucatan carbonate platform; facies mosaics of carbonate platforms; facies on Great Bahama Bank; Latemar Platform (Italy)
carbonate ramps
wave effects 82–3
wave propagation 81
carbonate systems see hurricane(s), carbonate system impacts
CARBONATE-3D modelling program 306, 307
carbonates, cool-water 123–44
accumulation rates 141–2
calcareous epiphytes 130, 131, 132, 133, 134–7, 139
production 141, 142
data analysis 128–9
erosion 320–1
Index

carbonates, cool-water (contd.)
laboratory methods 128
nutrient effects 141
oceanography 125, 126–7
production 141
sedimentation 123–44
sedimentology 127
study area 125, 126–7
study methods 127–9
celestite 330–1
cement cylinders 21
cementation 21, 22, 23
Bahamas 328
carbonates 320
intertidal 22–4
cenntennial periodicities 233
Chaetetes (coral) 245, 265
Charlotte Harbor (Florida) 179–94
deltaic lobe 187, 190
location 182
prograding clinoforms 187–8
siliciclastic repositories 180
siliciclastic sequences 187
sub-basin 186–8, 189–90
formation/filling 188, 190–1
high-sediment discharge rivers 193
Chinaman Creek (southern Australia) 127, 136
seagrass biomass 139
Chinchorro (Belize–Yucatan) 62, 63
peloids 69, 71
sediment carbon and oxygen stable isotopes 64, 65, 66
stable carbon and oxygen isotopes 69
Cimon del Latemar (Italy) 362, 363–4, 365
Cincinnati Arch peripheral bulge (Taconic Orogeny) 255–6, 259–60, 261, 262–71
back-bulge basin 269
backstripping analysis 267–8
basement control on location 269–70
basement fault reactivation 270
biostromes 265
Blountian phase 262, 264, 265, 266
faults 267, 270
grainstones 264–5, 271
heterogeneity 269, 270
K-bentonites 269
lateral sedimentary variation 270–1
lithographic units 261
organic buildups 265, 269
peridial facies 260, 262–5, 269, 271
peritidal islands 270–1
persistance 269
position 260, 262–7
scaling 268–9
sedimentation 256
seismites 267, 270
shallow-water sedimentation 269
shoal-water facies 264–5, 269, 271
structural features 267
subsidence history 267–8, 271
syndepositional faults 270
Taconic phase 262–4, 264–5, 266–7
tectonic activity evidence 267–8
response variations 270–1
unconformities 266–7, 269
climatic circulation
carbonate platform lagoons 41
facies on Great Bahama Bank 31, 32
clays, facies mosaics of carbonate platforms 206
cleavage, spaced solution 302–3
climate
beachrock formation 22
carbonate platforms 208
cyclic processes 230, 231
depositional environment effects 199–200
greenhouse conditions 231
icehouse conditions 230–1
Little Bahama Bank 77
Swiss Jura 208
clinothem package 327
Conophyton (stromatolite) 277, 278, 281, 282–3, 284
aggradational growth 288
branched 289–90, 291
interstromatolitic detrital carbonate 285, 287
morphology variation 288
reefs 288, 292
sea-level change 291
storm damage 288
tops exposure 288
wave erosion 288
coralline algae 133, 134–5, 140
Highborne Cay (Bahamas) 153, 154, 155, 159, 160
sediment production 143
Stocking Island (Bahamas) 151, 159, 160
corals
accretion rate 355
massive species 6, 7
Arabian Gulf assemblages 339, 343–4, 345, 352–3, 355
aragonite source 53, 54
basal attachments 9
Belize Barrier Reef 66, 67
data collection methods 10
depth 6–7, 8
maximum 2
measurement 4
paleoaeawater 4–5
growth
position 9
rate 8, 9
Highborne Cay (Bahamas) 153, 154, 155
chronology 157–8
demise of reef 158, 162
sampling 156
sediment effects 161
underlying stromatolites 156, 162
uranium–thorium dating 157
light-mediated calcification 8
massive species 3, 6, 7
palaeeawater depth 4–5
rubble beds 344
scleractinian 53, 54, 155
sea-level curve 5, 8–10
rise 7
skeleton breakdown 344
Stocking Island (Bahamas)
demise of reef 162
sediment effects 161
Swiss Jura 208–9
tabulate 265
taphonomic status 340
zooxanthellae in southern Australia 127
Index 377

dolomite 167
concretion formation 175
diagenesis 172
ferroan cement 286, 287
layering 302
Mendola Pass (Italy) 222, 223
spheroidal/spherulites 174–5
stoichiometric 175
see also microbial dolomite
dunes
Halimeda (macroalgae)
growth 239, 240
oid on carbonate platforms 205–6
ridge growth 301
Dunham facies classification 42, 76, 219
modified 32, 47, 49, 50
deltas see tidal deltas
depositional slope angle 307, 309, 321
Desert Creek interval (Paradox Basin, USA) 241
Diadema antillarum (urchin) 11
diagenesis
beach formation 22
Belize–Yucatan carbonate platform 66
carbonate sediments 72
lagoonal 71
dolomite 172
layering 302–3
vadose 364, 365
Diploria (coral) 158, 161
discrete facies rank
 technique 361–5
sampling interval 363, 364
Dismal Lakes Group 278
dissolved inorganic carbon (DIC) 49, 53, 54, 55
fractionation 55–6
diagenesis
beach formation 22
Belize–Yucatan carbonate platform 66
carbonate sediments 72
lagoonal 71
dolomite 172
layering 302–3
vadose 364, 365
Diadema antillarum (urchin) 11
diagenesis
beach formation 22
Belize–Yucatan carbonate platform 66
carbonate sediments 72
lagoonal 71
dolomite 172
layering 302–3
vadose 364, 365
Diadema antillarum (urchin) 11
siliciclastic transport pathway 182, 191–3
study area 182
Tertiary siliciclastic sediment transport 179–94
fluvial point-bar sequences 299
8-Foot Rapids (Paradox Basin, USA) 246
phyloidal algal mounds 244–5, 250–1
foraminifera
Belize Barrier Reef 66, 67
benthic 133, 135–6, 137
sediment production 143
lagoonal sediments 62
Rasdhoo atoll (Maldive archipelago) 67, 68
southern Australia 127
forced regressive wedges 312–13, 322
foreland basins
elastic models 256, 257, 268
lithosphere deformation 256
loading location 256
parameters 257–8
peripheral bulge 255–6
behaviour 256–7
elastic plates 258
scaling 257–8
uplift 258
stratigraphic modelling 255, 256–7
subsidence 258
viscoelastic modelling 268
width 257–8
Fourier power spectra 370–1
fractures
characterization 329
fill 330–1
host rock lithology 330–1
inclination 329–30, 331, 332
intervals 327–8, 330, 333
length 332
lithified carbonates 327–35
loading model 331–2, 334
orientation 329, 331, 333
origins 331–3, 334
planes 329, 331, 333
Sr-isotope ratio on fill 329
uniaxial deformation 329
fracturing, early load-induced 327–35
ancient analogues 332–3
core data 329–30
fracture origins 331–3, 334
interruption beds 328, 330, 331, 332, 334
laboratory studies 332
study methods 329
frame-building, carbonates 320, 322
Garrard Siltstone (Cincinnati Arch) 264
Glovers Reef (Belize–Yucatan) 62, 63
sediment carbon and oxygen stable isotopes 64, 65, 66
stable carbon and oxygen isotopes 69
grain-size determination methods 96
distribution on facies on Great Bahama Bank 29, 31, 32
results 34, 35–6
variations 33
sediments 297–9
Cape Sable (southwest Florida) 100–1, 102
grainstone 34
Cincinnati Arch peripheral bulge (Taconic Orogeny) 264–5, 271
discrete facies rank technique 363
facies on Great Bahama Bank 42, 44, 49
stable isotopes 51
Latemar Platform (Italy) 218, 219
Lexington Limestone (Cincinnati Arch) 264
Mendola Pass (Italy) 220
oolitic 115, 116, 117
peloid-dominated 42
grapestones, Great Bahama Bank 32, 34, 42
graph theory 342
graves, skeletal 299–300
Great Bahama Bank carbonate factory 117, 221
cementation 328
cliffs of windward islands 115
early load-induced fracturing 327–35
facies on carbonate mineralogy 32, 33–4, 37–8, 38, 41–2, 49
maps 29–42, 43–4
surface sediment variation 47–56
hurricanes 114
interruption beds 328, 330, 331, 332, 334
oolite production 113–14
narrow outer platform 115–17
oolite deposition models 115–20
oolitic limestone 113–21
oolitic ridge 116, 117
recessive erosion 118
sediment transport vectors 114
seismic reflection profiling 190, 191
storms 114
study methods 115
windward islands 114–15
Great Pearl Bank (Arabian Gulf) 339
green algae
calcareous 53, 54
codicean 239
on dead coral 343–4
greenhouse climate 231
Gregory Town ridge (Great Bahama Bank) 117, 118
Grenville front (Cincinnati Arch) 269, 270
grey-scale analysis outcrop photographs 365–71
Fourier power spectra 370–1
lateral variability of data 368–71
outcrop angle 366–8
Gulf St Vincent (southern Australia) 127
Habshan Formation (Oman) 312, 313, 314
Halimeda (macroalgae) 34
Belize Barrier Reef 66, 67
Belize–Yucatan carbonate platform 66
dunes 239, 240
Ivanovia green alga relationship 250
lagoonal sediments 62
Quicksands (Florida) 247, 249, 250
Halimeda (macroalgae) (contd.)
Rasdhoo atoll (Maldive archipelago) 67, 68
sand waves 239, 240, 247
Halodule uninervis (seagrass) 344, 351
H. ovalis 344
Hawthorn Group (Tampa Bay, Florida) 186
siliciclastic transport pathway 192
herringbone carbonate 286, 287, 290–1
Halophila (seagrass) 351
H. ovalis 344
Highborne Cay (Bahamas) 149, 150–63
coralline algae 153, 154, 155, 159, 160
corals 154, 155
chronology 157–8
demise of reef 158, 162
sampling 156
underlying stromatolites 156
uranium–thorium dating 157–8
demise of reef 158, 162
underlying stromatolites 156
uranium–thorium dating 157
Hickman–Gilbert model 268
Honaker Trail Formation (Paradox Basin, USA) 241, 242
Ikonos map 340, 342, 343
Jacek (green alga) 239, 247, 250
Jacuphyton (stromatolite) 277, 278, 283, 285, 287
interstromatolitic detrital carbonate 285, 287
parasequences 289
reef intervals 292
sea-level rise 288, 291
Jebel Ali carbonate ramp (Persian gulf) 342–7
Jessamine Dome (Cincinnati Arch) 260, 262, 263–4, 265
backstripping analysis 267–8
faults 267
sedimentation 271
shallow-water sedimentation 269
stratigraphy 271
subsidence 267–8
unconformities 266
Joulters Cays (Great Bahama Bank) 115, 116
J-shaped structure formation 24, 26
karst sub-basins 179–94
formation/filling 188, 190–1
geological significance 193–4
high-sediment discharge rivers 193
K-bentonites, Cincinnati Arch peripheral bulge (Taconic Orogeny) 266, 269
Kentucky River Fault system 267
Key Largo Formation (Florida) 193
keystone vugs 21
Knox unconformity 259
Kope formation (Kentucky) 369, 370–1
Kuwait ramp area 62, 63
aragonite 67, 70
peloids 71
stable carbon and oxygen isotopes 67, 69, 70

Labor Day Hurricane, Cape Sable (southwest Florida) 98

lagoons
 carbonate platforms 41
 sediments 62, 71
 water depth 155
 see also Brejo do Espinho Lagoon (Brazil)

Lake Ingraham (southwest Florida) 95, 96, 98

 sedimentation patterns 98–100
 sediments
 sink 103
 source 107

Lake Wales Ridge (Florida) 182, 192, 193

laminae 297

laminates
 Andros Island (Great Bahama Bank) 221
 Mendola Pass (Italy) 221

Landsat image analysis, Arabian Gulf 350–4

Landsat map 340

Latemar cycles 215–35

 bi-lithological 362
 cap 229
 coherency analysis 227
 cross-phase spectral analysis 227, 228
 depositional 229–34
 facies 218–21
 Fischer plots 226, 227
 harmonic analysis 226–7
 intertidal facies 218–19
 Mendola cycle comparison 221
 Milankovitch orbital forcing 216, 231–3
 millennial periodicities 233–4
 process recording 229
 running cross-correlation analysis 224, 225, 226
 shallowing-upward 218, 219, 221, 229
 spectral analysis
 cross-phase 227, 228
 of thickness 232
 stacking 216, 217
 patterns 229

statistical correlation 224, 225, 226–7

subfacies 221

sub-Milankovitch model 232, 233

subsidence 221

vertical scale 221

Waltherian skip 218, 219

Latemar Platform (Italy) 215–35

 allocyclicity 229
 bi-lithological cycles 362
 biostratigraphy 216, 223–4
 capping 229
 cycle-capping facies 216
 cyclic succession 216
 Fischer plots 226, 227
 harmonic analysis 226–7
 intertidal facies 218–19
 Law of Large Numbers for Markov Chains 345
 layering 297–303
 bioturbation 300–1
 depositional unit thickness 301
 diagenesis 302–3
 subsurface deposition 302
 stacking patterns 229
 teepee zones 232
 Law of Large Numbers for Markov Chains 345

Lee Stocking Island (Great Bahama Bank) 118–19

Leeuwin Current (Australia) 125, 126

Leitha Limestone (Austria) 338, 339–40

digraph 346–7

 spatial transition 348
 facies distribution 345–7
 fixed probability vector 355–6
 mapping 340
 spatial transition digraph 348
 transition frequency matrix 346–7

Lexington Limestone (Cincinnati Arch) 262–3, 264

 bryozoan biostrome 265
 clasts 266
 peritidal facies 267

stromatoporoids 267

unconformities 266

Lighthouse Reef (Belize–Yucatan) 62, 63

sediment carbon and oxygen stable isotopes 64, 65, 66

stable carbon and oxygen isotopes 69

limestone
 oolitic of Great Bahama Bank 113–21
 pressure dissolution 303
 ribbon 302
 see also Leitha Limestone (Austria)

lithification, tropical carbonates 319, 322

lithofacies ranking 361

reliability/validity 362–3

Loggerhead Key (Dry Tortugas) 24, 25

Long Key Formation (Florida) 193

low-magnesium calcite (LMC)

 carbon isotopes composition 49
 variation 52–3

 Great Bahama Bank 32, 33–4, 37–8, 38, 41–2, 49
 stable isotopes 55

 oxygen isotope composition 49

lowstand systems tracts 323

macroalgae, Highborne Cay (Bahamas) 155

magnesium–calcite
 Brejo do Espinho Lagoon (Brazil) 171
 southern Australia 144
 see also high-magnesium calcite

Maldive archipelago 62, 63, 315

falling-stage systems tract 312–13

peloids 71

seismic stratigraphy 312–13

stable carbon and oxygen isotopes 66–7, 68, 69

Mallorca, sea-level fall 313, 316

mangroves 101

storm surge layer 300–1

marine cement 285–6, 287
Marinobacter (bacterium) 167, 169, 172–3
carbonate precipitation 173–4
dolomite spherulitic growth 175
Markov chains for linking environments and facies 337–57
absorbing 341, 351
analyses 342–54
conditional probabilistic relationships 338
ecological background data 340
embedded 341
ergodic 341, 348–50, 351
facies distribution 342–7
frequency 345
fixed probability vector 345, 346, 347, 357
comparisons of modern and Miocene 355–6
sea-level 353, 354
temporal model 348–9
transition to hardground 350, 351
graph theory 342
Landsat image analysis 350–4
landscape analysis 340
methods 341–2
neighbourhood statistics 342, 344–6
outcrop maps 345–6
regional setting 338–40
regular 341, 348
sand transition to hardground 348–50
sea-level 353–4, 356–7
sedimentation rates 355
space–time bridge 347–50
spatial transition digraph 348, 354
study methods 340–2
taphonomic status 340, 343–4
temporal Markov model 347, 352–3, 357
temporal transition digraph 347, 355
transition probability matrix 348, 349, 352–3
transition weightings 356
two-dimensional analysis 340
types 341
marl, erosion 301
Marquesas–Quicksands Ridge (Florida) 247, 248
mass extinctions, microbial carbonates 150
Mendola cycles 215, 219–21
cap 229
coherence analysis 227
cross-phase spectral analysis 227, 228
depositional 229–34
facies 222
Fischer plots 226, 227
harmonic analysis 226–7
Lateam cycle comparison 221
Milankovitch orbital forcing 231–3
millennial periodicities 233–4
process recording 229
running cross-correlation analysis 224, 225, 226
shallowing-upward 221, 229
stacking patterns 229
statistical correlation 224, 225, 226–7
subfacies 221
subsidence 221
tops 220
vertical scale 221, 222
Mendola Pass (Italy) 216–17
alloycycliclity 229
biostratigraphy 223–4
capping 220, 229
cycle top erosions 220
depositional cycles 233–4
dolomite 222, 223
erosive bases 220
laminites 221
Peritidal Member 223, 224
sediiments 229–34
stacking patterns 229
stratigraphic correlation 221, 223–4
metazoans
competition 150
reef building 149–63
controls 158–62
Miami Oolite 319–20
micrite, discrete facies rank technique 363
microbes
reef building 149–63
controls 158–62
microbial dolomite
aerobic culture experiments 169, 172–3
carbonates
morphology 173, 174, 175
precipitation mechanism 173–4
deposition in aerobic conditions 167–76
formation in Brejo do Espinho Lagoon (Brazil) 175–6
mineralogy 170–1
minerals
formation 169–70
recovery 170
scanning electron microscopy 170, 172, 173
sediments 170–1
spherulites 174–5
study methods 169–70
X-ray diffraction analysis 170, 172
microbial mats
Brejo do Espinho Lagoon (Brazil) 169
cyanobacterial 297, 298
microbialites 149–50
reef growth 158
Swiss Jura 204, 209
micro-encrusters, Swiss Jura 204, 209
microspar carbonate 285
Milankovitch cycles 202, 215
grey-scale analysis outcrop photographs 366
orbital forcing 216, 231–3
shallowing-upward successions 231
millennial periodicities 233
molluscs
lagoonal sediments 62
Rasdhoo atoll (Maldive archipelago) 67, 68
mud flats, succession 106
mudstone 32, 33, 49, 51
Murrawah shoals (Arabian Gulf) 339
Landsat image analysis 351–4
Nashville Dome (Cincinnati Arch) 260, 262, 263, 264–5
backstripping analysis 267–8
faults 267
sedimentation 271
shallow-water 269
seismites 267
stratigraphy 271
subsidence 267–8, 271
truncation pattern 266–7
unconformities 266
neighbourhood frequency 342, 344–6
‘New-Age’ alternative thinkers 19
Nijar Basin (Spain) 311, 313, 315, 316
nutrients, reef impacts 159–60
δ18O
Brejo do Espinho Lagoon (Brazil) 170, 171, 172
facies on Great Bahama Bank 47–56
modern sediments 61–72
stratigraphic correlation 72
oncoids, Swiss Jura 204, 209
oolids
bank-side production 119–20
dunes on carbonate platforms 205–6
eastward transport 119–20
exportation to outer platform 118–19
Great Bahama Bank 113–21
facies 34, 39, 40, 42
formation 113–14
oolitic grainstone 117, 118
production on bank side 118–19
radial 120
reef–sediment interactions 161
shoals on carbonate platforms 203, 205, 208, 209
accumulation rate 210
sieve analysis 299
oolitic limestone of Great Bahama Bank 113–21
Oregon Formation (Cincinnati Arch) 262
ostracods 133, 136
outcrop photographs
angle of outcrop 366–8
grey-scale analysis 365–71
data lateral variability 368–71
Fourier power spectra 370–1
outcrops, modelling 367
Oxfordian of Swiss Jura see Swiss Jura Mountains, Oxfordian
oxygen stable isotopes
Belize–Yucatan carbonate platform sediments 64, 65, 66
Brejo do Espinho Lagoon (Brazil) 170, 171, 172
facies on Great Bahama Bank 47–56
modern sediments 61–72
study methods 62, 64
oyster banks, Arabian Gulf 345
packstone 34, 49
discrete facies rank technique 363
stable isotopes 51
Paradox Basin (southwestern USA) 239–53
carbonate deposition 241
evaporite facies 241
geological setting 240–1
outcrops 241, 242
phylloid algal mounds 239, 241–53
development 245–7
facies 243–5
incipient mound facies 242, 243
intermediate facies-diverse biota 241–2
parameters 252
siliciclastics deposition 241
study area 240
Peace River Formation (Tampa Bay, Florida) 184, 186, 190
siliciclastic transport pathway 192
peat coastal 301
freshwater 94–5, 101
peloidal mud, phylloid algal mounds 241, 242
peloids Chinchorro (Belize–Yucatan) 69, 71
grainstone 42
Kuwait ramp area 71
Maldivian archipelago 71
Penicillus (calcareous algae) 101
photography of outcrops, grey-scale analysis 365–71
photosynthesis
facies on Great Bahama Bank 54, 56
seagrass 139
phylloid algal mounds 239–53
accrretionary growth 247
aggradational growth 244
algal plates 244, 245
alignment 246
biostratal beds 244
capping 245
coalesced mound units 247
composition 244
development 245–7
in tidal passes 250–1
evaporites 246
facies 243–4
fields 246
8-Foot Rapids 244–5
incipient mound facies 242, 243
intermediate facies-diverse biota 241–2
oolitic facies 245
orientation 246
parameters 252
peloidal mud 241, 242
plate accumulation 244
regional distribution control 246
sand wave deposition 251
shale thicks 246
skeletal capping facies 245
tidal channels 250–1
types 246
Picco di Carnizza (Italy) 366
pixels
grey-scale analysis 365, 366
Moore neighbourhood 342, 345–6
platy breccia facies 290–1
Pleistocene
deo-climatic facies 231
icehouse conditions 230–1
sea-level oscillations 231
Porites (coral) 343
Posidonia (seagrass) 125–6, 129–30, 138–9, 141
calcareous epiphytes 130, 134
Posidonia (seagrass) (contd.)
precipitation, Great Bahama Bank 32
pressure dissolution 302–3
Pulley Ridge (Florida shelf) 25, 26
Quicksands (Florida Keys) 240, 247, 248, 249, 250
Halimeda macroalga 247, 249, 250
sand waves 251
Ras Hasyan (United Arab Republic) 339
Rasdhoo atoll (Maldive archipelago) 62, 63
peloids 71
stable carbon and oxygen isotopes 66–7, 68
red algae
 calcareous 53, 54, 239
on dead corals 343
reef(s)
Conophyton (stromatolite) 288
drowning 12
facies mosaics of carbonate platforms 210
growth 208
patch 208–9
position 209
nutrient concentrations 159–60
patch 208–9, 210
algal mound capping 245
sand abrasion 159
sediments 62, 159
interactions 161–2
Swiss Jura 208–9, 210
position 209
reef accretion 1–14, 14–16
bioerosion 1, 2, 8, 10–12
calcification
 light-mediated 8
limitations 12
rate 11
coral 1–14, 14–16
data analyses 14–16
collection methods 10
depth 6–7, 8, 11
measurement 4
palaeowater 4–5, 7, 8, 13
models 12–13
rate 6, 7–8, 10, 12, 14–16
sea-level
 curve 5, 8–10
rise 7, 12
sources of error 8–10
study methods 3–6
vertical aggradation 3
reef building 2, 3
coral 2, 3
Highborne Cay (Bahamas) 152–6, 158
microbial–metazoan 149–63
controls 158–62
phyllloid algae 239–53
Stocking Island (Bahamas) 151–2
stromatolites 150
thrombolites 150
reef development
Highborne Cay (Bahamas) future 162–3
geological significance 162–3
late Holocene 160
Safa Field (Middle East) 311, 313, 315, 317
salinity
Cape Sable (southwest Florida) 102
Great Bahama Bank 32, 50, 53
facies 53–5
southern Australia 127
stable isotopes 53–5
sand(s)
flaser bedding 299
grain size 297
transition to hardground 348–50
wave migration 79
sand body stabilization 161
satellite imagery
facies linking to environments 340
maps 342
seagrass 123–44
Arabian Gulf 344, 345, 351, 352–3
biomass 129–30, 131, 132, 137–8, 139
peak 132, 139
calcareous organisms 127
epiphytes 130, 131, 132, 133, 134–7
data analysis 128–9
laboratory methods 128
photosynthesis 54, 139
sediment accumulation 144
dynamics 143–4
production 142–3
stabilization 76–7, 78, 79
southern Australia 124–6
species 125–6, 138–9
study methods 127–9
sea-level
Arabian Gulf 353–4, 356–7
Atar Group (Mauritania) 286–8
cycle superposition in falling-stage systems tract 311, 321
depositional environment effects 199–200
facies mosaics of carbonate platforms 206–7, 208, 209
Florida platform 190, 191, 193
high-frequency changes 205
Latemar Platform (Italy) 364–5
Markov chains for linking environments and facies 353–4, 356–7
oscillations 105–6, 108, 231–2
sediment interactions 160–1
sedimentation pulses 301–2
stromatolite impact 287–9, 291
sea-level curve
reef accretion 5, 8–10
south Florida 95
sea-level fall 305–23
carbonate production 321
rate 307, 308, 314–16, 318–19
parameter space 310–11, 313, 322
siliciclastics 322
sea-level rise
relative 92, 106
south Florida 98, 106, 108
Index 385

Sebree Trough (Cincinnati Arch) 267, 269
sediment(s)
- analysis of characteristics 96
Andros Island (Great Bahama Bank) 34, 220
bioturbation 71, 72
Brejo do Espinho Lagoon (Brazil) 170–1
complex transport pathways 106–8
cool-water carbonate 142–4
diagenesis 71, 72
dissolution 71
distribution in carbonate platform lagoons 41
dynamic processes 101–3, 104–5
Exuma Cays (Bahamas) 151
grain size 297–9
Great Bahama Bank 29, 30, 31, 38, 40–1, 50–1
stable isotopes 55
Highborne Cay (Bahamas) 159
lagoonal 62, 71
laminated 221
Latemar Platform (Italy) 229–34
lobes 98
low-energy coasts 91
measurement of suspended 97
Mendola Pass (Italy) 229–34
oolitic 116–17
organic matter 101
plumes 105
pore water pH 170
recrystallization 71
reef interactions 161–2
reefs 159
sampling 95–6
scanning electron microscopy 170
sea-level interactions 160–1
southwest Florida 98–103, 104, 105
stabilization by seagrass 76–7
Stocking Island (Bahamas) 152, 159
stress 152
taphonomic effects 71, 72
tidal deltas 86–7
tidal transport 102–3
transgressive package 92
transport of Tertiary siliciclastics 179–94
transport vectors on Great Bahama Bank 114
wave effects 82, 83–4
X-ray diffraction analysis 170
sediment pathway model 103, 105
sedimentation
- autocyclic 356
- beach formation 22, 23
- Cincinnati Arch peripheral bulge 256
- ecological pattern relationship 338
- facies mosaics of carbonate platforms 199, 210–11
- Jessamine Dome (Cincinnati Arch) 271
- Nashville Dome (Cincinnati Arch) 271
patterns in southwest Florida 98–100
rate and Markov chains 355
measurement 95
sea-level-driven pulses 301–2
shallow-water on Cincinnati Arch (Taconic Orogeny) 269
subsurface deposition 302
tidal currents 107
seismites, Cincinnati Arch peripheral bulge (Taconic Orogeny) 267, 270
sequence stratigraphy 305–6
parameter space 309–10, 313
shale thick, phylloid algal mounds 246
shallowing-upward successions 230, 231
carbonate 231
drivers 233
Latemar cycles 218, 219, 221, 229
Mendola cycles 221, 229
Shamal winds 338
shoreline, wave impact 87
Shu’aiba Formation (Middle East) 311–12, 314–15, 316, 317–18
Siderastraea (coral) 158, 161, 343
siliciclastic transport pathway, Florida platform 182, 191–3
siliciclastics
- Atar Group (Mauritania) 280
carbonate platforms 199, 209–10
distribution 203
drowning 194
erosion 322
Florida shorelines 179, 180–1
Florida sub-basins 187, 193
karst sub-basins 193–4
Paradox Basin (southwestern USA) 241
remobilization 181
sea-level fall 322
Tertiary sediment transport 179–94
skeletal grains, recrystallization 71
spaced solution cleavage 302–3
spectral analysis 232
- cross-phase 227, 228
Spencer Gulf (southern Australia) 127
spherulites 174–5
- internal structure 175
spits
- fishhook 22–4
- harbour formation 25–6
sponges, bioerosion 11
stacking 216, 217
patterns 229
Stocking Island (Bahamas) 149, 150–63
coral reef demise 162
coralline algae 151, 159, 160
hydrodynamics 159
pinnacle structures 153, 154, 161
reef development 151–2
demise 162
future 162–3
geological significance 162–3
late Holocene 160
microbial 162
modern 159–60
Index

Stocking Island (Bahamas) (contd.)
reef–sediment interactions 161
sea-level–sediment interactions 160–1
sediment stress 152
sediments 159
stromatolites 151, 152, 160
reef building 163
storm(s)
carbonate system impacts 75–88
Conophyton damage 288
versus day-to-day processes 84–7
destructive power 87
geographically limited changes 87
Great Bahama Bank 114
sediments
hurricane driven movement 143, 199, 200
tempestites 299, 302
wave actions 82–3
see also cyclones, tropical; hurricane(s)
storm surges 87
bioturbation of layering 300–1
storm wave modelling 79–87
assumptions 84
carbonate platforms 83–4
carbonate ramps 82–3
deep-water model 80–1
limitations 84
wave prediction module 80
wave transformation module 80
wave transformation/breaking 81–2
stratification
grain size 297–9
primary 297
stratigraphic analysis, high-resolution 361–72
discrete facies rank technique 361–5
grey-scale analysis of outcrop photographs 365–71
stratigraphy
biostratigraphy of Latemar Platform (Italy) 216, 223–4
carbon isotope 55–6
correlation 71–2
facies mosaics of carbonate platforms 201, 202, 209–10
foreland basin modelling 255, 256, 257
Jessamine Dome (Cincinnati Arch) 271
Mendola Pass (Italy) 221, 223–4
Nashville Dome (Cincinnati Arch) 271
δ18O correlation 72
reefs of Highborne Cay (Bahamas) 153–5
seismic of Maldives archipelago 312–13
Swiss Jura Mountains 201, 202
see also cyclostratigraphy; sequence stratigraphy
stromatolites 149–50
biostratigraphic microcycles 277, 278–9, 281–6
Conophyton–Jacuphyton development 281–2, 291
parasequence development 286–91, 292
branching 292
columnar 284–5, 286, 287
conical 283, 285, 287
irregular 291
columnar 278–9, 292
branching 284–5, 286
complex juxtapositions 288, 292
conical 278, 282–3, 284, 291, 292
branching 283, 285, 287
Conophyton–Jacuphyton biostratigraphy 277–93
cratonal inunation 292
depositional setting 278
domal 278–9
growth 277–8
aggradational 288
Highborne Cay
chronology 153, 155, 160
reef building 158, 163
sampling 156–7
uranium–thorium dating 157
highstand growth 278
interstromatolitic detrital carbonate 285, 287
deposition rate 292
laminae 277–8
low synoptic relief 291–2
marine cement 285–6, 287
mat growth 278
morphology 277, 278
variability 291
reef development 292
elements 282–6
growth 291–2
margins 292
ridges 163
sand burial 162
sea-level changes 287–9, 291
Stocking Island (Bahamas) 151, 152, 160
reef building 163
stromatoporoids 265
Lexington Limestone (Cincinnati Arch) 267
strontium-isotope ratio 329
sub-Milankovitch model 232–3
subsidence
differential in Swiss Jura Mountains 207–8
Latemar/Mendola cycles 221
subsurface deposition 302
Subtropical Divergence Zone (STDZ) 32
sulphate, bacterial 168, 175–6
sulphide oxidation 175–6
Swiss Jura Mountains, Oxfordian 199–211
climate 208
controls on facies distribution 206–11
depositional sequences 202–3, 204, 205–6
differential subsidence 207–8
ecology 208–9
oncoids 204, 209
reefs 210
patch 208–9, 210
position 209
sea-level changes 206–7
sedimentation rates 210–11
stratigraphy 201, 202
study area 201–2
water temperature 208
Taconic Orogeny, Cincinnati Arch 255–71
Tampa Bay (Florida), Tertiary siliciclastic sediment transport 179–94
boreholes 181, 183–4, 186
location 182
prograding sequences 187
seismic data 181, 183–5, 186
siliciclastic repositories 180, 187
sub-basin 181, 183–5, 186
formation/filling 181, 183–5, 186
high-sediment discharge rivers 193
Taoudeni Basin (West Africa) 279–80
tempestites 299
tubular 302
Thalassinoides (trace fossil) 71
thrombolites 149–50
tidal deltas 76, 78–9
currents 86–7
hurricane impacts 76, 78–9
mud 301
sediment movements 86–7
tidal velocities 88
tidal passes, phylloid algal mound development 250–1
Tilemsina (stromatolite) 278, 281, 283, 284, 285, 286
formation on cone tops 289
interstromatolitic detrital carbonate 285, 287
reef intervals 292
sea-level change 286, 291
Tongue of the Ocean (Great Bahama Bank) 40, 42
total organic carbon, Brejo do Espinho Lagoon (Brazil) 170, 171
transition frequency matrix 342
transition probability matrix 342
Arabian Gulf 344–5, 347, 352–3
Leitha Limestone 346–7
temporal 347, 348, 349, 352–3
Triassic, depositional cycles 231
tsunami deposits 299
Tungussia (stromatolite) 281, 284, 286
turbidites 299
Turneffe Islands (Belize–Yucatan) 62, 63
sediment carbon and oxygen stable isotopes 64, 65, 66
Udotea (calcareous algae) 101
United Arab Emirates, Holocene sediments 338–57
regional setting 338–40
vadoze diagenesis 364, 365
Virgibacillus marismortui (bacterium) 167, 169, 172–3
carbonate precipitation 173–4
dolomite spherulitic growth 175
voids, bubble-shaped 21
wackestone discrete facies rank technique 363
facies on Great Bahama Bank 32, 33, 34, 44, 49
stable isotopes 51
Latemar Platform (Italy) 218
Mendola Pass (Italy) 220
mud-rich 34
Waltherian skip 218, 219
Walther’s Law 337, 338
water, stable isotopes in facies on Great Bahama Bank 49–50, 53, 54
water temperature Great Bahama Bank 31
Swiss Jura 208
waves bottom orbital velocity 82
Conophyton erosion 288
deep-water model 80–1
outer shelf impact 87
propagation 81
sediment movement 82, 83–4
shoaling 81, 82
shoreline impact 87
storm wave modelling 79–87
transformation/breaking 81–2
tropical cyclones 87
tropical storms 82–4
Weissenegg Formation see Leitha Limestone (Austria)
West Island (southern Australia) 127–8
calcareous epiphytes 134
winds Cape Sable (southwest Florida) 94
facies on Great Bahama Bank 31–2, 40, 41
oolid movement 118–19