INDEX

A
Acceptable daily intake (ADI), 170, 171
Acetic acid, 98, 139, 243–245
Acetonitrile, 7, 22, 33, 34, 54, 121, 123, 150, 151, 241, 243, 245, 253
Acrylamide, 8, 94–99
determination using GC-MS, 98
determination using LC–MS/MS, 98
chromatogram, 99
formation, in food processing, 98
levels in foodstuffs, 95
techniques for analysis, 98
Adipose tissue, 118
Administrative MRLs (AMRLs), 170
Adsorption processes, 23
Aflatoxins, 233–234, 237, 253
Alkyl-bonded silica columns, 173
Alternaria fungi, 231, 252
toxins, 235, 237
Ambient desorption/ionization techniques, 38–62, 253
applications, 55, 61, 65
relevant to food safety and quality, 56–60
Ammonia, 52, 94
Analog-to-digital converter (ADC), 176
Analyte retention factors, 17
Analytical quality control (AQC) system, 76, 86
internal quality control, 86
method performance verification in routine use, 86
proficiency testing, 86, 87
Analytical workflow, elements, 80
extraction efficiency, 81
sample preparation, 80, 81
sample processing, effects, 81
Animal fat, 117
Anthocyanidins, 9
Antimicrobial residues in meat, 223–227
principle for screening, 225
targeted/nontargeted screening approaches, 223–227
APCI. See Atmospheric pressure chemical ionization (APCI)
AQC guidelines, 76, 78, 90
Arginine, 109
ASAP. See Atmospheric pressure solids analysis probe (ASAP)
Aspergillus, 231, 233, 242, 252, 253
Atmospheric pressure chemical ionization (APCI), 26, 44, 45, 53, 100, 102, 106, 250
Atmospheric pressure solids analysis probe (ASAP), 45, 46, 55, 60
ion source, and ionization process, 46
Atrazine, 9, 56, 59, 133, 147
Audits, 75
Australian government statutory authority, 171
Australian Pesticides and Veterinary Medicines Authority (APVMA), 171
Automated extraction systems, 8
Automated SPE workstations, 8
Automation of weighing and preparing standard solutions, 5
QuEChERS, 6
SweEt, 6
Azo-dyes, 105

Edited by Perry G. Wang, Mark F. Vitha, and Jack F. Kay.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
B
Beauvericin, 232, 237, 245
Belgium, dioxins in pork and milk products, 1
Bensulfuron-methyl, 118, 122, 137, 149
Benzene, 1, 10, 119
Benzimidazoles, 193
Benzyl butyl phthalate, 103, 105
Bioaccumulation, 103
Bioactivity-based methods, 2
Bioflavonoids, 9
Biological techniques, 172, 238, 256–258
Biosensors, 194, 238, 259
Bis(2-ethylhexyl)phthalate, 103
Bisphenol A (BPA), 101
Bovine spongiform encephalopathy, 1
Brilliant green (BG), 220
Chromatograms, 20, 99, 104, 110, 138, 139, 185, 196, 197, 200, 222, 251
Chromatography
based approaches, 15
performance, 22
separation of VDs, 174–175
CI. See Chemical ionization (CI)
Citrinin, 237
Claviceps fungi, 252
toxicogenic molds of, 231
Code of federal regulations (CFR), 96-97
Codex Alimentarius Commission (CAC), 2, 76, 95, 171, 172, 215
standards, recommendations for, 2
Column
Florisil, 121
genometry, 16, 174
length, 16, 220
Megabore, 17
particle-based, 23
with a small internal diameter, 16
Confirmatory analysis, 79, 191, 250
Confirmatory methods, 2, 78, 79, 199
validation and EU regulation, 79
Control of records, 75
Core–shell columns, 24
Correlation coefficients, 28–29
Crystal violet (CV), 220
C-shaped storage trap, 178
Cyanuric acid, 23, 94, 109
chromatogram, 110
D
DAPCI. See Desorption atmospheric pressure chemical ionization (DAPCI)
DAPPI. See Desorption atmospheric pressure photoionization (DAPPI)
Darcy’s law, 22
DART ionization. See Direct analysis in real-time (DART) ionization
DART–Orbitrap MS fingerprinting, 254
Data-dependent acquisition (DDA) mode, 177, 218
Decision limit (CCα), 171, 192, 195, 196
Deoxynivalenol (DON), 54, 232, 237, 243, 245, 253–255, 257, 258
calibrations, and isotope dilution, 255

Chloramphenicol, 168, 170, 174, 187, 193, 194
Chloropropanols, 100

Chlortoluron, 118, 122, 137, 149
Chromatograms, 20, 99, 104, 110, 138, 139, 185, 196, 197, 200, 222, 251
Chemical contamination, 90, 93, 95, 97, 109
Chemical ionization (CI), 18
Chemical pollutants, 117
in animal fat, 118
China, 1
melamine milk crisis, 3, 23, 94
pork samples, analysis, 152
regulations for mycotoxins, 237
risk assessment of environmental pollution, 162
C-shaped storage trap, 178
Cyanuric acid, 23, 94, 109
cromatogram, 110

Desorption atmospheric pressure chemical ionization (DAPCI)
Desorption atmospheric pressure photoionization (DAPPI)
Direct analysis in real-time (DART) ionization
DART–Orbitrap MS fingerprinting, 254
Data-dependent acquisition (DDA) mode, 177, 218
Decision limit (CCα), 171, 192, 195, 196
Deoxynivalenol (DON), 54, 232, 237, 243, 245, 253–255, 257, 258
calibrations, and isotope dilution, 255
matrix-matched standards/isotope dilution, 255
Desciprofloxacin, 185
DESI. See Desorption electrospray ionization (DESI)
Desorption atmospheric pressure chemical ionization (DAPCI), 45, 46, 59
Desorption atmospheric pressure photoionization (DAPPI), 46, 47, 60
Desorption electrospray ionization (DESI), 41–43, 53–54, 253
geometry-independent, 43
ion source, and ionization process, 42
mass analyzers, suitable to deal with, 53
matrix effects, 54
optimization, 47–48
for food-related DESI applications, 42
quantification, 54–55
sensitivity, 42
source parameters, 48–50
transmission mode (TM) DESI, 42
Detection capability (CCβ), 88–89, 171, 192, 195, 196
Diacetoxyscirpenol, 58, 232, 237, 245
Dibutyl phthalate (DBP), 104, 105, 120
Dichloromethane, 52, 103, 122, 138, 139
1,3-Dichloropropan-2-ol (1,3-DCP), 100
Dicyandiamide, 108
Diethyl phthalate (DEP), 104, 105, 120
Diethylstilbestrol, 168
Dimethyl phthalate (DMP), 104, 105, 120
Dioctyl phthalate (DOP), 120
Diode array detector (DAD), 183, 192, 248
Dioxins, 1
Direct analysis in real-time (DART) ionization, 44–45, 53–54, 253, 254
applicability of DART-MS to chicken meat metabolomics for, 62
authenticity assessment of extra virgin olive oil, 61
efficient tool for rapid determination of lipids/ionizable impurities, 62, 254
mass analyzers, suitable to deal with TOF/Orbitrap mass analyzers, for fungicides, 53
matrix effects, 54
multivariate analysis, 62
optimization, 47–48
of partition-based sample cleanup, 62
quantification, 54–55
source parameters, 50–53
dopants, 50, 52–53
geometry, 50
ionization gas parameters, 50–52
voltages, 50
Dispersive solid-phase extraction (dSPE), 241–243, 245, 247
Diterpene glycosides, 9, 61
Docosahexaenoic acid (DHA), 5, 6
Document control, 74
DON. See Deoxynivalenol (DON)
DON-3-glucoside (D3G), 238, 243, 245, 250, 254
2,4-D pesticide, 118
Dried distiller’s grains with solubles (DDGS), 241
Drug discovery, 3
Drug residues, 3, 76, 79, 193, 213, 215, 224
physicochemical analyses, 213
Dynamic range enhancement (DRE), 176
E
Eicosapentaenoic acid (EPA), 5, 6, 119, 120
electronic Laboratory Information Management System (LIMS), 75
Electron ionization (EI), 18
Electrospray ionization (ESI), 26, 41, 98, 103, 122, 183, 187, 190, 198, 249, 254
Electrostatic interactions, 23
Endosulfan, 20, 117, 122, 124, 148, 159, 161
Enniatins, 232, 237, 243, 244
Environmental contaminants, 2, 19
Environmental pollutants, 117
long-term hazards, 117
residues, 117
Environmental protection, 117
Enzyme-linked immunosorbent assay (ELISA), 77, 238, 256, 257, 259
disadvantage of, 256
LC–MS-based confirmation, 256
Ergot alkaloids, 236, 237, 242, 243, 248, 254
EU. See European Union (EU)
Food and Agriculture Organization of the United Nations (FAO), 2, 170, 215
Food and Drug Administration (FDA), 1, 94
Food authenticity, 2
Food-borne pathogen, 2
Food-containing residues, with antimicrobial activity, 167
Food contamination, 16, 93, 94
accidental, 94
nonintentionally added substances (NIAS), 94
undesirable packaging contaminants, 94
Food control applications, 181
comparison studies, 195–201
confirmation/quantification methods, 191–195
screening applications, 181–191
Food monitoring program, 95
Food-producing animal drugs, 168
notice of compliance (NOC) for, 170
Food safety classifications, 3
Food Safety Modernization Act (FSMA), 1, 95
U. S./Canada, 168
Food Standard Agency (FSA), 93
Formic acid, 98
Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, 214, 216
Fourier transform orbital trap (FTMS–Orbitrap), 214
France, tainted coca-cola in, 1
Fumonisins, 233, 237, 245, 254, 256–258
Furan, 100, 101
Fusarium mycotoxins, 241, 257

G
Gas chromatography (GC), 15, 172, 247
steps, 16
Gas chromatography–mass spectrometry (GC–MS), 2, 4, 15–21, 78, 117, 124
Gastric intestinal disturbances, 167
Gel permeation chromatography (GPC), 103, 117, 121, 124, 136, 138, 151, 153

F
False negative, 3, 89
False positive, 3
Fast gas chromatography, 16
applications, 19
The Federal Food, Drug, and Cosmetic Act (FFDCA), 95
Federal government agencies, 2
Fertilizers, 93
Fipronil, 118
Flavor compounds, 19
Flumequine, mass spectra, 217
Fluorescence
detector, 248
liquid chromatography (LC), 168
Fluorescence polarization (FP) immunoassays, 258
Food analysis, 2, 15, 17, 55, 59, 227, 246, 258
GEMS/Food Programme, 95
Graphitized carbon black (GCB), 242
Growth-promoting agents (GPAs), 169

H
Headspace analysis, 10
Headspace gas chromatography–mass spectrometry (HS-GC–MS), 10
equilibration times, 38
HS-MS (e-nose), for volatile compounds analysis, 38
Headspace solid-phase microextraction (HS-SPME), 19
features, 37–38
incubation and extraction times, 38
MS e-nose, in food authenticity studies, 38
Heat-induced food processing contaminants, 97–101
Helium, 17, 44, 50–52, 124
Heptafluorobutyric acid (HFBA), 108, 175, 224
Heptafluorobutyrylimidazole (HFBI), 100
Hexythiazox, 118, 122, 137, 149
Higher energy collision dissociation (HCD), 178, 198
High-field asymmetric waveform ion mobility spectrometry (FAIMS) method, 254
High-performance liquid chromatography (HPLC), 7, 21, 22, 24, 101, 105, 191, 192, 195, 220, 243, 244, 249, 253
High-resolution/accurate mass analyzers, 18
High-resolution mass spectrometry (HRMS), 25, 80, 168, 173, 195–201, 214, 218, 250–252
comparison studies, 195–201
food control applications extracted MS/MS ion chromatograms, enrofloxacin milk sample, 185
screening applications, 181–182, 185–186, 189–190
hybrid quadrupole-time of flight (QqTOF), 168
metabolites in fish, 220–222
nontargeted analysis using, 219, 223, 226
Orbitrap-MS analyzer, 168
detection of veterinary drug residues in food samples, 187–188
targeted analysis using, 218–219, 223
time of flight (TOF) MS, 168
detection of veterinary drug residues in food samples, 183–184
veterinary drugs (VDs), 192–195
veterinary medicinal products, in foods, 223
High-resolution TOFMS (HRTOFMS), 19
High screening capacities, 4
High-speed high-resolution/accurate mass analyzers, 18
High-speed TOFMS (HSTOFMS), 19
High-throughput analysis, 61
for food safety, 3
High throughput concept, 3
High-throughput definition, 4
High-throughput drug analysis, 3
High-throughput screening, 3
High/ultrahigh-performance liquid chromatography (HPLC/UHPLC), 248
HPLC–QLIT–MS/MS using SRM mode for multiscreening of VDs, 191
HPLC–QqQ–MS/MS system, 195
HPLC–TOF–MS method, 196
HRMS. See High-resolution mass spectrometry (HRMS)
HT2 toxins, 252
Hybrid QqTOF–MS analyzer application in field of VDs, 177
MS/MS mode, 191
Hybrid quadrupole-ion trap (QTrap) LC–MS systems, 216
Hybrid quadrupole/time-of-flight (QTOF), 250
Hydrogen bonding, 23
Hydrophilic interaction liquid chromatography (HILIC), 7, 22, 23, 108
food analyses, 23
Hydrophilic stationary phase, 22
Hygienic limits, 237

I
Identification points (IPs), 171
Igacure, 101, 102
Immunoaffinity column (IAC), 246
Immunochemical methods, 172, 238, 256–258
enzyme-linked immunosorbent assay, 238, 256
fluorescence polarization (FP) immunoassays, 258
membrane-based immunoassays, 257–258
surface plasmon resonance, 258
Injection techniques, 16
Insecticides, 121
in honey, 9
organophosphorus, 49
persistent organic pollutants, 118
Internal quality control (IQC), 76
method performance verification in routine use, minimum requirements, 86
Ionization efficiencies, 16, 23, 26, 47, 50, 174, 218, 254
Ion mobility spectrometry (IMS), 254
determination of OTA, 254
Ion trap (IT) LC–MS systems, 173, 189–191, 194, 216
Isobaric interferences, 178
in food samples, 53
Isopropyl thioxanthone (ITX), 94
ISO 17025 quality standard, 73
IT technology
detection of veterinary drug residues, 190
identification and confirmation of VD residues in food samples, 189, 194
improvements in, 179
Japan, 1
government “positive list” to regulate, 1
MHLW establish positive list with MRLs for pesticides, 170, 171
pesticides in contaminated foods, 1
regulations for industrial use of PFOS, 1
regulations for mycotoxins, 237
Joint FAO/WHO Expert Committee on Food Additives (JECFA), 170

L
Labeling accuracy, 2
Lateral flow devices (LFD), 256
LC coupled with Q–MS and QqQ–MS/MS chromatograms for enrofloxacine, 196
LRMS limitations, 168
scanning modes, 194–195
LC-TOF-MS method, 192
for screening and quantification of VD residues, 185
Legislation. See also regulation for adulterated food, 97
Code of Federal Regulations (CFR), 96, 97
Directive 96/23/EC specifies, 215
657/2002/EC document, 1
on food contaminants, 95
foodstuffs, 237
toxicants, 237
instrumentation and software, 97
mycotoxins, 231, 237
Rapid Alert System for Food and Feed (RASFF), 95, 240
Regulation 10/2011, 96
Regulation 2003/460/EC, 96
Regulation No. 450/2009, 96
toxicants, 237
veterinary drug, 168–172
Commission Decision 2002/657/EC, 171
Directive 2001/82/CE, 169
Regulation 2377/90/EC, 169
Regulation (EC) No. 470/2009, 169
Leucobase of brilliant green (LBG), 220, 221
mass spectra, 221
Leuco-malachite green (LMG), 220
Limits of detection (LODs), 33, 84, 118, 121, 139, 148, 184, 187, 190, 258
Lincomycin, 193
Linear ion traps (LITs), 173, 178
improvements in technology, 179
use of third quadrupole (Q3) as, 180
Linear-orbital trap (LTQ-Orbitrap), 173, 215
detection of veterinary drug residues in food samples, 187–188

K
Kjeldahl method, 94
Liquid chromatography–mass spectrometry (LC–MS), 2, 15, 21–22, 78, 97, 117, 124, 168, 173, 238, 248–249
Liquid extraction surface analysis, 5, 9–10
Liquid–liquid extraction (LLE), 5, 8
LODs. See Limits of detection (LODs)
Low-pressure gas chromatography (LP–GC), 17
advantages, 17
Low-resolution mass spectrometry analyzers (LRMS)
detectors, 178, 199
limitations, 168

M
Macrolides, 193
Malachite green (MG), 220
Malicious contamination of food, 105–111
Masked mycotoxins, 238
Mass accuracy, 25, 176, 178, 218
Mass spectrometry (MS), 15, 24
ambient desorption/ionization methods, 38–41
based techniques, 2, 10
calibration, role of weighting factors for, 28–30
matrix effects, 26–28
nontargeted analysis, 26
targeted analysis, 24–26
Mass-to-charge ratio (m/z), 219, 221
Mass window setting, 21
Matrix-assisted laser desorption/ionization–mass spectrometry (MALDI-MS), 30, 252–253
applications relevant to food safety and quality, 33–34
in high-throughput analysis of food, 36–37
instrumentation, 30–31
optimization of key parameters, 31
laser parameters, 35
matrix, 32
sample preparation, 32, 35
principles, 30–31
Matrix effects, 26
Matrix solid-phase dispersion (MSPD), 5, 118, 120, 246
Maximum residue limits (MRLs), 84, 85, 169, 170, 183–184, 187, 192, 193, 215, 219, 224, 227
CODEX Alimentarius, guidelines, 171, 172, 215
in food products, 215
veterinary drug, 171
Melamine, 23, 93, 109
chromatogram, 110
Membrane-based immunoassays, 257–258
Methanol, 7, 22, 23, 33, 34, 36, 58, 98, 100, 122, 224, 247, 253, 256–258
Metsulfuronmethyl, 118
Microextraction by packed sorbent (MEPS), 5, 9
Microwave assisted extractions (MAE), 118, 119
Minimum required performance limit (MRPL), 79, 169, 170, 184
defined, 169
values established for, 170
Molecularly imprinted polymers (MIP), 246
Moniliformin, 237
3-Monochloropropane-1,2-diol (3-MCPD), 100, 101
Monolithic columns, 23, 24
Monomers, 94
MRLs. See Maximum residue limits (MRLs)
MRPL. See Minimum required performance limit (MRPL)
MS/MS mode, 189, 218
MS/MS transitions, 19
MSPD. See Matrix solid-phase dispersion (MSPD)
Multiclass/multiresidue analyses, 120–122
actual sample analysis, 157–161
analytical methods, 124, 136
GC–MS/MS with EI source, 124–135
GC–MS with NCI source, 124–137
GPC cleanup, 124
LC–MS/MS, 124, 136
experiment, 122
extraction solvent, selection of, 138–139
GPC cleanup conditions, selection of, 136, 138
GPC chromatogram blank sample, 138
Multiclass/multiresidue analyses (Continued)
standard fortified sample, 139
instruments, 122
linear range/LOD/LOQ, 140–149, 152
pesticide and VD residue analyses, 181, 182
precisions, 152, 157
qualitative/quantitative determination, 136
reagents, 122
recoveries, 152, 157
sample cleanup, comparison of, 151–156
sample extraction methods, comparison of, 150–151
accelerated solvent extraction, 150
homogeneous extraction, 150
oscillation extraction, 150
sample preparation, 123
standard solutions, preparation, 122–123
Multiple reaction monitoring (MRM), 18, 24, 98, 213. See also selected reaction monitoring (SRM)
Multiresidue methods (MRMs), 77, 81, 120
quantitative, 78, 80
screening, 181
Mycotoxins, 2, 9, 186, 231–236
analysis in high-throughput environment, 238–239
analytical methods, for analysis, 239
chromatographic techniques, 247
countries partly established regulations for, 237
definition of, 231
emerging, 237–238
in food and feed, 237
health risks, public awareness, 231
legislation and regulatory limits, 231–237
masked, 238
matrices, 240
NO-separation mass spectrometry-based methods
ambient ionization mass spectrometry, 253–254
enzyme-linked immunosorbent assay, 256
fluorescence polarization (FP) immunoassays, 258
immunochemical methods, 256
ion mobility spectrometry (IMS), 254–256
matrix-assisted laser desorption ionization–mass spectrometry, 252–253
membrane-based immunoassays, 257–258
surface plasmon resonance, 258
QuEChERS applications, 243–245
sample preparation, 239
dispersive solid-phase extraction (dSPE), 241–242
extraction of, 241–246
matrices of interest, 240–241
purification of sample extracts, 246–247
sampling, 240
use of QuEChERS, 242
separation/detection, 247
high-resolution mass spectrometry (See High-resolution mass spectrometry (HRMS))
liquid chromatography–mass spectrometry-based methods, 238, 248–250
N
Nano-ESI-MS analysis, 9, 10
Nanoparticles, 10, 257
National Oceanic and Atmospheric Administration (NOAA), 2
Negative chemical ionization (NCI), 18, 117, 122, 124, 136
NIR spectroscopy, 10
Nitrofurans, 168, 170, 193
Nitrogen content, of processed food, 94
Nitroimidazoles, 193
Nivalenol (NIV), 57, 232, 237, 245
N- nitrosamines, 102–103
Nongovernmental organizations (NGOs), 170
Nonintentionally added substances (NIAS), 94, 95
Nontargeted analysis, 26, 214, 219–221
aimed at identifying metabolites of antimicrobials, 224
residues in meat, 223–227
principle of high-resolution full scan screening using, 226
vs. targeted approach, 26, 216, 223
veterinary drugs, 189
Notice of compliance (NOC), 170
Nuclear magnetic resonance (NMR), 10, 109

O
Ochratoxins, 9, 235, 237, 245
Omega-6 fatty acid, 9
Optimal QuEChERS-based extraction protocol, 242
Orbitrap-MS analyzer, 25, 53, 168, 177, 214, 216, 221, 223, 252
determination of norfloxacin and its isobaric interference, 179
mycotoxin applications, 250–252, 254
veterinary drugs applications, 177–179, 186, 193–194, 197
Organochlorine pesticides, 16, 118
Oxociprofloxacain, 185
Oxolinic acid, 217

P
Packaging migrants, 101–105
bisphenol A, 101
chemical migration, 102
detection levels, 101
faster QuECh-EERS method, 101
irgacure, 101
ITX, 101
LC–MS/MS chromatogram, 104
legislation, 101
N-nitrosamines, 102
photoinitiators in food, 102
phthalates, 102, 105
sample preparation, 101
TRP-ITX, 101
PAHs. See Polycyclic aromatic hydrocarbons (PAHs)
Partial least-squares discriminant analysis (PLSDA) models, 253
Particle size, 10, 22
Partitioning theory, 23
Patulin (PAT), 237
PCBs. See Polychlorinated biphenyls (PCBs)
Penicillins, 9, 193
Penicillium fungi, 231, 242, 252
Perfluorinated contaminants (PFCs), 103, 105, 106
Perfluorooctane sulfonate (PFOS), 1, 103, 106
Perfluoroctanesulfonic acid (PFOA), 103
Persistent organic pollutants (POPs), 118–119, 157
Pesticide residue analysis, 2
Pesticides
residue analysis, 2, 4, 19, 78, 117, 121, 186, 241
residues in foods, screening methods for validation, 79
PFCs. See Perfluorinated contaminants (PFCs)
Phomopsin, 237
Photoinitiators, 94
Photoionization, 47
Phoxim, 118
Phthalate bis-2-ethylhexyl ester (DEHP), 120
Phthalate esters (PAEs), 102, 117, 119, 120, 157
Phthalates, 1, 94, 102, 105
Pistachios, 1
Plant toxins, 186
Plasticizers, 94, 103
Polar organic mobile phase, 23
Polybrominated diphenyl ethers, 120
Polychlorinated biphenyls (PCBs), 9, 19, 96, 117, 119–120, 125–135, 157
Polycyclic aromatic hydrocarbons (PAHs), 6, 19, 58, 96, 117, 119, 157
Poly(methyl methacrylate) (PMMA), 47
Polytetrafluoroethylene (PFTE), 47, 49
Polyvinylchloride (PVC), 103
Positive chemical ionization (PCI), 18
Pressurized liquid extraction, 7–8
Primary–secondary amine (PSA), 242
Product ion scan (PIS), 173
Proficiency testing, 76, 86, 87
ISO/IEC 17043, 86
laboratory performance, dependent on, 87
Propanil, 118
Protein precipitation (PPT), 5
Proteomics, applications, 24

Q
QqQ LC–MS systems, 216, 217
Quadrupole-time of flight mass spectrometry (QqTOF-MS), 18, 168, 177, 191, 195
confirmation of VDs in milk samples, 185
MS/MS ion chromatograms, 185
methodologies used for the detection of veterinary drug residues, 183–184
Quadrupole IT (QIT), 178
detection of veterinary drug residues, 190
two-dimensional, 179
Quadrupole-linear ion trap (QqLIT), 173, 178, 249
Qualitative screening methods, 76–78
biochemical methods, 77
biological methods, 77
confirmatory methods, 78, 79
physicochemical methods, 77
selectivity of mass spectrometry-based methods, 78
validation (See validation)
Quality control (QC), 75, 76, 86–87
Quality manual, 74
Quality systems, 73
advantages of implementing, 73
core elements, 73
audits, 75
control of records, 75
document control, 74
internal quality control, 76
manual, 74
method performance criteria, 76
procedures, 74
roles and responsibilities, 74
staff competency, 75
system design, 73, 74
validation of methodology, 75
design, 73, 74
QuEChERS method, 5, 6, 19, 27, 56–60, 101, 118, 119, 181, 241, 242, 250, 251, 254
applications in the analysis of mycotoxins, 243–245
approaches, 181
extraction method, 19
procedure, modified, 54
Quinolones, 193
Relative standard deviations (RSDs), 118, 140–149, 198
Residue analysis. See Pesticides; Veterinary drugs (VDs)
Resolution
cromatography, 17, 22
mass spectrometry, 18, 25, 175–176, 178, 186, 216–217, 221, 224
Retention time reproducibility, 17
Reversed-phase liquid chromatography (RPLC), 23, 173
RIA. See Relative isotopic abundance (RIA)
RSDs. See Relative standard deviations (RSDs)
S
Salmonella, in peanuts and pistachios, 1
Salting out LLE (SALLE), 5
Sample capacity, 17
Sample cleanup comparison, 151, 246
Sample preparation, 9, 19, 80, 239
techniques, advanced, 5
Sample throughput, 4, 15, 17, 19, 181, 242, 246, 247
Sample volumes, 9, 17
Sampling, 240
Scheduled selected reaction monitoring (sSRM) algorithm, 2
Screening capacity, 4
Screening detection limit (SDL), 79
Screening method, 3, 76, 171, 181, 199
Screening target concentration (STC), 88
Selected ion monitoring (SIM) mode, 18, 189, 213
Selective reaction monitoring (SRM) modes, 24, 173, 213. See also Multiple reaction monitoring (MRM)
Selectivity, 78
Sensitivity, 16, 18, 24, 35, 49, 53, 102, 176, 186, 196, 246, 254, 259
Sieve® software, 221, 224
Size exclusion chromatography, 10
“Soft” ionization techniques, 18
Sol–gel process, 23
Solid–liquid extraction (SLE), 118, 241
Solid-phase extraction (SPE), 5, 8, 27, 100, 118, 119, 120, 241, 246
cleanup technique, 246
column modes, 247
INDEX 277

Solid-phase microextraction (SPME), 8–9, 27, 101, 119
Soxhlet extraction 118, 119
Spoilage markers, 2
Staff competency, 75
State government agencies, 2
Stationary phase, 19, 23
Sterigmatocystin, 237
Steroids, 201
Sudan dyes, 93, 96, 106, 108
 contamination in Europe, 93
 in food as contaminants, 107
Sulfonamides, 168, 193
 trace analysis, 9
Surface plasmon resonance (SPR) technology, 256, 258
Swedish extraction technique (SweET), 5, 6

T
Taiwan, phthalates in drinks and foods, 1, 3
Targeted approach, 189, 218–219, 221
 identification of antimicrobial residues in meat, 223–227
 vs. non-targeted, 26, 216, 223
 principle for screening with high-resolution full scan and, 225
Tetracyclines, 168, 193
 residues, in calves, 170
Thin layer chromatography (TLC), 42, 45, 247
Time-to-digital converter (TDC), 176
TOF-MS. See Time-of-flight mass spectrometry
Time-of-flight mass spectrometry (TOF-MS), 18, 78, 168, 214, 216, 250–252, 254
 application in the field of mycotoxins, 250–252
 application in field of veterinary drugs, 175–176, 183–184, 192, 194, 197
 limits of detection, 185
Tolerable daily intake (TDI) values, 237
Toluene, 47
Total ion chromatogram (TIC), 221
 Toxic effects
 direct/indirect, 167
Toxicogenic strains, 231
ToxID®, 224
Tranesterification, 19
Travelling wave-based radio frequency-only stacked ring ion guide (TWIG), 176
Trichlorphon, 118
Trichothecenes, 232
Tridecafluoroheptanoic acid (TFHA), 108
Triethylamine (TEA), 173
Turbulent flow chromatography, 7
Tylosin, 170

U
UHPLC–LTQ–Orbitrap–MS, 186, 189
 analysis, 199
UHPLC–TOF–MS method, 193, 195, 251
United Kingdom
 benzene in carbonated drinks, 1
 bovine spongiform encephalopathy in beef, 1
 tests by dairies, 3
United States
 federal laws, 2
 salmonella in peanuts and pistachios, 1
United States Department of Agriculture (USDA), 2, 94
United States Food and Drug Administration (USFDA), 167
Unit-resolution instruments, 18
UV-absorbing analytes, 47

V
Validation, 75, 79, 81–85 216
 commodity groups and representative commodities, 82, 83
 compliance with ISO 17025, 75
 method validation parameters and criteria, 84
 qualitative screening multiresidue methods
 for pesticide residues in foods, 79, 80
 SANCO document, 85
 for veterinary drug residues in foods, 87
 the Community Reference Laboratories Guidelines, 77
Validation (Continued)

determination of specificity/selectivity and detection capability, 88
determination of the applicability, 89
establishment of a cutoff level and calculation, 88, 89
EU legislation covering method, 87, 88
HRMS technologies, 80

Valine, 109
VDs. See Veterinary drugs (VDs)
Veterinary drugs (VDs), 1, 167, 172–174, 186, 189, 191, 192. See also Veterinary medicinal product residues; Veterinary medicinal products chromatographic separation, 174–175 and European regulations, 168, 215–216 food-producing, infectious diseases, 215 in food samples, 168, 183, 187, 190 high-resolution mass spectrometers, 175, 213, 214, 216, 237 hybrid QqQ-LIT platform, 179, 216 ion trap (IT) LC–MS systems, 216 LIT scanmodes, 180 LRMS detectors, 178 LTQ–Orbitrap, 216 Orbitrap–MS analyzer, 177–178 Q–Exactive (Q–Orbitrap), 216 QqTOF–MS analyzer, 177, 216 (QTrap) LC–MS systems, 216 technologies, advantages, 173–174 TOF–MS analyzer, 175–176 legislation, 168–172 metabolites, 214 multiresidue screenings of, 182 U.S./Canada, 168 Veterinary medicinal product residues (VMPRs), 213, 214, 237. See also Veterinary drugs Veterinary medicinal products (VMPs), 167, 169, 213, 215, 216, 218, 227. See also Veterinary drugs Viscosity, 22 VMPRs. See Veterinary medicinal product residues (VMPRs) VMPs. See Veterinary medicinal products (VMPs) Volatile acids, 98 Volatility, 16, 38, 55, 174

W
Weighting factors, 28-29
World Health Organization (WHO), 2, 215, 237
World Wide Web, 219

Z
Zearalenone (ZON), 57, 233, 237, 245, 256–258
ZON-4-glucoside (Z4G), 238