Index

a
absolute values 26
acceleration vector function
rigid body in curvilinear motion 99, 105, 106, 109–110, 112, 113
rigid body in rectilinear motion 96, 97
agriculture, statistics used in 426
air temperature, averages 53–54
aircraft
 crack detection in 4–5
 design analysis 18–19
airport baggage conveyor [example] 111–114
algebraic equations 24–25
 examples of use 13, 16, 24–25
 see also linear algebra; matrix algebra; vector algebra
algorithms 120
American Academy of Engineering, list of engineering achievements 2
American Society of Mechanical Engineers (ASME), pressure vessel design code 18, 382
ANSYS [finite-element analysis] code 382, 417
 element library 386, 404, 418, 419
 product-development simulation 420–422
automatic motion control of machines, mathematical modeling of 172
automobile braking system, new design, simulation by ANSYS code 421, 422
Avallone, E.A. 3, 10, 11, 12, 15, 16, 24, 218, 427, 445
axis of rotation [in solids of rotation] 42
b
“back substitution” [in Gaussian elimination method] 135
 recurrence relationships for 137, 140–141
bar elements [in FEA] 384, 385
 interpolation functions for 388, 391–392
beam bending
 in bridge design analysis 15–16
 in coat hanger design analysis 11, 12–13
differential equation for 186
 Laplace transform used in solution 186–192
 four-point bending test [for ceramic and brittle materials] 441
 indeterminate beam 190–192
 bell-shaped distribution curves 431, 435–437
Bernoulli equation 93, 205–206
 applications 205–206, 207, 212
Bernoulli's law [for fluid dynamics] 63, 200, 393–394, 401
Bessel, Friedrich 56
Bessel equation 56
 modified 57
 special case (order $n=0$) 305
Bessel functions 56–58
 differentiation of 58
 in heat conduction analysis 305, 306, 311
 integration of 58
 modified 58
 recurrence relations 58
bioinformatics 426
biology, statistics used in 426
Bishop, R.H. 3, 24
boundary conditions 9
 in heat conduction analysis 293–295, 299, 303–304
 in vibration analysis
 of cable structures 318
 of membranes/thin flexible plates 331
boundary element method (BEM) 120

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion Website: www.wiley.com/go/hsu/applied
boundary-value problems 285
solution of 361–362
bridges
design analysis 14–17
assumptions/idealizations 15, 381
see also suspension bridges
brittle materials, probabilistic design analysis 425–426
Bromwich contour integration, inversion of Laplace transforms using 178
business, statistics used in 426

C
cable structures
tables 314, 314–315
free vibration of
derivation of partial differential equations 314–318
solution of partial differential equations 318–322
modes of vibration 323–328
resonant vibration of 314
cam-and-follower mechanism 47, 48
cam-shaft assembly, finite-element model 409
cantilever beam
induced deflection function 187–188
loading function 36, 60, 62, 189
subjected to concentrated force, induced deflection function 189–190
cantilever beam spring [in mass–spring system] 252
application 253
centroids
of plane areas 47–52
of solids of plane geometry with straight edges 49–50
of solids with plane geometry defined by multiple functions 50–52
ceramic and brittle materials
failure mode 439
randomly varying strength properties 438–439
statistical approach to design 438–439
see also silicon carbide
“characteristic equations”
in free vibration analysis for cable structures 320

in heat conduction analysis 301, 310, 313
meaning of term 141, 142
chemical industry, fluid mechanics 204
circular track, automobile on 110–111
coil hanger, design analysis 10–13
coefficient matrix 134
conversion into upper triangular matrix 135, 145
cofactor matrix 129, 130
in example 134
coilover [mass–dashpot–spring assembly] 255, 259
examples/problems 270, 272, 281
column matrices 124
multiplication by row matrix 128
transposition of 126
complementary error functions 55
compound bar, finite-element formulation for 414–417
conservation of energy 62, 200
in fluid mechanics 93, 205
in heat transfer 93, 291
conservation of mass 20, 62, 200
in fluid mechanics 93, 206, 212
conservation of momentum 62, 200, 314
constants, definition 26
continuity equation [in fluid mechanics] 93, 206
continuous functions 27–28
average values 52–54
continuous variation of 33–34, 219
in heat transfer analysis 219
continuous ordinary functions, derivatives of 286
continuous process
fluid flow from tank 208
solid–fluid heat transfer 230
contour maps, FEA output 402, 403
control charts 450–456
R-chart 453–456
three-sigma control chart 451–453
convective boundary condition 294–295
convective heat transfer analysis 23–24, 227
forced convection 227
natural convection 227
see also Newton’s cooling law
convolution theorem, inversion of Laplace transforms using 178
cooling chamber, in IC chip thermal cycling test 228, 231, 232–233
Cramer’s rule 120, 135
creativity [of engineers] 2
creep deformation
silicon carbide 438
temperature effects 291, 438
cross product [of two vectors] 84–86
examples 85–86
for plane areas 86
cruise ship, navigation route 81, 88
curl operator [in vector calculus] 91, 92, 93
curve fitting techniques 30–31
least-squares approach 30
scientific functions approach 30–31
spline fitting technique 30
curved-edge plate(s), determination of plane area(s) 39–41
damped vibration 248–249
mathematical modeling of 254–258
damped vibration analysis 248–249
damping force 249, 255
databases, use in statistical analysis 429
dataset(s)
“central tendency” of 431, 432, 433, 434
development in 433
dispersion of data values 433, 434
histogram of 430–431
mean of 431–433
median of 433
mode of 430
normal distribution of 431
standard deviation for 434
variance of data 434
variation of data values 433, 434
decision making [by engineers] 3–5, 427
examples 4–5
types of problems 3–4
definite integrals 37, 38
deformed solids
placements in 406, 410
strain energy in 409, 411–412
del operator [in vector calculus] 91, 92
delta function(s) 60
Fourier transform of 289
see also impulsive functions
Demy, W. Edwards 449
derivatives 31–36
first-order derivatives 35
Laplace transform of 180–181
of functions 34, 317
higher-order derivatives 35–36
Laplace transform of 180–184
recurrence relations 181, 185
mathematical expression of 33–34
orders 35
partial derivatives 36
Laplace transform of 181–184
physical meaning 32–33, 362
second-order derivatives 35
Laplace transform of 181
Desai, C.S. 383
determinants 84, 121–123
compared with matrices 121
evaluation of 121–123
size reduction of 122
deterministic theory in design analysis 7, 17–19, 427
compared with statistical approach 427, 439, 443–444
use precluded for ceramic and brittle materials 439
development [of data from mean value] 433
diagonal matrices 125
die stamping machine see metal stamping machine
differential equations
fourth-order, solution of 187
Laplace transform method for solving 184–195
laws of physics for derivation of 25, 62–65
numerical methods for solving 361–374
see also first-order ordinary differential equations; partial differential equations;
second-order ordinary differential equations
differentiation
of Bessel functions 58
of derivatives 35
of functions 35
of products of vector functions 90
diffusion, Fick’s law for 200
diffusion analysis 55
differential equation in 25
“diffusion equation” 194
diffusivity 55
Index

Dirac function 60
see also impulsive functions
Dirichlet condition 294, 295
discontinuous linear function 154
dispersion [of data values in dataset] 433, 434
displacement vectors 82
divergence operator [in vector calculus] 91, 92, 93, 292
dot product [of two vectors] 82–84
examples 82–83
dynamic analysis 95

economics, statistics used in 426
eigenfunctions 141–148
applications 146–148
meaning of term 141, 142
eigenvalues 141–148
applications 146–148
physical meaning 141, 142
of square matrices 142–146
eigenvectors
physical meaning 142
of square matrices 142–146
Einstein, Albert, quoted 2
electromagnetism
discovery 94
permittivity 427
vector calculus used 94–95
electronics and communications, statistics used in 426
element equations [in FEA] 383, 394
derivation of 394–397
Galerkin method 395–396
Rayleigh–Ritz method 394–395, 396–397
elimination process [in Gaussian elimination method] 135
recurrence relationships for 137
empirical formulas [in engineering analysis] 21–24
examples of use 22–24
engineering analysis applications
eigenfunctions and eigenvalues 146–148
higher-order derivatives 35–36
vector calculus 92–95
concept 1, 62
and engineering practices 2–5

stage 1 [identification of physical problem] 8–9
examples 10, 11, 14, 15
stage 2 [idealization for mathematical modeling] 9, 381
examples 11–12, 15
stage 3 [mathematical modeling and analysis] 10, 381
examples 12–13, 15–16
stage 4 [interpretation of results] 10, 381
examples 13, 16–17
“toolbox” for 5–8
engineering design procedure 7–8
design analysis 8
design optimization 8
design synthesis 8
engineering practice, statistics used in 427
engineering problems
physical nature 6
solution by engineering analysis 6–7
engineers
achievements by 2
creativity 2
decision making by 3–5, 427
problem solving by 2–3
public responsibility 3, 18
risk assessment by 5
error functions 55
Euler–Bernoulli equation
differential form 186
Laplace transform used in solving 191–192
fabrication methods, uncertainties in 428
factor of safety see “safety factor”
“failure by weakest link” model [for ceramic and brittle materials] 439
Faraday’s right-hand rule 94
Ferziger, J.H. 339, 348, 362, 367
Fick’s law [for diffusion] 200
finite difference, meaning of term 362–363
finite-difference method (FDM) 25–26, 120, 131, 132, 287
finite-difference schemes 363–366
backward difference scheme 364
central difference scheme 364
examples 364–366
factors affecting accuracy 366, 367
forward difference scheme 363
for partial derivatives 366–367
finite-element analysis (FEA) 132–133, 381–424
element equations 383, 394
derivation of 394–397
elements 132, 383, 384, 385, 419
bar elements 384, 385
“birth-and-death” elements 419
hexahedral elements 384, 385, 409
large-aspect-ratio elements 419
quadrilateral plate elements 384, 385
“serendity” elements 419
tetrahedral elements 384, 385, 409–410
thin-shell elements 419
toroidal elements 384, 385
triangular plate elements 384, 385
general-purpose codes 382, 417–422
interpolation functions 388
derivation of 388–393
derivation for simplex elements with scalar quantities at nodes 388–390
derivation for simplex elements with vector quantities at nodes 388–390
nodes 132, 383
output 401–403
animation 403
contour maps 402, 403
tabulated data 403
overall stiffness equations, derivation of 397–398
primary unknown quantities 132, 387
identification of 132, 387–388, 410
solution for 398–401
principle of 383
secondary unknown quantities 387, 388
solution for 401
step 1: discretization of real structures 383–387, 403
step 2: identification of primary unknown quantities 132, 387–388
step 3: derivation of interpolation functions 388–393
step 4: definition of relationships between actions and induced reactions 393–394
step 5: derivation of element equations 394–397
step 6: derivation of overall stiffness equations 397–398
step 7: solution for primary unknown quantities 398–401
step 8: solution for secondary unknown quantities 401
finite-element method (FEM) 25–26, 120, 131, 132, 287
benefits 382
elastic stress analysis of solid structures 403–417
finite-element formulation 409–413
finite-element formulation for one-dimensional solid structures 413–417
meaning of “displacements” 406
meaning of “strains” 406–407
meaning of “stresses” 404–406
normal strain components 406
normal stress components 405, 406
shearing strain components 406
shearing stress components 405, 406
strain–displacement relations 407–408
strain energy in deformed elastic solids 409
stress–strain relations 408
literature on 382
use in aircraft design analysis 18–19
first-order derivatives 35
Laplace transform of 180–181
first-order ordinary differential equations
applications
fluid mechanics analysis 204–217
heat transfer analysis 217–233
rigid body dynamics under influence of gravitation 233–237
solution methods 200–204
integration 200–204, 220, 221
for linear, homogeneous equations 201–202
for linear, nonhomogeneous equations 202–204
Runge–Kutta method 367–370
for separable differential equations 200–201, 208
flexural rigidity [of beam structure] 186
fluid mechanics
Bernoulli’s law [and equation] 63, 93, 200, 205–206, 207
continuity equation 93, 206
first-order differential equations 204–217
fluid mechanics (contd.)
 fundamental concepts 204
 vector calculus used 93–94
food and beverage industries, fluid mechanics 204, 209, 215–217
force vectors 78, 82
forced convection 227
forced vibration 249
 excitation force in 249
forced vibration analysis 249, 264–272
 derivation of differential equation 264–266
Ford Motor Company 448
Fourier–Bessel expansions and integrals 307, 313
Fourier series 151
 convergence of 161–164
 at discontinuities 164–169
 mathematical expression of 154–161
 periodic functions represented by 152–154
Fourier transform
 partial differential equations solved using 287, 288–290
 of various functions 289
Fourier’s law [for heat conduction in solids] 63, 93, 199, 217–218, 295, 393, 401
 examples 219–221, 223–226
heat flux in three-dimensional space 221–222
heat flux in two-dimensional space 222–226
 mathematical expression 218–221
 sign-assignment rules 222–223, 225, 226
fracture mechanics analysis 3, 5
free-falling body, forces on 64–65, 235
free mechanical vibration
 forces acting on vibrating mass 250–251
 mathematical modeling of 249–254
free vibration 247–248
free vibration analysis 146–148, 247–248
 cable structures 314–322
frequency distribution diagram 430–431
functional, meaning of term 394
functions 27–29
 continuous functions 27–28
 and curve fitting 30
 definition 27, 73, 88, 151
 with discrete values 27
 notation 27
 piecewise continuous functions 28–29, 153
see also periodic functions
funnels, drainage of 209–217

g
Gad-el-Hak, M. 3, 24
Gaines, J.H. 131, 186, 445
Galerkin method, element equations derived by [in FEA] 395–396
gamma functions 56
gas pipelines, rupture of 3
Gaussian distribution function 435, 436
Gaussian elimination method, solution of simultaneous equations by 135–141, 399
Gaussian integral, transformation of coordinates 356, 358
Gaussian quadrature method [for numerical integration] 356–361
 compared with Simpson’s one-third rule and trapezoidal rule 356
 examples 358–361
 weight coefficients for 357
general-purpose finite-element analysis codes 382, 417–422
 desirable features 419–420
 capabilities of solving engineering problems 419
 cost-effectiveness 419
 element library 419
 interfacing with CAD/CAM packages 420
 pre- and post-processor facilities 419
 simulation using 420–422
see also ANSYS
Gibilisco, S. 3, 24
Golden Gate Bridge
 natural frequencies 278
 vibration of suspension cables 314, 315
gradient operator [in vector calculus] 91, 92, 93
Grashof number 227
gravitation, rigid body dynamics under influence 233–237
gravitational acceleration
 free-falling body 235
 in kinematic analysis of projectiles 100, 101
 in rigid body dynamics 233
Gregory, L.D. 441, 443
guy wire supports, vibration of 314, 315
Index

h
Hankel transform method, partial differential equations solved using 287
harmonic oscillation, vibrating mass 252
healthcare, statistics used in 426
heat conduction analysis, derivation of partial differential equations 291–292
heat conduction equation
boundary conditions 293–295, 299, 303–304
convective boundary conditions 294
examples 295–298
mixed boundary condition 295
prescribed heat flux 294
prescribed surface temperature 293–294
for solid submerged in fluid 294–295
in cylindrical polar coordinate systems 293
general form 292, 293
initial condition 293, 299, 303
in rectangular coordinate systems 292
heat conduction in solids, partial differential equations for 291–298
heat flux 218
determination of 219–220
in heat spreaders 225–226
solid–fluid interfacial heat transfer 229
in three-dimensional space 221–226
in two-dimensional heat flow 222
heat flux boundary condition 294
heat flux vector 93, 221
in rectangular coordinate system 221–222
heat spreaders 223–226
applications 223–224
example calculations 224–226
heat transfer
conduction in solids 63, 93, 194, 199, 217–218, 291–298
convection in fluids 23–24, 63, 199, 227
solid–fluid interface 227–233
vector calculus used 93
heat transfer analysis 291
see also heat conduction analysis
heat transfer coefficient, convection in fluids 24, 227
heating chamber, in IC chip thermal cycling test 228, 230–231, 232
Heaviside step function 58
see also step functions
hexahedral elements [in FEA] 384, 385
interpolation functions for 388
high-temperature fields, negative consequences 291
higher-order derivatives 35–36
histogram 430–431
hodograph 99, 109
Hoffman, J.D. 339, 348, 367
homogeneous first-order differential equations, solution methods 201–202
homogeneous second-order differential equations
solution methods 243–246
Case 1 \((a^2 - 4b > 0) \) 244
Case 2 \((a^2 - 4b < 0) \) 244–245, 251
Case 3 \((a^2 - 4b = 0) \) 245
Hooke’s law 388, 401, 414, 417
generalized form 408, 427
Hsu, T.R. 3, 55, 403, 408
i
imaginary numbers 26
impulsive function(s) 60–62, 151, 189
Fourier transform of 289
graphical description 60, 61
indefinite integrals 37, 38
independent variables 27, 29
indeterminate beam analysis 190–191
Laplace transform used in 191–192
industrial automation
early application 448
mass production using 448
infinite series solution, convergence of 322–323
initial condition
in heat conduction analysis 293, 299, 303
in vibration analysis
of cable structures 318
of membranes/thin flexible plates 332
initial-value problems 285
solution of 361
integral equations 25
examples 25
integral transform methods
solution of partial differential equations using 287, 288–290
see also Fourier transform; Hankel transform; Laplace transform
integrals
applications 38–54
integrals (contd.)
- centroids of plane areas 47–52
- plane area bounded by two curves 41–42
- plane areas 38–41
- volumes of solids of revolution 42–46
- mathematical expression of 37–38
- types 37

integrant 38
integrated-circuit (IC) microchips
- “burn-in” tests 228
- heat spreaders on 224–225
- thermal cycling tests 228, 231–233
integration 36–38
- of Bessel functions 58
- concept 36–37
- plane areas determined by 38–42
- volumes of solids of revolution determined by 43–46
integration constant 200, 201, 202, 203, 220, 221
- “integration factor” 202
- “integration by parts” technique, in Laplace transformation of derivatives 180
interfacial heat transfer [between solids and fluids] 227–233
- applications 228
- example calculations 230–233
- mathematical modeling 229
intermittent loading, and resonant vibration 278, 279, 323
internal combustion engines, cooling fins on 224
inverse Fourier transform 288
inverse Laplace transform 172, 176–180, 191
- Bromwich contour integration 178
- convolution theorem 178, 179–180
- partial fraction method 176–177, 179
- use of Laplace Transform Tables in reverse 176
inverse matrix technique, solution of simultaneous linear equations by 133–135

j
Japanese industry, statistical process control method adopted by 449–450
- “jump slope angle” [of projectile] 100

k
kinematic analysis [of projectiles] 100, 101, 102–103
kinematics 95
- rigid body in curvilinear motion 97–100, 103–108, 109–114
- rigid body in rectilinear motion 95–97
kinetics 95
Kirchhoff’s law 394
Kreith, F. 3, 11, 12, 15, 24, 218
KT-SiC (Carborundum KT grade SiC) see silicon carbide
Kutta, M.W. 367
- see also Runge–Kutta methods

l
Laplace, Pierre-Simon 171
Laplace equation, for temperature distribution in square plate 308
Laplace transform 171
- applications 171
- change-of-scale property 175
- of derivatives 180–184
- differential equations solved using 171
- linear operator property 174–175
- mathematical operator 172–174
- nonhomogeneous differential equations solved using 184–186
- of ordinary derivatives 180–181
- ordinary differential equations solved using 184–192
- of partial derivatives 181–184
- properties 174–175
- shifting property 175
- see also inverse Laplace transform
Laplace Transform Tables 463
- use in finding inverse Laplace transform 176
Laplacian operator 92
laws of physics 62–63, 291
least-squares curve-fitting technique 30
Leemis, L.M. 426
linear algebra 119–120
linear equations 119
- simultaneous linear equations 120
- in matrix form 128–129
linear functions 119
 graphical representation 120
location vector(s) 75
lower triangular matrices 125

m
machine tools, periodic motions 152, 153
Malek-Madani, R. 142, 146, 375, 376, 377
manufacturing processes, uncertainties in 428
mass–spring–dashpot vibrational system 249, 254–255
mass–spring system
cantilever beam spring 252
 application 253
damped vibration 146–148, 247–248
 critical damping case 257
 modeling of 254–258
 over-damping case 256–257
 physical model 254–255
 under-damping case 257–258
forced vibration 264–266
free vibration
 angular/circular/natural frequency 146, 252
 mathematical modeling of 249–254
near-resonant vibration 273–274
resonant vibration 266–273
rod spring 252
 example 253–254
spring constant 252
 example 253–254
theory [of vibration of masses] 147, 247
material properties, uncertainties in 427–428
Mathematica
 features 375–376
 overview 375–376
mathematical modeling 21–65
 damped mechanical vibration 254–258
 definition 21
 free mechanical vibration 249–254
 free vibration, harmonic oscillation 252
 heating/cooling of solids in environmental chambers 229
 integral equation used in 25
 interfacial heat transfer [between solids and fluids] 229
 special functions for 54–62
tapered funnels 209–217
termology 26–38
 functions 27–29
 numbers 26
 variables 26–27
uncertainties in 428
use in engineering analysis 1, 9–10
 examples 11–13, 15–16
vibrating cable structures 314, 316
MATLAB software
cases
 near-resonant vibration of metal stamping machine 377, 469–473
solution of second-order differential equation 373, 374, 377, 479–482
 overview 376–377
matrices
 addition of 126
 column matrices 124, 383
 compared with determinants 121
 diagonal matrices 125
 division of 129
 elements in 123
 inversion of 129
 lower triangular matrices 125
 multiplication of matrices 127–128, 129
 multiplication by scalar quantity 127
 non-evaluation of 123
 rectangular matrices 123, 383
 row matrices 124
 square matrices 124, 383
 subtraction of 126
 transposition of 125–126
 unit matrices 125
 upper triangular matrices 124
 various forms 123–125
matrix algebra 126–129
matrix inversion 129
solution of simultaneous linear equations using 133–135, 399
matrix techniques 120
Maxwell’s equations 94–95
mean [of dataset] 431–433
mechanical vibration
 causes 247
 effects 247
Index

mechanical vibration (contd.)
meaning of term 246–247
types 247, 248
see also damped vibration; forced vibration;
free vibration; transverse vibration
mechanical vibration analysis 243, 246–258
types
 damped vibration analysis 248–249
 forced vibration analysis 249
 free vibration analysis 247–248
median [of dataset] 433
medicine, statistics used in 426
membranes
 transverse vibration of, partial differential
equations 328–335
see also thin flexible plates
merry-go-round carousel 151, 152
metal stamping machine
 near-resonant vibration [example] 275–276
 periodic motions 152, 153
 resonant vibration [example] 268–270
modal analysis 279–280, 323–328
mode number [of natural frequencies] 278, 279
mode [of dataset] 430
mode shapes
 significance for design engineers 280, 287–289, 335
of vibrating cable 324–325
of vibrating thin plates 279–280,
 334–336
Moody chart friction factor 23
Morrison, L.F. 426
motorcycle engines, cooling fins on 224
motorcycle suspension system 255
 resonant vibration 270–273

n
natural convection 227
natural frequencies
 mode number 278, 279
 of multimode mass–spring system 148
 of structures 141, 278
 and degrees-of-freedom of structure 278, 279
natural frequency, of simple mass–spring
system 252, 277
Navidi, W. 426
near-resonant vibration 273–276
mass–spring system 273–274
metal stamping machine [example] 275–276
Neumann boundary condition 294
Newton–Raphson method [for solution of
nonlinear equations] 342–343
examples 343–347
Newton’s cooling law [for heat convection in
fluids] 63, 199, 227, 295
mathematical expression 227
Newton’s laws for mechanics of solids 63, 199
second law 64, 95, 233, 234, 251, 255, 314,
 316, 328
nonhomogeneous differential equations,
solution of, by Laplace transform
184–186
nonhomogeneous first-order differential
equations, solution methods 202–204,
234
nonhomogeneous second-order differential
equations
 derivation for forced vibration 264–266
 solution methods 258–264
 complementary solution 258–259, 266
 examples 260–263, 263–264
MATLAB 373, 374, 479–482
 particular solutions 259–263, 266
 special case for 263–264
 typical equation 256
nonlinear equations
 solution of 341–347
 Microsoft Excel [spreadsheet] software
 341–342
 Newton–Raphson method 342–347
normal deviate 435
normal distribution curves 431, 435–437
properties 436–437
normal distribution function 435–436
normally distributed variables 435
numerical analysis software packages
375–376
see also Mathematica; MATLAB
numerical integration methods 347–361
Gaussian quadrature 356–361
 compared with Simpson’s one-third rule
 and trapezoidal rule 356
 examples 358–361
 weight coefficients for 357
Simpson’s one-third rule 352–356
 compared with trapezoidal rule 352, 355
examples 353–356
trapezoidal rule 348–352
 compared with Simpson’s one-third rule
352, 355
examples 349–352
numerical solution methods 25–26, 339–377
characteristics 340
digital computers used 340
partial differential equations solved using 287
round-off errors 340
step size in 340, 361, 362, 363, 364, 365, 372
as “trial-and error” processes 340
truncation errors 340
Nusselt number 24, 227

O
oil pipelines, crack detection in 4
ordinary differential equations 199
 solution using Laplace transforms 184–192
see also first-order ordinary differential equations; second-order ordinary differential equations
oscillatory motion
 amplitude 246
 frequency 246
 period 246
see also mechanical vibration

P
parabolic curve, solid volume of revolution 45
parallelepiped, determination of volume by triple product [of three vectors] 87–88
parallelogram, determination of area by cross product [of two vectors] 86
parallelogram law, summation of vectors using 79
parameters
 definition 26, 171
 transformation of variables into 171
paratroopers, rigid-body dynamics under influence of gravitation 235–237
partial derivatives 36, 285–286, 317
finite-difference formulation for 366–367
Laplace transform of 181–184
spatial or temporal variables in 285
partial differential equations
 for heat conduction in solids 291–298
 meaning of term 199, 285, 287
 solution methods 287–290
 Fourier transform method 287, 288–290
 Hankel transform method 287
 integral transform methods 287, 288–290
 Laplace transform method 30, 192–195, 287, 288, 299
 numerical solution methods 287
 trial functions method 287
 solution for steady-state heat conduction analysis 308–313
 solution for transient heat conduction analysis 298–307
 solution for transverse vibration of cable structures 318–322
 solution for transverse vibration of membranes [thin plates] 331–334
 for transverse vibration of cable structures 314–328
 for transverse vibration of membranes [thin plates] 328–336
partial fraction method, inversion of Laplace-transformed function by 176–177
perforated plate
 stress analysis of 131
 with tapered edges, stress analysis of 132–133
periodic continuous sinusoidal functions 153, 154
periodic functions
 correlation with Fourier series, effect of number of terms 163–164
 representation by Fourier series 152–154, 155–156
periodic phenomena 151
 examples 151–152
periodic piecewise continuous linear signal 154, 158
Fourier series for 158–159
periodic “sawtooth” function
 Fourier series for 157–158
 graphical representation 157
oscilloscope signal 154
periodic sinusoidal function
Fourier series for 156–157
graphical representation 156
oscilloscope signal 154, 156
permittivity [in electromagnetism] 427
physical problems
idealization of [for mathematical modeling] 9, 381, 427
examples 11–12, 15, 381
identification of 8–9
examples 10, 11, 14, 15
physical quantities
in electromagnetism 94
representation [in engineering analysis] 27–29, 73, 151
physics
laws of 62–63, 199–200, 393–394
statistics used in 427
piecewise continuous functions 28–29
piecewise continuous periodic functions 153, 154
convergence of Fourier series for 166–169
Fourier series for 159–161
graphical representation 153, 159
pipes
bend loss coefficient 23
convective heat transfer analysis 23–24
pressure drop in fluid flow 22–23
see also gas pipelines; oil pipelines
plane areas 47–52
plane areas, determination of
by cross product [of two vectors] 86
by integration 38–42
Poisson’s ratio 408, 427
politics, statistics used in 427
polynomial function curve-fitting technique 30–31
position vector function
projectiles 100, 101, 102
rigid body in curvilinear motion 98, 104, 109
rigid body in rectilinear motion 95
position vectors 75–78, 90
in 2D plane 75, 76, 81
in 3D space 75–76
power transmission structures, vibration of 314
Prandtl number 24, 227
pressure vessels, design analysis 18
pressurized process reactor 32–33
probabilistic design analysis 439, 443–447
probability P [of fracture of structure] 443, 444
reliability R of structure 443, 444
volume effect 444
probability density function 435
probability (P) of fracture of structure 443–444
probability theory 427, 435
problem solving [by engineers] 2–3
product development
automobile braking system case study 421, 422
cost saving in 420, 422
general processes involved 421
simulation by FE codes 420–422
product quality
balance between improved quality and cost of improvements 447–448
factors affecting 447
poor quality causes 447
effects 447
projectiles
kinematic analysis 100, 101
attainable range 103
impact velocity 103
maximum attainable height 102–103
position vector function 100, 101, 102
vector calculus used 100–103
public liability/responsibility [of engineers] 3, 18
Pythagorean rule 75
q
quadrilateral plate elements [in FEA] 384, 385
interpolation functions 388
quadrilateral plate structure, finite-element model 397–398
quarter-circular plate, determination of plane area 39
r
R-chart 453–456
radius vector 75–76
ramp function, Laplace transformation carried out on 172–173
real numbers 26
rectangular matrices 123
multiplication by column matrix 128
transposition of 126
recurrence relations
for “back substitution” 137, 140
of Bessel functions 58
in Gaussian elimination 135, 137, 138
for Laplace transform of nth-order derivatives
181, 185
for Laplace transform of step functions 188
in matrix algebra 127
reservoirs and tanks
fluid flow in 205–209
fluid mechanics
derivation of differential equations 207–208
solution of differential equations 208–209
resonant vibration
amplitude 267–268
cable structures 314
damage caused by 247, 314
mass–spring system 266–273
structures 141, 268
resultant matrix 134
Reynolds number 24, 227
right solid cone, determination of volume 44–45
right [angled] triangle, determination of plane area 38
rigid body dynamics 95
plane curvilinear motion
in cylindrical coordinates 102–108
with normal and tangential components 109–111
in rectangular coordinates 97–100
rectilinear motion 95–97
under influence of gravitation, first-order ordinary differential equations used
233–237
vector calculus used 95–114
risk assessment [by engineers] 5
rod spring [in mass–spring system] 252
example 253–254
Rosenkrantz, W.A. 426, 454
row matrices 124
multiplication by column matrix 128
Runge, C. 367
fourth-order method 369–370
for higher-order differential equations 370–374
second-order method 367–369
safety factors” [in engineering analysis] 17–19, 382, 443
in example calculation 17
typical factors 18
San Francisco
Lombard Street 88, 89
see also Golden Gate Bridge 315
scalar product [of scalar and vector] 81–82
scalar quantities 73
elements 73
second-order derivatives 35
Laplace transform of 181
second-order ordinary differential equations
applications 243
mechanical vibration analysis 243, 246–258
solution methods
Laplace transform method 194
for linear, homogeneous equations 243–246
for linear, nonhomogeneous equations 258–264
Runge–Kutta method 370–374
section moment of inertia of beam
cross-section 16, 35, 186, 187, 189, 191, 338
semiconductor doping, differential equation used 25
semiconductor industry, reliability testing 228, 231–233
semiconductor manufacturing, fluid mechanics 204
separation constant(s) 287, 301, 305, 306, 312, 313
convergence of series solutions 322–323
for steady-state heat conduction analysis 312–313
for transient heat conduction analysis 299–301, 304–305
Index

separation-of-variables method [for solution of partial differential equations] (contd.)
for transverse vibration of long flexible cables 319
for transverse vibration of thin flexible plates 331–334
series solutions, convergence of 322–323
sewing machine mechanism 151–152
sheet metal stamping machine see metal stamping machine
Shewhart, Walter A. 449
silicon carbide
fracture strength data 438
test details 441
material properties 438
pressurized ceramic tube, determination of reliability 445–447
simple harmonic motion, graphical representation of vibrating mass 252
Simpson’s one-third rule [for numerical integration] 352–356
compared with trapezoidal rule 352, 355
examples 353–356
simultaneous linear equations 120
in matrix form 128–129
need for solving large numbers of equations 131–133
solving of 120, 131–141
by Gaussian elimination method 135–141, 399
by inverse matrix technique 133–135, 399
singular matrix 129
social science, statistics used in 427
solids of revolution 42
determination of volumes 43–46
space vectors 78, 79
spatial variables 27, 29
special functions
for mathematical modeling 54–58
for particular physical phenomena 58–62
spline [curve] fitting technique 30
Sprinill, C.E. 441
square matrices 124
diagonal(s) of 124–125
eigenvalues and eigenvectors 142–146
multiplication by column matrix 128
transposition of 126
standard deviation 434–435
statistical analysis
analyzing data to generate conclusions 429
collecting relevant information 428–429
databases used in 429
example 429–430
organizing collected information 429
summarizing and presenting information 429
terminology 430–433
statistical approach to design, ceramic and brittle materials 438–439
statistical mechanics 427
statistical process control (SPC) method 449–450
advantages 450
control charts 450–456
statistical quality control 447–448
statistics 425–456
applications 426–428
agriculture 426
biology 426
business 426
economics 426
electronics and communications 426
engineering practice 427
healthcare 426
medicine 426
physics 427
politics 427
social science 427
scope of 428–430
steady-state heat conduction analysis
in cylindrical polar coordinate system, solution of partial differential equations 311–313
in rectangular coordinate system, solution of partial differential equations 308–311
solution of partial differential equations 308–313
step function(s) 58–60, 151
application to partially loaded beam 60
Fourier transform of 289
graphical description 58, 59
Laplace transform of 173–174
recurrence relations 188
superposition of 59, 60
strain–displacement relations, secondary unknown quantities [in FEA] obtained from 388, 401
strain energy in deformed solids 409, 411–412
stress analysis
 perforated plate 131–132
 perforated plate with tapered edges 132–133
stress concentration factor(s) 131, 132
stress concentrations 132
stress–strain relations, secondary unknown quantities [in FEA] obtained from 388, 401
suspension bridges, vibration of 314, 315

\textit{t}
Taguchi, Genichi 450
tanks and reservoirs
 fluid flow in 205–209
 fluid mechanics
 derivation of differential equations 207–208
 solution of differential equations 208–209
 time required to empty 209
tapered bar
 finite-element model 384–386
 element descriptions 385–386, 387
 nodal descriptions 385, 387
 tapered containers and funnels
 drainage of 209–217
 compound funnel 213–214
temperature field 291
temporal variables 27, 29
tetrahedral elements [in FEA] 384, 385
 interpolation functions for 388
thermal conductivity [of solids] 93, 217–218, 427
thermal diffusivity [of solids] 93, 293
thermal stresses 291
thermodynamics, laws of 229, 291
thin plates
 transverse vibration of, partial differential equations 328–335
vibrating
 forces acting on [small] element 328–329
 lateral deformation of 328, 329, 330

\textit{three-sigma control chart} 451–453
Trans-Alaska Pipeline 4
transient heat conduction analysis
 in cylindrical polar coordinate system, solution of partial differential equations 303–307
 in rectangular coordinate system, solution of partial differential equations 298–303
 solution of partial differential equations 298–307

transposition of matrices 125–126, 130
transverse vibration
 partial differential equations for cable structures 314–328
 membranes/thin flexible plates 328–336
trapezoidal rule [for numerical integration] 348–352
 compared with Simpson's one-third rule 352, 355
 examples 349–352
 “trial-and-error” processes, numerical solution methods as 340
triangular plate elements [in FEA] 384, 385
 interpolation functions for 388–390, 392–393
 primary unknown quantities in 390
triple product [of three vectors] 86–87
 use in volume determination of solids 87–88

\textit{u}
ultimate strength [of materials], temperature effects 291
uncertainties
 in engineering activities 427–428
 in engineering analysis 428
 in fabrication methods 428
 material properties 427–428
 mathematical modeling 428
 sources in everyday life 425
unit matrices 125
 “unit vectors” 75
 addition and subtraction of vectors using 80–81
 example 76
units 465
conversion of 467
unknowns matrix 134
upper triangular matrix 124
coefficient matrix converted into 135, 145

V
Vardeman, S.B. 426
variables 26–27
transformation into parameters 171
types [in engineering analysis] 27
variance [measure of scatter of data in dataset] 434–435
variation [of data values in dataset] 433, 434
variational calculus 394–395, 412

vector(s)
in 2D planes 78
in 3D spaces 78, 79
direction 74
graphical representation 74
magnitude 74, 75
multiplication of 81–88
cross product 84–86
dot product 82–84
scalar multiplier used 81–82
triple product [of three vectors] 86–87
in rectangular and cylindrical coordinate systems 75–78
subtraction of 77, 79–80, 81
summation of 77, 79, 80

vector algebra 79–88
addition of vectors 79, 80, 81
additional laws 87
multiplication of vectors 81–88
subtraction of vectors 79–80

vector calculus 88–92
applications 92–95
in electromagnetism 94–95
in fluid mechanics 93–94
in heat transfer 93
projectiles 100–103
rigid body in curvilinear motion 97–100, 103–114
rigid body in rectilinear motion 95–97

vector functions 88–89
derivatives 89–90
products, differentiation of 90

vectorial quantities 73, 89
examples 73
velocity vector function
rigid body in curvilinear motion 98, 99, 104, 109, 112, 113
rigid body in rectilinear motion 96, 97
vibration see damped vibration; forced vibration; free vibration; mechanical vibration; transverse vibration
Volterra, E. 131, 186, 445
volume effect 444
von Mises stresses 403

W
“wave equation” [for vibration of long cables] 317–318
Weibull, Waloddi 439
Weibull distribution function 437–447
lower bound to 440–441
parameters 440
Weibull modulus 440
Weibull parameter(s) 440
estimation of 441–443
weighted residue method [Galerkin method], element equations derived by [in FEA] 395–396
Whitaker, J.C. 3, 24
“wind chill effect” 227–228
wine bottle
design of funnel to fill 215–217
determination of volume 45–46
Wolfram, Stephen 375
Wolfram Language and Systems Documentation Center 373
Wolfram/Alpha Widgets software 346, 376

Y
Young, W.C. 14, 15
Young’s modulus 16, 35, 186, 187, 189, 191, 252, 408, 413, 414, 415, 427, 438
effect of high temperatures 291

Z