Index

A1 adenosine agonist binding, allosteric enhancement of, 176
A2B adenosine receptor agonist compounds, preparation of, 269
A2B adenosine receptor antagonists, 262
Abafungin, 288
“Abnormal” Chichibabin pyridine synthesis, 432
Acari, 355, 356
synthesis of, 358–359
ACC2 inhibitory activity, 306. See also Acetyl-CoA carboxylase 2 (ACC2) inhibitors
Acetolactate, 11, 57, 111
synthesis of, 62–63
ACE inhibitors, 518
Acetic acid, in Kröhnke pyridine synthesis, 435
Acetonitrile (MeCN), 337
β-Acetoxy nitroalkenes, 43
Acetyloxylone release, 401
Acetyl-CoA carboxylase 2 (ACC2) inhibitors, 305. See also ACC2 inhibitory activity
Acetylenic dipolarophiles, 1,3-dipolar cycloaddition of, 299–300
Acid/base reactivity, 244
Acid catalysis, in Friedlander synthesis, 500
Acid-catalyzed cyclizations, 147–149, 151–152, 179
polyene, 133–134
Acid-catalyzed ring-closing reaction, 148
Acidic hydrolysis, Batcho–Leimgruber reaction and, 108
Acidity
of imidazole, 201
of iso(thio)azole, 201
of isoxazoles, 201
of pyrazine and quinoxaline rings, 546
of pyrazole, 201
Acid-mediated deprotection, in bosantan synthesis, 597–598
Acid-promoted cyclization, 180–182
Acid reflux disease, 123
Acid-related diseases, 367
AcipHex, 355
Acromelia, 200–201
regioisomers of, 209–210
synthesis of, 208–209, 217
Acrivastine, 401, 402
Acrylonitrile intermediate, Knoevenagel condensation to produce, 175
Actos, 86
Acular, 21, 22
Acute arterial thrombosis, 61
Acyclovir, 572
Acylamino ketone, 585
Acylating reagents, in Schöllkopf oxazole synthesis, 238
Acylation, in sildenafil synthesis, 605. See also Acylation reactions; Friedel–Crafts acylations; 3-acylation
3-Acylation, of indoles, 94
Acylation reactions
intramolecular, 89
of thiophenes, 162
of triazoles, 375
2-Acylimidazoles, 336–337
Acyl-vinyl-phosphonium salt, in imidazole synthesis, 342
Addition, nucleophilic, 363
Addition reactions, diazine metatation and nucleophilic, 552
Adducts, C3 indole ring electrophilic substitution products and, 59, 60
Adefovir dipivoxil (bis-POM PMEA), 571
Index

Adenine, 7
 molecular structure of, 571
 in nucleic acids, 570–571
Adenine/thymine (A/T) base pair, 7
Adenosine A2A receptor agonists, 302–303
Adenosine diphosphate (ADP), 11
Adenosine triphosphate (ATP), 571
S-Adenosylmethionine decarboxylase inhibitor, 453
 β-Adrenergic agonists, 517
Aergunonic acid, 285, 286
Afloqualone (Azofuro), 616, 617
AIDS (acquired immunodeficiency syndrome)
 108. See also HIV entries; Human immunodeficiency virus (HIV) entries
 AIDS treatment, 295, 380
AKT inhibitors, 422
Albazonazole, 616, 617
Albendazole (Albenza), 355, 356, 358
Albenza, 355, 356, 358
Alcohols, in diastereomeric mixture, 451
Aldehyde preparation, in rosuvastatin synthesis, 601
Aldehydes, reaction with chiral, 295
Aldose reductase pharmacophores, synthesis of, 622–623
Aldose sugars, Knoevenagel condensation of, 149
Alimta, 42, 572, 573
Aliphatic azides, 384
Alizapride, synthesis of, 384–385, 385–386
Alkalinity, See Basicity
Alkaloid analogues, of quinoline, 494
Alkaloids
 cytotoxic, 633
 isolation of, 5
 pyranoquinolone, 474
 pyrroloquinolone-based, 474
(β)-Alkene, from pyrazine ring arylation, 554
Alkene cyclization, modern methods for, 523–526
Alkenylation, rhodium-catalyzed C–H, 448
Alkenylation regioselectivity, pyrazine ring arylation and, 554
Alkoxide attack, in Gabriel–Colman rearrangement, 523
2-Alkoxo-1,3-thiazole synthesis, 314–315
N-Alkylated benzothiazolium salts, 297
1-Alkylated isoquinoline heterocycles, formation of, 485
N-Alkylated thiazolium salts, 296, 297

Alkylation. See also Nitrogen alkylation (N-alkylation)
 of benzothiazole, 296
 of 3-bromoinodole, 61
 Friedel–Crafts, 128–129
 in fused-imidazole ring synthesis, 349
 of isoquinoline, 484
 of pyrazole ring, 202–203
 of 1,3-thiazole, 296–298
 of triazole, 377–382
N-Alkylation. See Nitrogen alkylation (N-alkylation)
 Alkylation selectivity, 339–340
 N-Alkyl benzimidazoles, 361–362
 2-Alkyfluran, 139
 Alkyl groups, nucleophilic attack of, 484
 Alkyl triarylurans, 143
 Alkyne cyclization, modern methods for, 523–526
Alkynes
 cross-coupling of terminal, 99
 cyclization of, 510
 pyrazine ring arylation and, 554
 Allergic conjunctivitis treatment, 355
 Allergic disease, 293
 Allergies, H1 receptor antagonist for, 356
 Allergy treatment, 401
 Allohexal, 591
 Allopurinol (Zyloprim), 590–591
 Almotriptan (Axert), 68
 synthesis of, 70
 Aloseteron (Lotronex), 93
 α-amidoketones, 346
 cyclodehydration of, 241
 imidazole synthesis via, 345–346
 α-amino acid l-azatyrosine analogues, 433–434
 α-amino acids, pyridine substituted, 433–434.
 See also Amino acids
 α-amino carbonyls, condensation of, 542
 α-amino-cyano-amide, 348
 α,β-unsaturated carbonyl derivatives, amidine addition to, 575–576
 α,β-unsaturated ketuximes, 449
 Alphav-blockers, 387
 α-dicarbonyl compound, 321, 322
 α-protons, of purimidine, 399
 Alprazolam, synthesis of, 387
 Alternative binding group, in imatinib synthesis, 595
 Althiomycin, 285
 Altinidline, 401, 420
 Alzheimer's disease, 104, 420
<table>
<thead>
<tr>
<th>Index</th>
<th>649</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino cycles, made of heterocycles, 6</td>
<td></td>
</tr>
<tr>
<td>5-Aminomidazoles, in imidazole synthesis, 349–351</td>
<td></td>
</tr>
<tr>
<td>Aminoisoquinolines, 483</td>
<td></td>
</tr>
<tr>
<td>5-Aminoisoxazole bromination, 245</td>
<td></td>
</tr>
<tr>
<td>2-(4-Aminophenyl)benzothiazoles, 315</td>
<td></td>
</tr>
<tr>
<td>5-Aminopyrazole, 213–214</td>
<td></td>
</tr>
<tr>
<td>assembly of, 213–214</td>
<td></td>
</tr>
<tr>
<td>2-Aminopyridines, 456</td>
<td></td>
</tr>
<tr>
<td>imidazole synthesis using, 349–351</td>
<td></td>
</tr>
<tr>
<td>5-Aminopyrimidine, 570</td>
<td></td>
</tr>
<tr>
<td>4-Aminoquinazoline (Azixa), synthesis of, 632.</td>
<td></td>
</tr>
<tr>
<td>See also 4-Amino substituted quinazolines</td>
<td></td>
</tr>
<tr>
<td>Aminoquinolines, 483</td>
<td></td>
</tr>
<tr>
<td>Aminoquinolines, 561–562</td>
<td></td>
</tr>
<tr>
<td>4-Amino substituted quinazolines, 621–622.</td>
<td></td>
</tr>
<tr>
<td>See also 4-Aminoquinazoline (Azixa)</td>
<td></td>
</tr>
<tr>
<td>Aminothiazole(s), 310</td>
<td></td>
</tr>
<tr>
<td>alkylation of, 297</td>
<td></td>
</tr>
<tr>
<td>in Hantzsch method, 307</td>
<td></td>
</tr>
<tr>
<td>5-Aminothiazoles, 312</td>
<td></td>
</tr>
<tr>
<td>3-Aminothiophene, 175</td>
<td></td>
</tr>
<tr>
<td>2-Aminothiophene derivatives, 177</td>
<td></td>
</tr>
<tr>
<td>3-Aminothiophene derivatives, 177</td>
<td></td>
</tr>
<tr>
<td>Aminothiophenes, fully substituted, 176</td>
<td></td>
</tr>
<tr>
<td>3-Aminothiophenes, 172</td>
<td></td>
</tr>
<tr>
<td>2-Aminothiophenols, 315</td>
<td></td>
</tr>
<tr>
<td>Amiodarone (Cordarone), 125</td>
<td></td>
</tr>
<tr>
<td>Amiodarone derivative, 132–133</td>
<td></td>
</tr>
<tr>
<td>Amlodipine, 426, 427</td>
<td></td>
</tr>
<tr>
<td>Amodiaquine, 471, 472</td>
<td></td>
</tr>
<tr>
<td>Amquinolate, Gould–Jacobs synthesis of, 505</td>
<td></td>
</tr>
<tr>
<td>Amurensin H, 152</td>
<td></td>
</tr>
<tr>
<td>Amyotrophic lateral sclerosis, 289</td>
<td></td>
</tr>
<tr>
<td>Analgesic agents/drugs (analgesics), 21–22, 207, 314, 422</td>
<td></td>
</tr>
<tr>
<td>Analgesic effects, 107</td>
<td></td>
</tr>
<tr>
<td>Analogue synthesis, 306</td>
<td></td>
</tr>
<tr>
<td>Anastrozole (Arimidex), 375, 379</td>
<td></td>
</tr>
<tr>
<td>Androgen receptor (AR) affinity, 174</td>
<td></td>
</tr>
<tr>
<td>(+)-3ß-Angeloyloxyfuranoeremophilane synthesis, 148</td>
<td></td>
</tr>
<tr>
<td>Angiogenesis, tumor-induced, 87</td>
<td></td>
</tr>
<tr>
<td>Angiogenesis inhibitors, 89</td>
<td></td>
</tr>
<tr>
<td>Angiogenesis prevention, 82</td>
<td></td>
</tr>
<tr>
<td>Angiogenesis reduction, 269</td>
<td></td>
</tr>
<tr>
<td>Angiotensin II (AT-II) antagonists, 157</td>
<td></td>
</tr>
<tr>
<td>nonpeptide, 212</td>
<td></td>
</tr>
<tr>
<td>Angiotensin II receptor antagonists, 25, 338, 339–340. See also Angiotensin (AT,) receptor antagonists</td>
<td></td>
</tr>
<tr>
<td>AT, selective, 210</td>
<td></td>
</tr>
</tbody>
</table>
Angiotensin (AT, receptor antagonists, 355, 357, 360, 391–392. See also
Angiotensin II receptor antagonists; AT, selective angiotensin II receptor
antagonists
Angiotensin receptor blocker (ARB), 375
Anhydrous pyridine, 398
Aniline intermediate, in erlotinib preparation, 599–600
Anilines, meta-substituted anilines, 507
4-Anilinoquinazoline compounds, synthesis of, 632
Anilinoquinazolinone, 622–623
[3+ 1 +1] Annulation process, 581
[3+ 2 +1] Annulation process, 584
Annulation processes, 581
Annulations, double [3 +1], 588
Anthelmintic activity, 299
Anthelmintic agents (anthelmintics), 289, 355, 356
azaindoles as, 109
Anthranilic acids, condensation of, 626
Anti-alcohol, 295
Anti-allergic activity, 151
Anti-androgen, 560
Anti-anxiety drugs, 47, 48
Antiprosthetic proteins, 98
Antiarrhythmic agents, 125
Anti-arthritic agents, 96
Antiallergy drugs, 11, 57, 111
Antibacterial activity, 130
Antibacterial nitrofurans, 639
Antibacterial antibiotics (antibacterial drugs)
broad-spectrum, 473
Gould-Jacobs syntheses of, 504–506
NSAID, 484
quinolone, 472–473, 504
synthetic analogues of naturally occurring, 585
Antibiotic activities, of thiazoles, 286
Antibiotic agents, from quinoline/isoquinoline, 481–482. See also Antibiotics
Antibiotic prodrugs, 430–431
Antibiotics, 21, 22, 287, 288, 289, 335
bacteriostatic, 591
broad-spectrum cephalosporins, 154
fluoroquinolone, 526
natural, 285
nitrofurans, 638
quinolone, 526–527
synthetic, 473
thiopeptide, 286, 287, 434
via Hantzsch method, 311
Anticancer activity, 98, 151
Anticancer agents/drugs/pharmaceutics, 42, 105, 296, 474, 639
Anticancer reagent, 419
Anticancer therapeutics, 628
Anticholinergic agents, 515
Anticholinesterase activity, 456–457
Anti-convulsants, 388
Anti-depressants, 203, 389, 390
Antidiabetic agents/drugs, 389, 539
Anti-epileptics, 57, 221
Antifeedant activity, 134
Antifolate drugs, 572–573
Antifolate inhibitor, 170
Anti-fungal activity, 130, 151, 171, 285, 299
Anti-fungal agents/drugs (antifungals), 21, 22, 44–45, 47, 48, 288, 353–354, 380, 381–382, 616
Anti-fungal candidates, 309–310
Anti-fungal properties, 627
Antiglaucoma agents, 539
Antihistamine, 401, 402
Antihistamine drugs, for ulcer, 311
Antihyperglycemic agents, 220
Antihypertensive agents, 46, 426
Anti-inflammatory activities, 452
Anti-inflammatory agents/drugs, 21–22, 33–34, 41–42, 47, 48, 96, 180, 218, 219, 234. See also Nonsteroidal anti-inflammatory drugs (NSAIDs)
Anti-inflammatory cyclooxygenase-2 (COX-2) selective inhibitor, 13, 38, 200–201. See also COX-2 inhibitor intermediate; Cyclooxygenase-2 (COX-2) inhibitors
Anti-inflammatory properties, 147, 162, 163, 164, 173–174
of steroid-based furan, 142
Anti-malarial agents/drugs (antimalarials), 14–15, 471, 472, 482, 487, 488, 498, 526
Gould-Jacobs synthesis and, 506
pyrroles as potential, 28
Skroup/Doebner–von Miller reaction and, 509
Anti-malarial compounds, 499
Anti-malarial reagents, 401, 436, 437
Antimetabolite drugs, 572–573
Antimicrobial activity, 148
Antimicrobial agents (antimicrobials), 175, 242, 287
furan-based, 123
Anti-migraine analogues, of sumatriptan, 69–70
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-migraine drug candidate, synthesis of, 72</td>
<td>651</td>
</tr>
<tr>
<td>Anti-migraine drugs, 10, 56–57, 66, 68, 69, 70</td>
<td></td>
</tr>
<tr>
<td>Anti-neoplastic agents, 287</td>
<td></td>
</tr>
<tr>
<td>Anti-nociceptive agents, 180</td>
<td></td>
</tr>
<tr>
<td>Anti-oxidant activity, 151</td>
<td></td>
</tr>
<tr>
<td>Anti-parasitic activity, 136</td>
<td></td>
</tr>
<tr>
<td>Anti-parasitic agents, 335, 616</td>
<td></td>
</tr>
<tr>
<td>Anti-proliferation agents, 178</td>
<td></td>
</tr>
<tr>
<td>Anti-proliferative activity, 302</td>
<td></td>
</tr>
<tr>
<td>Antiproliferative properties, of quinoxaline derivatives, 542</td>
<td></td>
</tr>
<tr>
<td>Antiprotozoal activity, 292</td>
<td></td>
</tr>
<tr>
<td>Antiprotozoal agents, 335, 509</td>
<td></td>
</tr>
<tr>
<td>Antiprotozoal spectrum, changing with Gould–Jacobs reaction, 504–505</td>
<td></td>
</tr>
<tr>
<td>Antipsychotic agents/drugs (antipsychotics), 9, 10, 12, 21, 35, 95, 179, 205, 321, 515–516</td>
<td></td>
</tr>
<tr>
<td>atypical, 35–36</td>
<td></td>
</tr>
<tr>
<td>Mannich bases as potential, 26, 27</td>
<td></td>
</tr>
<tr>
<td>Antipsychotic dopamine antagonists, 515–516</td>
<td></td>
</tr>
<tr>
<td>Antipyretic agents, 96</td>
<td></td>
</tr>
<tr>
<td>Antipyrene, 218</td>
<td></td>
</tr>
<tr>
<td>Antitubercular (anti-TB) activity, 215, 429</td>
<td></td>
</tr>
<tr>
<td>Antitubercular agents, 213</td>
<td></td>
</tr>
<tr>
<td>Anti-tubulin agent derivatives, 178</td>
<td></td>
</tr>
<tr>
<td>Antitumor activities, 117, 424, 474</td>
<td></td>
</tr>
<tr>
<td>of thiazoles, 286</td>
<td></td>
</tr>
<tr>
<td>Antitumor agents/antibiotics, 170, 317–318, 438, 518–519</td>
<td></td>
</tr>
<tr>
<td>Antitumor compounds, 440, 488–489, 491</td>
<td></td>
</tr>
<tr>
<td>Antitumor properties, 216</td>
<td></td>
</tr>
<tr>
<td>Anti-tumor reagents, 585</td>
<td></td>
</tr>
<tr>
<td>Anti-tumor therapeutics, 621</td>
<td></td>
</tr>
<tr>
<td>Anti-ulcer drugs, histamine-2 receptor antagonists as, 12</td>
<td></td>
</tr>
<tr>
<td>Antiviral activities, 108</td>
<td></td>
</tr>
<tr>
<td>of thiazoles, 286</td>
<td></td>
</tr>
<tr>
<td>Antiviral compounds, 287–288</td>
<td></td>
</tr>
<tr>
<td>Anti-viral drugs, 381, 402</td>
<td></td>
</tr>
<tr>
<td>Antiviral medications, 572</td>
<td></td>
</tr>
<tr>
<td>Antiviral properties, 216</td>
<td></td>
</tr>
<tr>
<td>Anxiety disorders, 387, 390</td>
<td></td>
</tr>
<tr>
<td>Anzemet, 57–58</td>
<td></td>
</tr>
<tr>
<td>APA antagonists, non-competitive, 214</td>
<td></td>
</tr>
<tr>
<td>Apoptosis-inducing agents, 296</td>
<td></td>
</tr>
<tr>
<td>Arachidonic acid cascade, 207</td>
<td></td>
</tr>
<tr>
<td>Arachidonic acid metabolites, 62</td>
<td></td>
</tr>
<tr>
<td>Argynyl-tryptase inhibitor RWJ-56423, synthesis of, 293</td>
<td></td>
</tr>
<tr>
<td>Arimidex, 375</td>
<td></td>
</tr>
<tr>
<td>Arofuto, 616, 617</td>
<td></td>
</tr>
<tr>
<td>Aromatase inhibitors, 81–82, 379, 380</td>
<td></td>
</tr>
<tr>
<td>Aromatic C–H bonds, catalytic direct arylation of, 555</td>
<td></td>
</tr>
<tr>
<td>Aromatic chloride, quinoxaline and, 550</td>
<td></td>
</tr>
<tr>
<td>Aromatic compounds, 333</td>
<td></td>
</tr>
<tr>
<td>direct arylation of, 553–554</td>
<td></td>
</tr>
<tr>
<td>Aromatic heterocycles, 2, 4–5</td>
<td></td>
</tr>
<tr>
<td>defined, 1 electron-deficient (-poor), 398, 536, 536, 537</td>
<td></td>
</tr>
<tr>
<td>electron-excessive, 18</td>
<td></td>
</tr>
<tr>
<td>Aromaticities (aromaticity), 4–5</td>
<td></td>
</tr>
<tr>
<td>of five-membered ring heterocycles, 373</td>
<td></td>
</tr>
<tr>
<td>of furan, benzofuran, thiophene, and benzothiophene, 119</td>
<td></td>
</tr>
<tr>
<td>of heterocycles, 198</td>
<td></td>
</tr>
<tr>
<td>pyrrole, 18 relative, 4–5</td>
<td></td>
</tr>
<tr>
<td>Aromatic nitriles, 163</td>
<td></td>
</tr>
<tr>
<td>Aromatic nitrogen atoms, in pyrazines and quinoxalines, 546–548</td>
<td></td>
</tr>
<tr>
<td>Aromatic organometallic reagents, 552</td>
<td></td>
</tr>
<tr>
<td>Aromatic pyrazine ring, production of, 543–544</td>
<td></td>
</tr>
<tr>
<td>Aromatic rings, regioselective metalation of, 551. See also Aromatic heterocycles</td>
<td></td>
</tr>
<tr>
<td>Aromatic substitution, quinoxaline and, 550</td>
<td></td>
</tr>
<tr>
<td>Aromatization, of 1,4-dihydropyridines, 428</td>
<td></td>
</tr>
<tr>
<td>Aromatized isoquinoline cores, in Pictet–Gams isoquinoline synthesis, 519</td>
<td></td>
</tr>
<tr>
<td>Artemisinin, 28</td>
<td></td>
</tr>
<tr>
<td>Arterial thrombosis, acute, 61</td>
<td></td>
</tr>
<tr>
<td>Arthritis pain relief, 96</td>
<td></td>
</tr>
<tr>
<td>Arthritis-associated proteins, 241</td>
<td></td>
</tr>
<tr>
<td>1-Aryl-1H-indazoles, 222</td>
<td></td>
</tr>
<tr>
<td>Aryl amides, 581, 582–583</td>
<td></td>
</tr>
<tr>
<td>Aryl–aryl bonds, 169</td>
<td></td>
</tr>
<tr>
<td>Arylation. See also Copper-mediated N-arylation entries; intramolecular arylation; Meerwein arylation; N-arylation entries of aromatic C–H bonds, 555 of aromatic compounds, 553–554 palladium catalysis and direct, 559–560 2-Aryl benzimidazoles, functionalized, 366 2-Aryl benzothiophene derivatives, 181 Aryl bromides, 534 Aryl groups, nucleophilic attack of, 484 Aryl halide, C–N bond formation from, 361–365 Arylhydrazone protonation, 65 Aryl ketone synthesis, 293 Arylpiperazines, 27 Arylpyridines, one-pot synthesis of, 427 2-Arylpyridines, 427</td>
<td></td>
</tr>
</tbody>
</table>
Aryl-substituted pyrrole carboxylates, 39
Aryl thioamide, oxidative cyclization of, 318
Arylthioureas, 316, 317
Arynes, synthesis of, 525–526
Aspergillus, 310
Asthma treatment, 111, 125, 269, 401, 420
Asymmetric Boekelheide rearrangement, 453–454
Asymmetric synthesis, of prolinomethyl-2-thiazoline, 94
AT
selective angiotensin II receptor antagonists, 210. See also Angiotensin (AT
) receptor antagonists
Atazanavir (Reyataz), 402
ATM (ataxia telangiectasia mutated) inhibition, 561
Atorvastatin (Lipitor), 9, 10, 21
 manufacture of, 39–40
 safety of, 47–48
Atorvastatin calcium, 40
ATPase inhibitor, 13
ATP (adenosine triphosphate) inhibitors, 324
ATR (ATM and Rad-3 related) inhibition, 561
Atypical antipsychotics, 35–36
“Autohaler,” 401
Avandia, 86
AX7593, synthesis of, 620–621
Axetil, 68
 synthesis of, 70
AZ960 compound, 323–324
Aza-Diels–Alder reaction, 513
Azaadience compounds, generation of, 513
Azadiene(s), 525
 oxazoles as, 439–441
 1,2,4-triazine as, 437–439
1-Azadienes, as dienes in [4 + 2]-cycloaddition reactions, 442–445
Azadienophiles, as dienes in [4 + 2]-cycloaddition reactions, 444–445
“Aza-Fischer” synthesis, 105
Azaheterocycles, 583–584
4-Azaindole, 105, 106
5-Azaindole, 105
6-Azaindole, 105, 106
7-Azaindole(s), 71, 105
Azaindole derivatives, 108
Azaindoles, 54
 as anthelmintic agents, 109
 synthesis of, 105–109
Azanaphthalene isomeric heterocycles, 471
Azathioprine, 340–341
Aza-Wittig reaction, 590
 intramolecular, 633–634
Azete, 1
Azetidine, 1
Azetidine ring, 9
Azides, aliphatic, 384
Azido compounds, 167
Azido-pyridine N-oxide azaindoles and, 109
Aziridine, 1
Aziridinomiroene A core synthesis, 263
Azirine(s), 1, 578
Azixa, synthesis of, 632
Azlactone formation, 585
Azmam, Adam M., 231
Azomolene, 235
Bacterial cell wall biosynthesis, inhibiting, 154.
 See also Antibacterial agents
Bacterial infections, 154
Bacterial inhibition, 175
Bactericides, 638
Bacteriostatic antibiotics, 591
Baeyer, Adolf von, 55, 56
Baeyer–Drewson indigo synthesis, 56
Baeyer pyridine synthesis, 456, 457
Baldwin group, 433
Barrenazime A, synthesis of, 544
Bartoli indole synthesis, 77–80. See also Bartoli reaction
 Gilmore’s modification of, 79
Bartoli reaction, 107–108
 in indole and azaindole synthesis, 106–108
Barton–Zard reaction, 43–44
Base-analyzed Perkins rearrangement, 151
Base-catalyzed condensation, in houtonin A synthesis, 633
Base-catalyzed cyclization, 147–149
Base-catalyzed cyclization reactions, 151–152
Base-catalyzed ring contraction, in 2-pyrrolyl substituted quinazolinone synthesis, 633
Base-induced nitroalkene reaction, 43
Basicity. See also Acid/base reactivity
 of benzothiazoles, 290
 of imidazole, 201, 333
 of isothiazole, 201
 of isoxazoles, 201
 of pyrazole, 201
 of pyrimidine, 569
 of quinazoline, 615
 of quinoline and isoquinoline, 478
 of thiazoles, 290
Batro–Leimgruber indole synthesis, 80–83
Batro–Leimgruber reaction, 108–109
Baylis–Hillman adducts, 578
Bazedoxifene acetate (Viviant), constructing indole ring of, 73–74
B cell lymphoma (Bcl) protein family, 98
Beckmann rearrangement, 242
Beirut reaction, 544–545
Benzimidazole nucleus, construction of, 362
Bendazac, 220–221
Benzene, 4, 5
 molecular structure, bond lengths, and bond angles for, 536, 560, 569
 pyridine vs., 398, 399
 relative aromaticity of, 198, 373
Benzene-fused five-membered heterocycles, 2–3
Benzene-fused six-membered heterocycles, 3
Benzene intermediates, functionalized, 367
Benzene reduction, 492
Benzene ring
 chemical shifts for indole, 54
 heteroatoms introduced into, 474
 pyrimidine ring and, 569
Benzimidazole(s), 354–357
 alternative cyclization approach toward, 367–368
 nuclear magnetic resonance spectroscopy of, 354–355
 numbering and tautomerism of, 354–355
1H-Benzimidazole(s), 354
 tautomerism of, 354
Benzimidazole-containing drugs, synthesis of, 357–361
Benzimidazole core construction, using transition metal-mediated approaches, 361–367
Benzimidazole drug construction, copper-mediated, 365
Benzimidazole drugs, 355–357
Benzimidazole-forming reactions, carboxylic acid surrogates for, 358
Benzimidazole synthesis, 333
 classical approaches to, 357–361
 current research in, 360
 via C–H functionalization, 366
Benzothiazole, photoisomerization to benzothiazole, 321
Benzodiazepine drugs, 390–391
Benzodiazepines, 425
2,3-Benzodiazepenes, 214
Benzofuran(s), 2, 119
 aromaticity of, 119
 benzothiazole as biosiostere of, 324–325
 carbonization of, 119
 nuclear magnetic resonance spectroscopy of, 121
Benzofuran-containing compounds, synthesis of, 151–152
Benzofuran-containing drugs, synthesis of, 153–158
Benzofuran reactions, 126–137
Benzofuran rings, 125
Benzofuran ring system, 123
 of frondosin B, 152
Benzofuran synthesis, 148
 Friedel–Crafts reactions and, 129
 via Perkins reaction, 151
Benzofurazan oxides, 544
Benzimidazole, 3
Benzoin, unsymmetrical, 74
Benzonitrile derivatives, Batho–Leimgruber synthesis of, 81–82
Benzoxazoles, 3
Benzophenone aniline, 81–82
Benzquinone, Nenitzescu condensation of, 76
Benzothiazole(s), 283
 basicity of, 290
 benzothiazole photoisomerization to, 321
 as benzofuran biosiostere, 324–325
 as biosiosteres, 323–325
 formation of, 319–320
 Grignard reagents of, 292, 293
 Heck reactions applied to, 304
 molecular structure of, 283
 in Negishi coupling, 302–304
 nuclear magnetic resonance spectroscopy of, 284
 palladium chemistry of, 300–307
 possible liabilities of drugs containing, 321–323
 properties of, 283, 284
 via Jacobson cyclization, 318–320
Benzothiazole alkylation, 296
Benzothiazole-based analogues, 301
Benzothiazole-containing molecules, syntheses of, 318
Benzothiazole deprotonation, 292
Benzothiazole-forming methods, 320–321
Benzothiazole heterocycle, in pharmaceutical agents, 289
Benzothiazole ring, construction of, 315–321
Benzothiazolium aza-enediyne, 298
Benzothiazolium salt, 296, 297
Benzothiophene(s), 2, 119, 158–186
 aromaticity of, 119
 electron-rich, 125
 in Friedel–Crafts reactions, 165–166
Benzothiophene(s) (cont.)
- nuclear magnetic resonance spectroscopy of,
 123
- reactions at C2, 158–164
- reactions at C3, 164–167
- syntheses of, 171, 179–182
- transition-metal-catalyzed cross-coupling
 reactions of, 168–171
- Vilsmeier-Haack reaction and, 163

Benzothiophene-containing drugs, synthesis of,
 183–186

Benzothiophene reactions, 158–171

Benzothiophene synthesis, via electrophilic
 (iodo) cyclization, 182

Benzothiazole, 3

1,2,3-Benzothiazole, synthesis of, 385

Benzoazine, Nenitzescu synthesis of, 76–77

Benzoazole(s), 231
- C2 proton of, 232–233
- electrophilic substitution of, 232
- in the heteroaryl-Heck reaction, 268
- metallated, 244
- nuclear magnetic resonance spectroscopy of,
 231, 232
- in Sonogashira coupling reactions, 265
- in synthetic medicinal compounds, 233

Benzoazole creation, 241–243

Benzoazole reactivity, 244

Benzoazole ring, construction of, 241–243

4-Benzylaminophosphodiesterase (PDE)
 inhibitors, 621

- synthesis of, 622

Benzylated bromoindole, Suzuki coupling of,
 61

β1 adrenergic bronchodilator, 401

β-acetoxy nitroalkenes, 43

β-adrenergic agonists, 517

β-carbolines, 457

β-hydride elimination, 94

β-keto esters, synthesis of, 575

β-protons, of puridine, 399

β-substituted polyoxygenated furans, 150

Beastra, 234

Biarison, 616, 617

Biaryl-1,2,3-triazoles, 376. See also 3,5-Diaryl-
 1,2,4-triazoles

Biaryl compounds, 553–554

- synthesis of, 555

Biaryl coupling, of electron-deficient aromatic
 rings, 555–556

Biaryl systems, 555

Bicyclic intermediate, in Bartoli indole
 synthesis, 78

Bifur application, 238

Biginelli 3,4-dihydropyrimidin-2(1H)-one, 580

Binding groups, in imatinib synthesis, 595

Bioactive pyrroles, 21

Bioisosteres, thiazoles and benzothiazoles as,
 323–325

Bioisosteric heterocycles, 324

Biologically active compounds, 149, 150

Biologically active molecules, nickel-catalyzed
 cross-coupling reaction to form,
 554–555

Biologically active natural products, pyrazines
 in, 538–539

Biologically active quinoline compounds,
 Skroup/Doebner–von Miller reaction
 and, 509

Biological signaling, 143

Bioterrorist agents, 88

Biotin, 8

Bipolar disorder, 125

2,2'-Bipyridine, 443

Bipyrrrole, methyl-protected, 24

Bird indices, 373

4,4'-Bis(benzoxazol-2-yl)stilbene, 233–234

Bischler, August, 513

Bischler–Möhlau indole synthesis, 73–75

Bischler–Napieralski reaction, for isoxinoline
 core construction, 513–516

Bischler synthesis, 625–626

Bis-POM PMEA, 571

2,2'-Bis-quinazolin-4-ones, 629

Bis-stannyllpyrrole, 44

Bis-Suzuki cross-coupling reaction, 96–97

Bis-thallation, 31

Bis-thiazole compound, 306

Bleomycin, 288

Blockbuster drugs, 12–13

Blood–brain barrier (BBB), 173, 408

Blood clotting, 184

BMS antiviral program, 108

Bobbitt variation, of Pomerantz–Fritsch
 reaction, 522

Boc carboxylate, 557

Boc processing group, in raltitrexed synthesis,
 640

Boekelheide reaction, 450–452

Boekelheide rearrangement, asymmetric,
 453–454

Boger reactions, 437–439

- intramolecular, 439

Bohnmann–Radtz pyridine synthesis, 432–435

Bond angles
 for benzene molecule, 536, 569
for furan molecule, 120
for pyrazine and quinoxaline molecules, 536
for pyrimidine molecule, 569
for thiophene molecule, 122
Bond lengths
for benzene molecule, 536, 560
for furan molecule, 120
for indole molecule, 54
for pyrazine and quinoxaline molecules, 536
for pyrazole molecule, 198
for pyridine molecule, 398
for pyrimidine molecule, 569
for thiazole molecule, 283
for thiophene molecule, 122
for 1H-1,2,4-triazole molecule, 374
Bone marrow malignancy treatments, 539
Boranes, dialkylquinolinyl, 490
Boronate, 257
Boron-containing side products, 96. See also
Organoboron reagents
Boronic acid(s), 257
N-impination of, 449
Bosentan, 595–598
Bosentan formate monoethanolate, 597–598
Botulinum neurotoxin A light chain (BoNT/A Lc) endopeptidase inhibitors, 88
Bradykinin B1 receptor antagonists, 245
Breast cancer, metastatic, 380
Breast cancer cell lines, 315
Breast cancer cells, 474
Breast cancer treatment, 123–124
Bredereck reaction, imidazole synthesis via, 344
Bredereck-type synthesis, 580
Brescia application, 238, 239
Breslow intermediate, 297–298
Brimonidine, 539
Broad-spectrum antibacterials, 473
Broad-spectrum cephalosporin antibiotics, 154
Bromides, quinoline, 489, 490
Bromination, 157
of 5-aminoisoxazole, 245
of C2-unsubstituted oxazoles, 250–251
of C4-unsubstituted oxazoles, 251–252
of furans, 127
in fused-imidazole ring synthesis, 349
of 6-methoxy-2-(4-
 bromophenyl)benzothiophene, 164
of N-substituted imidazoles, 338–339
of pyrazole, 204
of pyrroles, 23–24
of quinazolines, 618–619
of thiazoles, 291–292
of thiophenes, 159–160, 164–165
of triazoles, 375
Bromine, in Sonogashira coupling reactions, 264
Bromine—magnesium exchange, 578
C-metalated pyridine synthesis via, 411–413
Bromine “passenger,” 69
2-Bromo-5-substituted pyridine, 411
3-Bromoindole, 59
alkylation of, 61
7-Bromoindole, 69
Bromoisouquinolines, 482
5-Bromooxazole, 245
2-Bromophenylthiourea, 363
4-Bromopyrazole, 204
Bromothiazoles, 306–307
Bromothiophene(s)
 palladium-catalyzed Suzuki cross-coupling reaction of, 169
 perfluoralkylation of, 164
 Sonogashira coupling of, 170
Bronchitis, 154
Bronchodilators, 517
Brønsted acid-catalyzed cyclizations, 148
Brown, Connor W., 615
Bu2PrMgLi complex, in bromine—magnesium exchange, 411
Buchwald—Hartwig amination, in pyridobenzodiazepinone synthesis, 425
Buchwald—Hartwig reaction, 171
in pyridines, 416
tert-Butyl ether, in bosentan synthesis, 597–598
Butyrophenone analogues, of molindone, 35
BYK308944 intermediate, 367–368
BYK405879 synthesis, 367–368
C1-alkylated product, 485. See also Carbon atoms
C2 adduct, 33
C2-(a)-bromination, of pyrroles, 23–24
C2-/C4-pyrimidine derivatives, 583–584
C2-chloride functionalization, 258
C2-chlorides, in Suzuki reaction, 259
C2 electrophilic substitution
 in furans, 127
 on indole ring, 63, 64
 on pyrrole ring, 22–23
 in thiophene, 159
C2-lithiated oxazoles, 279
C2-metalated oxazoles, 244
in Negishi coupling, 261
C2 oxazolylboronic acids, preparation of, 257
C2 position, in thiophene chemistry, 166
C2 quinazoline/quinazolinone reactions, 622–623
C2-silylated oxazoles, 247–248
C2-substituted oxazoles, 246
C2 substitution, in quinazoline, 618
C2-sulfonates, 258
C2-unsubstituted oxazoles, 270
bromination of, 250–251
C2 zinc chloride preparation, 262
C3 electrophilic substitution
in furans, 127
in indole, 62
on indole ring, 58–63
in oxaly chloride, 61
on pyrrole ring, 22–23, 31–34
in thiophene, 159
in thiophene chemistry, 164
C3 position, carboxylation of, 166
C3-substituted Friedel–Crafts reactions, 165–166
C4 boronate, 257
C4-bromides, in Suzuki reaction, 259
C4 electrophilic substitution, in pyrazole chemistry, 203–205
C4-heteroatom substituted pyrimidines, condensation of, 583–584
C4 quinazoline/quinazolinone reactions, 618–622
C4 stannane, Stille coupling reaction of, 262–263
C4-substituted oxazoles, 246
C4 substitution, of quinazoline, 618
C4-triflates, 258
C4-unsubstituted oxazoles, bromination of, 251–252
C5 boronic acid, 257
C5-bromides, in Suzuki reaction, 259
C5 electrophilic substitution, in thiazoles, 290
C5 lithiation
of 2,4-disubstituted thiazoles, 294
of pyrazoles, 205–206
C5-metallation, of pyrazoles, 205–206
C5 position, in thiophene chemistry, 166, 167
C5 position functionalization, in oxazoles, 252–253
C5-stannyloxazoles, 253
C5-substituted oxazoles, 248
C-10 pyrrole Mannich bases, 28
Cadogan reaction, 86–87
Cadogan–Sundberg indole synthesis, 86–88, 109
Caffeine, 571
Calcineurin protein inhibitors, Sonogashira coupling and, 267
Calcium channel blockers, 289, 426
Camps quinoline synthesis, 493–494
modification of, 494
Camptotheca acuminata, 474
Camptothecin, 424, 442, 474, 488–489
electrocyclic preparation of, 512–513
Camptothecin derivatives, Meth–Cohn synthesis of, 507
Cancer cell lines, 542. See also Ovarian cancer cells
Cancer chemotherapy, 288
Cancer chemotherapy agents, 83
Cancer drugs, 8–9
Cancer therapies, PTKs and, 636–637
Cancer treatment, 16, 45, 103, 313, 347, 402, 550, 616. See also Breast cancer treatment; Carcinogenicity; Lung cancer entries; Mesothelioma treatment; Pancreatic cancer treatment; Prostate cancer; Tumor entries
Candesartan cilexetil (Amis), 355, 357
synthesis of, 359–360, 364, 365
Candida albicans, 310
Candida rugosa, 381
Cannabis sativa, 107
Capercita, 570
Carbamoyl radical, pyrazine and quinoxaline reactions with, 548
Carbazole preparation, 383
Carbenes, reactions with pyridine, 406
Carbodesilylation reactions, 295
2-Carboxyethoxy substituted indole, 67
Carbohydrates, furan synthesis from, 149–150
β-Carbolines, 457
Carbon atoms, electrophilic substitution at quinoline/isoquinoline, 480–483. See also C[n] entries
Carbon–carbon bond formation, 134, 161. See also C–C entries
Carbon–carbon cross-coupling/6π-electrocyclization cascade reactions, 448
Carbonic anhydrase activator, 456
Carbonization, of benzofuran, 119
Carbonyl compound condensation, 175
Carbonyl compound synthesis, 293
N,N-Carbonyldimidazole (CDI), in sildenafil synthesis, 605
Carbonyl-inserted palladium intermediates, 421
Carbonyl protonation, 140
Index

Carboxylation, in thiophene chemistry, 163–164, 166
Carboxylic acid, 138
4-Carboxylic acid quinolines, in Pfitzinger synthesis, 501
Carboxylic acid surrogates, for benzimidazole-forming reactions, 358
Carcinogenicity, of quinolones, 526. See also Cancer entries
Cardiovascular pathology, 595
Cascade fragmentation reactions, 150
Catalytic direct arylation, of aromatic C–H bonds, 555
Catalytic hydrogenation, 101, 492
Cataract treatments, 221
Cathepsins, 547
CB₁ receptor antagonists, 210, 211–212
CB₂ inhibitors, 107
C-bridged calix[4]pyridine, Ciancian–Dennstedt reaction for synthesizing, 455
CC-1065 synthesis, 69
C–C bond-forming reactions, 105. See also Carbon–carbon bond formation
palladium-catalyzed, 96
C–C/C–N cross-coupling reactions, with organometallic reagents, 409–425
C–C cross-coupling reactions, 413–414
CDI activation, in sildenafil synthesis, 605
CDI acylation, in sildenafil synthesis, 605
CDP840 PDE IV inhibitor, synthesis of, 420–421
Cefdimir, 287, 288
synthesis of, 311
Cefotaxime, 287, 288
Cefitin, 123, 124, 154–155
Ceftriaxone, 287, 288
Cefuroxim(e) (Ceftin), 123, 124, 155
Celecoxib (Celebrex), 13, 200
synthesis of, 38, 207
Celebrex. See Celecoxib (Celebrex)
Cell membrane permeability, 176
Central nervous system (CNS), 27. See also CNS drugs
Cephalosporin antibiotics, broad-spectrum, 154
Cephalosporins, 287, 288
(+)-Cephalostatin 1, molecular structure and properties of, 537–538
Ceric ammonium nitrate (CAN), 423
CGP 60474 PKC inhibitor, 416–417
Chalcone derivatives, 296–297
C–H alkenylation, rhodium-catalyzed, 448
Chau-Lam reaction, in pyridines, 416, 449
Chantix, 16, 539
C–H arylation, on pyrazine ring, 554
C–H bonds, catalytic direct arylation of, 555
Chelating agents, 561–562
Chemoselectivity, 446
Chemotherapeutic agents, possessing pyrimidine structure, 570
Chemotherapy, of malaria, 471–472
Chemotherapy drugs, 572
C–H functionalization, 366–367
palladium-catalyzed, direct intramolecular oxidative, 320–321
Chichibabin amination, on quinolines and isoquinolines, 483
Chichibabin pyridine synthesis, 425, 431–432
C–H insertion, 135, 136–137
Chiral aldehydes, reaction with, 295
Chiral bridging ligands, in Kröhnke pyridine synthesis, 435
Chiral catalysts, 128–129. See also Enantioselective variation; Enantioselectivity
Chiral furanmethanol derivatives, synthesis of, 150
Chiral salts, 486
Chloranil, 92
Chlorinating reagent, 619
Chlorination, of N-substituted imidazoles, 338–339
4-Chlorination, of quinazolines, 618
6-Chloro-2-phenylbenzothiazole, 315
2-Chloro-3-alkyl quinolines, Meth–Cohn synthesis of, 507
2-Chloro-3-substituted quinolines, Meth–Cohn synthesis of, 506–507
Chloro-4-hydroxyquinoline, 498
5-Chloro-8-hydroxyquinoline, 482
Chlorohydins, 292
2-Chloromethyl-4-trifluoroxazole, 255
2-Chloromethyl-4-vinylxazole, 255
2-Chloroazoles, 250, 251
Chlorophyll, 5–6
Chloropyrazines, 268
Chloropyrimidine, in erlotinib preparation, 599
3-Chloroquinolines, 455
Chloroquine, 471, 472, 487, 526
Gould–Jacobs synthesis and, 506 preparation of, 498
Chloroquinoline, hydrolysis of, 87
N'-Chlorosuccinimide (NCS), 618–619
Chlorosulfonation reactions, in sildenafil synthesis, 604
Cholecystokinin inhibition, 635
Cholesterol treatment, 600
Cholinergic nicotinic receptor inhibitor, 420
Chronic myelogenous/myeloid leukemia (CML), 402, 416
treatment for, 592
Chronic obstructive pulmonary disorder (COPD), 125
Chronic pain treatment, 107
Cialis, synthesis of, 63, 64
Cimetidine—Taganet reaction, 450, 455
Cicatrization, 479–480
Cilexetil, 355, 357
synthesis of, 359–360, 364, 365
Cilostazol, synthesis of, 392
Cimetine (Taganet), 12, 342, 343
Cine addition, in imidazole synthesis, 347–348
Cinnoxin, 473
Cipralisant, 335
Ciprofloxacin(e), 472, 473, 526
Cisplatin, 560
Claissen condensation
in Friedlander synthesis, 500
in rimonabant synthesis, 208–209
Claissen isoazazole synthesis, 243
Clomoxynquin, synthesis of, 482
Claudication, treatment of, 392
Clauson–Kaas pyrrole synthesis, 25, 26
Clavicipitic acid synthesis, 92
Claycop, 428
Click chemistry, 384
Clopidogrel (Plavix), 11, 125–126, 187
synthesis of, 184–185
Clostridium botulinum, 88
C-metalated pyridines, 413
C-metalated pyridine synthesis
via directed lithiation, 409–411, 412
via metal–halogen exchange, 411–413
C-metalation, of thiazoles, 292–296
C-met kinase inhibitors, 106
C–N bond formation, 41
C–H functionalization approach to, 366
from aryl halide, 361–365
C–N cross-coupling methodology, copper-catalyzed Chan–Lam, 449
C–N cross-coupling reactions, 413–414
\(^{13}C\)-NMR spectra
of benzimidazole, 355
of benzofuran, 121
of benzothiazole, 284
of benzothiophene, 123
of benzoxazole, 231, 232
of furan, 120–121
of imidazole, 334
of indazole, 200
of indole, 54–55
of oxazole, 231, 232
of pyrazine and quinoxaline, 536–537
of pyrazole, 199
of pyridine, 399–400
of pyrimidine, 569
of pyrrole, 20
of quinazoline, 615–616
of quinoline and isoquinoline, 476
of thiazole, 284
of thiophene, 122
of triazoles and tetrazoles, 374–375
CNS drugs, 95. See also Central nervous system (CNS)
C-nucleoside derivatives, 176, 177
Cobaltacyclopentadienes, 446
Cobalt-catalyzed \([2 + 2 + 2]\)-cycloaddition reactions, of nitrile-diynes, 447
Cobalt-catalyzed cyclotrimerization, intramolecular, 447–448
Co-catalytic Pd(PPPh\(_3\))/MnO\(_2\) system, 320–321
Coecidian, 504
C–O cross-coupling reactions, 413–414
Code of life, 7
Colon carcinoma, HCT-116 cells, 285
Colorectal cancer, 639
Combes quinoline synthesis, 494–496
modification of, 496
Combretastatin A, 178
Condensation. See also Base-catalyzed condensation; Copper(II)-catalyzed condensation reaction
of \(\alpha\)-amino carboxyls, 542
of anthranilic acids, 626
of C4-heteroatom substituted pyrimidines, 583–584
in Combes quinoline synthesis, 495
diamines, 539–541, 542
dihydropyrimidine synthesis, 590
in Friedlander synthesis, 500–501
in Knorr and Conrad–Limpach reactions, 497
N–C fragment, 608
pyridine ring construction via, 425–437
in pyrimidine ring construction, 573–574, 574–575
in quinoxaline preparation, 541
in radio-labeled probe synthesis, 543
Conditioned avoidance responding (CAR), 27
Conlon, David, 608
Conrad–Limpach reaction
improvements of, 499
Index

involving quinolines/isoquinolines, 496–499
Conventional Knorr pyrrole synthesis, 36–37
Cook–Heilbron synthesis, of thiazoles, 312–313
Coordination, 409
Copper(II)-catalyzed condensation reaction, 4(3H)-quinazolinone derivative synthesis via, 635–535. See also Cu entries
Copper catalysis, in intermolecular amidations, 361–362
Copper-catalyzed Chan–Lam C–N cross-coupling methodology, 449
Copper-catalyzed ring expansion, 185
Copper-mediated benzimidazole drug construction, 365
Copper-mediated C–H insertion method, 366
Copper-mediated N-arylation chemistry in 2-aminobenzimidazole construction, 362–363
benzimidazoles in, 364
Copper-mediated N-arylation, scope and utility of intramolecular, 364
Copper prodigiosins, 45
Cordadone, 125
Core tricyclic indole scaffold, 104
Comforth rearrangement, 271
Corticoterphin-releasing factor (CRF) receptor ligands, 418
Costaclavine, synthesis of, 92
Coupling reactions, of pyrazines and quinoxalines, 553–562. See also Biaryl coupling; Bis-Suzuki cross-coupling reaction; Carbon–carbon cross-coupling/6π-electrocyclization cascade reactions; C–C/C–N cross-coupling reactions; C–C cross-coupling reactions; C–N cross-coupling entries; C–O cross-coupling reactions; Cross-coupling entries; Direct coupling; Heck coupling entries; Hiyama coupling; Horner–Emmons coupling; Intermolecular palladium(II)-mediated oxidative couplings; Intramolecular oxidative coupling; Iodoamine coupling; Iterative cross-coupling strategy; Kamada coupling; Metal-catalyzed C–C/C–N cross-coupling reactions; Metal-catalyzed cross-coupling reactions; Multicomponent coupling reaction (MCR); Negishi entries; Nickel-catalyzed cross-coupling reaction; Oxidative coupling entries; Palladium(II)-mediated oxidative couplings; Palladium-catalyzed cross-coupling entries; PyBroP-mediated coupling; Pyrazine ring coupling; Regioselective coupling; Ring coupling; Sonogashira coupling entries; Stille coupling entries; Suzuki coupling entries; Three-component coupling reaction; Transition-metal-catalyzed cross-coupling reaction; Transition-metal coupling reactions; Ullmann-type coupling; Wittig coupling; ZnCl2-catalyzed three-component coupling reaction
COX-2 inhibitor intermediate, 213. See also Anti-inflammatory cyclooxygenase-2 (COX-2) selective inhibitor; Cyclooxygenase-2 (COX-2) inhibitors
Crestor, 15, 56, 600–603
Cross-coupling, of terminal alkynes, 99
Cross-coupling methodology, copper-catalyzed Chan–Lam C–N, 449
Cross-coupling reactions. See also Coupling reactions
bis-Suzuki, 96–97
C–N, C–O, and C–C, 413–414
to form biologically active molecules, 554–555
for indoles, 91–105
involving furans, 131–132
involving quinolines and isoquinolines, 488–492
metal-catalyzed, 413, 488–492
in organic syntheses, 168
with organometalic reagents, 409–425
of oxazoles, 250–269
palladium-catalyzed, 254–257, 409
in quinoline ring construction, 511
regioselective, 258
transition-metal-catalyzed, 134–137
Cross-coupling strategy, iterative, 623–624
Cross-coupling survey, 259
Crude hydrzone, treatment of, 68
Cryptococcal meningitis, 380
Cryptococcus neoformans, 310
Cryptolepis sanguinolenta, 488
Cryosagine, 635
Crystallization, in bosentan synthesis, 596
C-substitution, electrophilic, 337–338
Cu(I)-catalyzed reactions, 384. See also Copper entries
Cu-catalyzed processes, optimizing, 362
Cupric nitrate, 428
Cu-promoted cyclization, imidazole synthesis via, 351, 352
Curran, Timothy T., 333
Cyanamide
 in imatinib synthesis, 592–593
 in pyrimidine synthesis, 578–579
4-Cyano-5-nitrimidazole, synthesis of, 347–348
Cyanocacetic esters, in pyridine synthesis, 430
Cyanalkynes, 172
Cyanohydrin, 237
Cyno-pyridines, 453
5-Cyanoquinazolines, 631
Cyclic butyrophenone derivatives, 35
Cyclic transmetalation, 260
Cyclin-dependent kinase 4 (CDK-4), inhibitor activity against, 130
Cyclization modes, 523
Cyclization reactions. See also Jacobson cyclization
 acid-catalyzed, 147–149, 152
 of α-amidoketones, 345, 346
 base-catalyzed, 147–149
 in Combes quinoline synthesis, 495
 with Hantzsch method, 307–308
 imidazole synthesis via oxidative, 353
 intramolecular, 130–131, 133–134
 intramolecular oxidative, 317
 iodine-catalyzed tandem oxidative, 240
 in Knorr and Conrad-Limpach reactions, 497
 metal-mediated/catalyzed, 511–512
 of mono-substituted benzene rings, 492
 Moro–Ban synthesis and, 68
 oxidative, 92, 488
 palladium-catalyzed, 361
 quinazoline-containing compounds and, 631–634
 radical, 104
 reductive, 359
 Skroup/Doebner–von Miller reaction and, 508–509
 in sildenafil synthesis, 604, 605
 transition-metal-catalyzed, 152–153
 transition-metal-promoted, 144–147
 of yrones and alkynes, 510
Cyclized pyrimidinone, in sildenafil synthesis, 604
Cyclized urea, 557, 558
Cycloadition
 1,3-dipolar, 214, 215, 217
 isonitrile, 352
 of oxazoles, 439–440
of oximino derivatives, 444
of propargylic alcohols, 320
in thiazoles, 299–300
of tosylmethylisocyanide, 344–345
Cycloaddition reactions
 of münchnones, 352
 pyridine synthesis via, 437–450
[2 + 2 + 2]-Cycloaddition reactions, 445–448
 transition metal complexes for, 446
[4 + 2]-Cycloaddition reactions, 437, 585
 1-azadienes as dienes in, 442–445
 azadienophiles as dienes in, 444–445
 oxazinones as dienes in, 441–442
 pyrimidines as dienes in, 441–442
Cyclocarbonylation reaction, 4(3H)-quinazolinone derivative synthesis via, 635
Cyclodehydridated intermediates, in Friedlander synthesis, 500
Cyclodehydration of α-amido ketones, 241
 in Combes quinoline synthesis, 495
 in pyridine synthesis, 433
Cycloisomerization, of propargyl ketones, 144
Cyclooxygenase-2 (COX-2) inhibitors, 13, 38, 96, 200–201, 203, 207, 234, 236. See also Anti-inflammatory cyclooxygenase-2 (COX-2) selective inhibitor; COX-2 inhibitor intermediate
Cyclopeptide natural products, thiazole ring of, 294
Cyclotrimination, intramolecular cobalt-catalyzed, 447–448
Cymbalta, 12, 125–126
 synthesis of, 161–162
CYP3A4, inhibition of, 322. See also Cytochrome entries
CYP3A enzymes, 111
CYP19 inhibition, 81–82
CYP450 enzyme complex, 354
CYP450 enzymes, 403–404
CYP450 inducers, 404
Cystobacter fuscus, 285
Cystothiazole A, 285
Cytochrome P450 enzyme (CPY2C19), 187
Cytochrome P450 enzyme CYP3A4, inhibition of, 322. See also CYP entries
Cytochrome P450 (CYP) enzyme function, 321
Cytochrome P-450 (CYP450) enzyme oxidation, 186
Cytochrome P-450 (CYP-450) enzymes, 46
 3-methylindole and, 110
Cytomegalovirus (CMV) infections, 572
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytosine, 7</td>
<td>661</td>
</tr>
<tr>
<td>Cytosine/guanine (C/G) base pair, 7</td>
<td></td>
</tr>
<tr>
<td>Cytotoxic activity, 148. See also Cytotoxicity</td>
<td></td>
</tr>
<tr>
<td>Cytotoxic alkaloids, 633</td>
<td></td>
</tr>
<tr>
<td>Cytotoxic compounds, 474</td>
<td></td>
</tr>
<tr>
<td>Cytotoxicity, 318</td>
<td></td>
</tr>
<tr>
<td>Dakin–West reaction, 585</td>
<td></td>
</tr>
<tr>
<td>Dantrium, 124</td>
<td></td>
</tr>
<tr>
<td>Dantrone (Dantrium), 124, 153–154</td>
<td></td>
</tr>
<tr>
<td>Daren, 355</td>
<td></td>
</tr>
<tr>
<td>Davidson oxazole synthesis, 236</td>
<td></td>
</tr>
<tr>
<td>DBU base, in inverse-electron demand Diels–Alder reaction, 442–443</td>
<td></td>
</tr>
<tr>
<td>Deamidated dihydropyridine, 555</td>
<td></td>
</tr>
<tr>
<td>Debenzylation, 83</td>
<td></td>
</tr>
<tr>
<td>Debux reaction, imidazole synthesis via, 342–343</td>
<td></td>
</tr>
<tr>
<td>Decarboxylation, 138</td>
<td></td>
</tr>
<tr>
<td>exothermic, 606, 607</td>
<td></td>
</tr>
<tr>
<td>for sumpriptan synthesis, 67</td>
<td></td>
</tr>
<tr>
<td>in trimethoprim synthesis, 591</td>
<td></td>
</tr>
<tr>
<td>deCODE, 102</td>
<td></td>
</tr>
<tr>
<td>Decumbenine B, 525</td>
<td></td>
</tr>
<tr>
<td>Deferasirox, one-pot synthesis of, 388</td>
<td></td>
</tr>
<tr>
<td>Dehydrating agents, Robinson–Gabriel synthesis and, 235</td>
<td></td>
</tr>
<tr>
<td>Dehydration</td>
<td></td>
</tr>
<tr>
<td>in Combex quinoline synthesis, 495</td>
<td></td>
</tr>
<tr>
<td>in Knorr and Conrad–Limpach reactions, 497</td>
<td></td>
</tr>
<tr>
<td>of hydroxy-dihydropyrimidine intermediates, 574</td>
<td></td>
</tr>
<tr>
<td>of primary amides, 583</td>
<td></td>
</tr>
<tr>
<td>“Dehydrative carbocyclic cyclization,” 181</td>
<td></td>
</tr>
<tr>
<td>Dehydrogenation, 580</td>
<td></td>
</tr>
<tr>
<td>Delavirdine (Rescriptor), 11, 57</td>
<td></td>
</tr>
<tr>
<td>Dementia, 543</td>
<td></td>
</tr>
<tr>
<td>(−)-(Z)-Deoxyxukalide, 147</td>
<td></td>
</tr>
<tr>
<td>4-Deoxypyrrozofurin analogue, Pechnmann pyrazole synthesis and, 216</td>
<td></td>
</tr>
<tr>
<td>Depressive disorders, 390</td>
<td></td>
</tr>
<tr>
<td>Deprotection</td>
<td></td>
</tr>
<tr>
<td>in bosentan synthesis, 597–598</td>
<td></td>
</tr>
<tr>
<td>of pyrazine, 548</td>
<td></td>
</tr>
<tr>
<td>Deprotonation, 247, 409</td>
<td></td>
</tr>
<tr>
<td>benzothiazole, 292</td>
<td></td>
</tr>
<tr>
<td>of diazine ring, 552</td>
<td></td>
</tr>
<tr>
<td>of indolyl acryl acid, 102</td>
<td></td>
</tr>
<tr>
<td>of oxazoles, benzoxazoles, and isoxazoles, 244</td>
<td></td>
</tr>
<tr>
<td>of pyrazines, 552</td>
<td></td>
</tr>
<tr>
<td>of pyrazole N-hydrogen, 201</td>
<td></td>
</tr>
<tr>
<td>thiazole, 292</td>
<td></td>
</tr>
<tr>
<td>Desekto-roloxifene, 170</td>
<td></td>
</tr>
<tr>
<td>Desoxyvasicinone, synthesis of, 636</td>
<td></td>
</tr>
<tr>
<td>Desoxyvasicinone tricyclic congen, synthesis of, 630</td>
<td></td>
</tr>
<tr>
<td>Dess–Martin oxidation, 241</td>
<td></td>
</tr>
<tr>
<td>Desulfurization, 84, 85</td>
<td></td>
</tr>
<tr>
<td>Deuterium-quenching experiments, 246</td>
<td></td>
</tr>
<tr>
<td>Dextilant, 355, 356</td>
<td></td>
</tr>
<tr>
<td>Dexlansoprazole (Kapidez/Dexlant), 355, 356</td>
<td></td>
</tr>
<tr>
<td>DG-041 preparation/synthesis, 102–103</td>
<td></td>
</tr>
<tr>
<td>via Bartoli indole synthesis, 79–80</td>
<td></td>
</tr>
<tr>
<td>Diabetes treatment, 359. See also Antidiabetic agents/drugs; Insulin mimic type-2, 86, 308–309</td>
<td></td>
</tr>
<tr>
<td>Diabetic retinopathy treatment, 103</td>
<td></td>
</tr>
<tr>
<td>Diacetyljen ketones, reaction with amidines, 576–577</td>
<td></td>
</tr>
<tr>
<td>Diakynes, reaction of, 446</td>
<td></td>
</tr>
<tr>
<td>Dialdehydes, in Paal–Knorr pyrrole synthesis, 37–38</td>
<td></td>
</tr>
<tr>
<td>7,8-Dialkoxo-4-hydroxyquinoline carboxylates, 504</td>
<td></td>
</tr>
<tr>
<td>Dialkyquinolinyl boranes, 490</td>
<td></td>
</tr>
<tr>
<td>Diamines, condensation of, 539–541, 542</td>
<td></td>
</tr>
<tr>
<td>Diaminomalonitrile (DMAN) reagent, imidazole synthesis via, 346–347</td>
<td></td>
</tr>
<tr>
<td>3,5-Diaryl-1,2,4-triazoles, 377. See also Biaryl-1,2,3-triazoles</td>
<td></td>
</tr>
<tr>
<td>Diaryl dihydroprazole-3-carboxamides, 211–212</td>
<td></td>
</tr>
<tr>
<td>Diaryl ketone, in Krohnke pyridine synthesis, 436, 437</td>
<td></td>
</tr>
<tr>
<td>Diarylpyrazole formation, 207</td>
<td></td>
</tr>
<tr>
<td>1,5-Diarylpyrazole formation, 217</td>
<td></td>
</tr>
<tr>
<td>Diaryl ring system, 559–560</td>
<td></td>
</tr>
<tr>
<td>2,3-Diaryliothiophenes, 173</td>
<td></td>
</tr>
<tr>
<td>Diastereomeric mixture, intermediate alcohols as, 451</td>
<td></td>
</tr>
<tr>
<td>Diazine formation, 539–545</td>
<td></td>
</tr>
<tr>
<td>Diazine natural products, 538–539</td>
<td></td>
</tr>
<tr>
<td>Diazine ring</td>
<td></td>
</tr>
<tr>
<td>deprotonation of, 552</td>
<td></td>
</tr>
<tr>
<td>metatation of, 551–553</td>
<td></td>
</tr>
<tr>
<td>reactivity of, 548–551</td>
<td></td>
</tr>
<tr>
<td>Diazines</td>
<td></td>
</tr>
<tr>
<td>as sulfonamide antibiotics, 570</td>
<td></td>
</tr>
<tr>
<td>metatation of, 551–553</td>
<td></td>
</tr>
<tr>
<td>Diazinyl bromide, 557</td>
<td></td>
</tr>
<tr>
<td>Diazinylstannane, formation of, 556–557</td>
<td></td>
</tr>
<tr>
<td>Diazo compounds, in Pechnmann pyrazole synthesis, 216</td>
<td></td>
</tr>
<tr>
<td>Diazomethane, 214</td>
<td></td>
</tr>
</tbody>
</table>
Diazonamide, 255
DIBAL reduction, in rosuvastatin synthesis, 600–601
Dibrominated pyrazine, Suzuki coupling of, 561
3,5-Dibromo-1,2,4-triazoles, 377
2,3-Dibromo-coumarin, base-analyzed Perkins rearrangement of, 151
α,α-Dibromo-oxime ethers, 578
α-Dicarbonyl compound, 321, 322
Dicarbonyl compounds, in pyrimidine ring construction, 573
1,3-Dicarbonyls, 545
1,4-Dicarboxylic acids, 140
Dichloropyrimidine, in bosantan synthesis, 596
Dichloropyrimidine intermediate, in bosantan synthesis, 596–597
2,4-Dichloroquinazoline, substitution reactions of, 621
6,7-Dichloroquinoxalines, 551
Dieckmann condensation, 172
Diels–Alder (DA) reactions, 137, 143–144, 437–438, 585
of azadienophiles, 444
of dienes, 444–445
of dimethylhydrazine, 443
double intramolecular, 443
intramolecular, 512–513
inverse-electron demand, 442, 443
of oxazoles, 249
of thiazole, 299
Diels–Alder/retro-Diels–Alder (DA/retro-DA) sequence, 438, 441
Dienes
1-azadienes as, 442–445
azadienophiles as, 444–445
Diels–Alder reaction of, 444–445
oxazinones and pyrimidines as, 441–442
Dienophiles, 441, 442
Diethyl 2-(ethoxymethylene)malonate, 219
Diestyrylphosphonate, 453
Diethyl phosphorocyanimidate (DEPC), 453
Differential scanning calorimetry (DSC), in sildenafil synthesis, 606
N-Difluoromethylation, of 3-phenyl-1,2,4-triazole, 378–379
Disfunctionalization, of pyrazines, 553
Diguandine antifungal agents, 44–45
Dihalocarbene intermediate, 455
3,4-Dihydro-2(1H)-quinoxalinone, 548
Dihydroartemisinin, treatment of, 28
Dihydrofolate reductase inhibitors, 177, 591, 637
Dihydrofuran, 140
3,4-Dihydroisoquinolines, preparation of, 513
Dihydroisoquinolines, 514
Dihydropyridine, dearomatized, 555
Dihydropyridine intermediates, 448–449
1,4-Dihydropyridines, 408, 426, 427, 428
Dihydropyridine synthesis, 426–429
one-pot, 428
Dihydropyrido[2,3-d]pyrimidines, 588
Dihydropyrimidine synthesis, condensation in, 590
Dihydroquinoline compounds, 485–486
Dihydroquinoline derivatives, 513
Dihydroquinolines, synthesis of, 511
Dihydrosildenafil oxidation, 606, 607
Diimine intermediate, 578
2,5-Diiodopyrazine, 553
Diketones, 39, 40
in Paal–Knorr pyrrole synthesis, 37–38
Dimerization
Heck reactions and, 101
Skorup/Doebner–von Miller reaction and, 508–509
2,4-Dimethyl-3-furoate, 139
Dimethylacetylenedicarboxylate (DMAD), 299
Dimethylformamide (DMF), in imatinib synthesis, 595
Dimethyl formamide (DMF), 307
N,N-Dimethylformamide acetal (DMF–DMA), 600
in imatinib synthesis, 594–595
Dihydroxyazone, Diels–Alder reaction of, 443
Dimethyl sulfonoycinate, 255
Dimethyl zinc, pyrazine ring arylation and, 554
Diniroth rearrangement, 382, 586, 631–632
in erlotinib preparation, 600
Diovan, 375
Diphenylacetylene formation, 99
Diplocilidine, 400
Dipolar cycloaddition, of acetylenic dipolarophiles, 299–300
Dipolarophiles, 1,3-dipolar cycloaddition of, 299–300
Dipole moments
of furan, pyrrole, and thiophene, 120
of pyrimidine, 569
pyrrole molecule, 18
of quinoline, 475
Direct arylation
of aromatic C–H bonds, 555
of aromatic compounds, 553–554
palladium catalysis and, 559–560
Index 663

Direct C–H arylation, on pyrazine ring, 554
Direct coupling, of imidates, 362
Directed lithiation, C-metalated pyridine
synthesis via, 409–411, 412. See also
Direct lithiation
Directed ortho-metalation (DoM), 409, 410
Directing metalation group (DMG), 409
Direct intramolecular oxidative C–H
functionalization, palladium-catalyzed,
320–321
Direct lithiation, of pyridine, 409–411
Direct Pd-activation, 341
Disubstituted furans, 144, 135
Disulfide bonds, 187
Diuretics, 186
Diynes, iron-catalyzed [2 + 2 + 2]-
cycloaddition reactions of, 447
DNA
purines and pyrimidines in, 570–571, 572
structure of, 7
DNA alkylators, 347
DNA cleavage agents, 298
DNA cross-linking agent, 21
DNA damage, 638, 639
repairing, 561
DNA-damaging agents, 560–561
DNA replication, inhibition of, 639
DNA topoisomerase 1 inhibitor, 83
DNA topoisomerase inhibitors, 105
Doebner–von Miller reaction. See
Skroup/Doebner–von Miller reaction
Dolasetron (Anzemet), 57–58
Dolastatin 10, 287
Domino reaction, in quinoline ring
construction, 511
Dounay, Amy B., 333
Dopamine antagonists, 384–385
anti-psychotic, 515–516
Dopamine D2-agonist, 288, 310
Dopamine receptor agonists, 90
Dopamine receptor antagonist, 21
Dopamine release, 401
Double [5 + 1] annulations, 588
Double annulation route, 588
Double helix, 7. See also DNA entries
Double imine formation, 539
Double intramolecular Diels–Alder (DA)
reactions, 443
Dracmacidin D, 539
Dracmacidin F, 539
Dracmacidin, 538
Drug candidates
with pyrazine and quinoxaline core
structures, 538–539
quinoxalines as potential, 541–542
steroidal pyrazine as, 560
Drug discovery
fragment-based, 547–548
Hantzsch method in, 308
heterocycles in, 8–16
low yield in, 76
for pain, 107
palladium-catalyzed cross-coupling reactions
in, 300
palladium-catalyzed reaction applications in,
416–425
thiazoles in, 286
thiophene and benzothiophene in, 183–186
via Gabriel synthesis, 314
Drug discovery/development, Mori–Baum
reaction in, 103
Drug discovery programs, biososteres in, 323
Drug–drug interactions (DDIs), 392, 404
Drugs. See also Blockbuster drugs; Cancer
drugs; CNS drugs; Nonsteroidal anti-
inflammatory drugs (NSAIDs);
Pharmaceutical entries; Pro-drugs
analgesic, 21–22
antiasthma, 11, 57
anticancer, 42, 474
antifolate, 572–573
anti-inflammatory, 21–22
anti-malarial, 14–15, 471, 487, 526
anti-metabolite, 572–573
anti-migraine, 10, 56–57, 66, 68, 69, 70
antipsychotic, 12, 21
anti-ulcer, 12
anti-viral, 381, 402
benzimidazole, 355–357
benzodiazepine, 390–391
chemotherapy, 572
containing 3-methylindole, 110–111
indazole-containing, 220–223
liabilities of pyrrole-containing, 46–48
platelet aggregation, 11
possible liabilities of imidazole-containing,
353–354
possible liabilities of oxazole-containing,
270–271
possible liabilities of quinoline-containing,
526–527
possible liabilities of thiazole- and
benzothiazole-containing, 321–323
possible liabilities of triazole-containing,
392–393
pyrazolone-containing, 217–220
<table>
<thead>
<tr>
<th>Drug/Compound</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyridine-containing</td>
<td>400-403</td>
</tr>
<tr>
<td>Quinazolinone-containing</td>
<td>636-639</td>
</tr>
<tr>
<td>Quinazoline-containing</td>
<td>636, 639-641</td>
</tr>
<tr>
<td>Quinoline-containing</td>
<td>14-15, 471-472, 473</td>
</tr>
<tr>
<td>Safety and efficacy of</td>
<td>48</td>
</tr>
<tr>
<td>Smoking cessation</td>
<td>16, 539</td>
</tr>
<tr>
<td>Spasmolytic</td>
<td>517</td>
</tr>
<tr>
<td>Synthesis of</td>
<td>360</td>
</tr>
<tr>
<td>Benzimidazole-containing</td>
<td>357-361</td>
</tr>
<tr>
<td>Benzo[d]furan-containing</td>
<td>153-158</td>
</tr>
<tr>
<td>Benzo[b]thiophene-containing</td>
<td>183-186</td>
</tr>
<tr>
<td>Furan-containing</td>
<td>153-158</td>
</tr>
<tr>
<td>Oxindole-containing</td>
<td>88-91</td>
</tr>
<tr>
<td>Thiophene-containing</td>
<td>183-186</td>
</tr>
<tr>
<td>Thiophene-containing</td>
<td>125-126</td>
</tr>
<tr>
<td>Duloxetine (Cymbalta)</td>
<td>12, 125-126</td>
</tr>
<tr>
<td>Synthetic protective group</td>
<td>64</td>
</tr>
<tr>
<td>Dupiprazole, synthesis of</td>
<td>387-388</td>
</tr>
<tr>
<td>Dynastat</td>
<td>234</td>
</tr>
</tbody>
</table>

Eczema, 156

Electrocyclic rearrangement, irreversible, 65
Electrocyclic ring-closing methods, 512-513, 525-526

Electrocyclization
- of [4 + 2] processes, 525-526
- in Knorr and Conrad-Limpach reactions, 497

Electrocyclization processes, in quinolin-2-one synthesis, 513
Electron deactivation, 247
Electron-deficient aromatic heterocycles, 398, 536
Electron-deficient aromatic rings, biaryl coupling of, 555-556
Electron-deficient nitrogen heterocycles, 556
Electron densities, in pyrrole molecule, 18. See also Electronic density

Electron-donating groups
- in Knorr and Conrad-Limpach reactions, 497
- pyrimidines with, 442
Electron-donating substituents, 476
Electronegative oxygen rings, 549
Electronegativity, 18
Electron-excessive aromatic heterocycles, 18
Electronic density. See also Electron densities of pyrimidine ring, 569

of pyrrole ring, 48
Electronic effects, in regioselectivity, 514
Electron-poor aromatic heterocycles, 536
Electron-pushing groups, 105
Electron-rich aromatic heterocycles, 18, 58
Electron-rich benzothiophenes, 125
Electron-rich isoxazoles, electrophilic substitution in, 245
Electron-rich pyrazole rings, 205
Electron-rich thiophenes, 125
Electrons, 4, 5
- in imidazole molecule, 333
- in indole molecule, 58
- lone pair, 4, 13, 14, 18, 58, 398, 477, 478, 546
- in oxazole and benzoxazole molecules, 232
- in pyrazole and quinoline molecules, 536
- in pyridine molecule, 398, 477
- in pyrimidine molecule, 569
- in pyrrole molecule, 18
- in quinoline and isoquinoline molecules, 477
Electron-withdrawing groups, on pyridine ring, 404
Electrophile-mediated Friedel-Crafts-type reaction, in quinoline compound synthesis, 510

Electrophiles
- halothiazoles used as, 304
- indole and, 58
- quinoline/isoquinoline reactions with, 482

Electrophilic activation, of amides, 581-582
Electrophilic agents, in pyridine N-oxide rearrangement, 450
Electrophilic amide activation, 520
Electrophilic attack, at nitrogen of pyridine ring, 404-409
Electrophilic C-substitution, imidazoles and, 337-338

Electrophilic cyclization reactions, 169
Electrophilic cyclizations, 179, 182
Electrophilic fluoride reagents, in Wipfe-Williams oxazole synthesis, 236
Electrophilic palladation, 320-321
Electrophilic reaction intermediates, 111
Electrophilic reactions of quinoline/isoquinoline, 481
Electrophilic reagents, for alkyne/alkene cyclization, 523-524
Electrophilic substitution
- in benzoazoles vs. oxazoles, 232
- in oxazoles, 245
Pictet-Spengler reaction and, 516-517
Pyridine susceptibility to, 399
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>in pyrrole ring</td>
<td>22–23, 31–34</td>
</tr>
<tr>
<td>in quinoline and isoquinoline, 476, 480–483</td>
<td></td>
</tr>
<tr>
<td>regioselectivity of, 160</td>
<td></td>
</tr>
<tr>
<td>Schlitter–Muller variation and, 521</td>
<td></td>
</tr>
<tr>
<td>in thiazoles, 290, 291</td>
<td></td>
</tr>
<tr>
<td>of thiophene ring, 159</td>
<td></td>
</tr>
<tr>
<td>Electrophilic substitution reactions, 404</td>
<td></td>
</tr>
<tr>
<td>intramolecular, 514</td>
<td></td>
</tr>
<tr>
<td>involving furans, 131</td>
<td></td>
</tr>
<tr>
<td>in thiophene chemistry, 164</td>
<td></td>
</tr>
<tr>
<td>Electrophilic sulfenic acid, 187</td>
<td></td>
</tr>
<tr>
<td>Elettripan (Relpax), synthesis of, 70, 101–102</td>
<td></td>
</tr>
<tr>
<td>Ellipticine, 440</td>
<td></td>
</tr>
<tr>
<td>Emadine, 355, 356</td>
<td></td>
</tr>
<tr>
<td>Emedastine (Emadine), 355, 356</td>
<td></td>
</tr>
<tr>
<td>Enamine-directed 1,3-dipolar cycloaddition, 217</td>
<td></td>
</tr>
<tr>
<td>Enamine tautomer, protonated, 65</td>
<td></td>
</tr>
<tr>
<td>Enamino-ester, in Conrad–Limpach reaction, 499</td>
<td></td>
</tr>
<tr>
<td>Enaminoic acid, 210</td>
<td></td>
</tr>
<tr>
<td>in imatinib synthesis, 592–593</td>
<td></td>
</tr>
<tr>
<td>Enantioselective variation, of Friedel–Crafts reactions, 162. See also Chiral entries</td>
<td></td>
</tr>
<tr>
<td>Enantioselectivity, 129, 130</td>
<td></td>
</tr>
<tr>
<td>Endogenous neurotransmitters, heterocycles as, 6–7</td>
<td></td>
</tr>
<tr>
<td>Endothelin-converting enzyme (ECE) inhibitor, 423</td>
<td></td>
</tr>
<tr>
<td>Endothelins, 595</td>
<td></td>
</tr>
<tr>
<td>Enigmazole A, 262</td>
<td></td>
</tr>
<tr>
<td>Enolate formation, 43</td>
<td></td>
</tr>
<tr>
<td>Enol ethers, 587–588</td>
<td></td>
</tr>
<tr>
<td>Enolization, in Knorr and Conrad–Limpach reactions, 497</td>
<td></td>
</tr>
<tr>
<td>Enone intermediate, in imatinib synthesis, 595</td>
<td></td>
</tr>
<tr>
<td>Enones, 148, 211–212</td>
<td></td>
</tr>
<tr>
<td>Enpirolone, 401, 402</td>
<td></td>
</tr>
<tr>
<td>synthesis of, 436, 437</td>
<td></td>
</tr>
<tr>
<td>Entamoeba histolytica, 509</td>
<td></td>
</tr>
<tr>
<td>Enzyme inhibitors, 141</td>
<td></td>
</tr>
<tr>
<td>Eosinophil phosphodiesterase, 211</td>
<td></td>
</tr>
<tr>
<td>Epibatidine, 400, 401</td>
<td></td>
</tr>
<tr>
<td>(−)-Epibatidine, biological isotope of, 559</td>
<td></td>
</tr>
<tr>
<td>(±)-Epibatidine, synthesis of, 422–423</td>
<td></td>
</tr>
<tr>
<td>Epidermal growth factor receptor (EGF), 585, 598, 620, 632, 637</td>
<td></td>
</tr>
<tr>
<td>Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), 16</td>
<td></td>
</tr>
<tr>
<td>Epimerizable substrates, 582–583</td>
<td></td>
</tr>
<tr>
<td>Epoxideones, 9, 286</td>
<td></td>
</tr>
<tr>
<td>Epoxidation, 321</td>
<td></td>
</tr>
<tr>
<td>Erectile dysfunction treatment, 603</td>
<td></td>
</tr>
<tr>
<td>Erlotinib (Tarceva), 16, 598–600, 616, 617</td>
<td></td>
</tr>
<tr>
<td>synthesis of, 632, 637</td>
<td></td>
</tr>
<tr>
<td>Erlotinib, 636–637</td>
<td></td>
</tr>
<tr>
<td>Erlotinib hydrochloride, 600</td>
<td></td>
</tr>
<tr>
<td>Erlotinib hydrochloride salt, 599</td>
<td></td>
</tr>
<tr>
<td>Erlotinib preparation, synthetic methods for, 599</td>
<td></td>
</tr>
<tr>
<td>Erythromycin, 2-fluoro-6-O-propargyl-11,12-carbamate ketolide of, 491</td>
<td></td>
</tr>
<tr>
<td>Esomeprazole (Nexium), 13, 355, 403, 404</td>
<td></td>
</tr>
<tr>
<td>Esomeprazole magnesium (Nexium)</td>
<td></td>
</tr>
<tr>
<td>Estazolam, synthesis of, 388</td>
<td></td>
</tr>
<tr>
<td>Ester saponification, 139</td>
<td></td>
</tr>
<tr>
<td>Estradiol mimics, 143</td>
<td></td>
</tr>
<tr>
<td>Estradiol receptor (ER), 143</td>
<td></td>
</tr>
<tr>
<td>Estrogen receptor ligands, 75</td>
<td></td>
</tr>
<tr>
<td>Eszopiclone (Lunesta), 15, 16</td>
<td></td>
</tr>
<tr>
<td>Ethionamide (Trecator), 400, 401, 430–431</td>
<td></td>
</tr>
<tr>
<td>(2E)-Ethyl 2-chloro-3-cyano-3-ethoxyacrylate, 213</td>
<td></td>
</tr>
<tr>
<td>Ethyldiazoacetate (EDAC), in Pechnmann pyrazole synthesis, 215</td>
<td></td>
</tr>
<tr>
<td>Ethylene glycol mono-tert-butyl ether (ETB), in bosentan synthesis, 597–598</td>
<td></td>
</tr>
<tr>
<td>2-Ethylthioisonicotinamide, 430–431</td>
<td></td>
</tr>
<tr>
<td>Eupomatencoid synthesis, 136</td>
<td></td>
</tr>
<tr>
<td>Evista, 11–12, 125–126, 164–165 synthesis of, 183–184</td>
<td></td>
</tr>
<tr>
<td>Exothermic decarboxylation, in sildenafil synthesis, 606, 607</td>
<td></td>
</tr>
<tr>
<td>Exotherms, in sildenafil synthesis, 606</td>
<td></td>
</tr>
<tr>
<td>Ezetimibe (Zetia), 9</td>
<td></td>
</tr>
<tr>
<td>Factor Xa inhibitors, non-amidine, 213</td>
<td></td>
</tr>
<tr>
<td>Famotidine (Pepcid, Pepcide), 12, 13, 288, 311–312</td>
<td></td>
</tr>
<tr>
<td>Farnsworth, Tyler W., 119</td>
<td></td>
</tr>
<tr>
<td>Fatty acid amide hydrolase (FAAH) inhibitors, 247, 293, 301–302</td>
<td></td>
</tr>
<tr>
<td>Fe(II)-binding agent pyrimidine, synthesis of, 451–452</td>
<td></td>
</tr>
<tr>
<td>Febuxostat (Uloric), 288, 289, 309</td>
<td></td>
</tr>
<tr>
<td>Feist–Béray furan synthesis, 137–140</td>
<td></td>
</tr>
<tr>
<td>Feist–Béray reaction, 42</td>
<td></td>
</tr>
<tr>
<td>Fibrinogen receptor antagonist, 201</td>
<td></td>
</tr>
<tr>
<td>Ficuceptine synthesis, 431–432</td>
<td></td>
</tr>
<tr>
<td>Fiesselman benzoctiophene synthesis, 179–180</td>
<td></td>
</tr>
<tr>
<td>Fiesselman thiophene synthesis, 171–174, 177</td>
<td></td>
</tr>
<tr>
<td>Fingolinod (FTY-720) immunomodulator, 324</td>
<td></td>
</tr>
<tr>
<td>Finnegan tetrazole synthesis, 391</td>
<td></td>
</tr>
<tr>
<td>Fischer, Emil, 65</td>
<td></td>
</tr>
<tr>
<td>Fischer cyclization, 67</td>
<td></td>
</tr>
<tr>
<td>Fischer indole cyclization, 85</td>
<td></td>
</tr>
</tbody>
</table>
Fischer indole reaction, 84
 Grandberg modification of, 68
Fischer indole synthesis, 65–68, 105
Fisher oxazole synthesis, 237
5-HT2 inhibitors, 106–107
Five-membered heterocycles
 benzene-fused, 2–3
 defined, 2
 with one heteroatom, 8–12
 with two heteroatoms, 12–13
Five-membered-ring fused pyrimidines, 584
Five-membered ring heterocycles, relative
 aromaticity of, 373
5-membered ring system, 182
5-substituted benzothiophene, 180
5-substituted imidazoles, 334
Flocafitonine, synthesis of, 484
Flucanazoles, 380
Flumequine, 472
Fluorination, of quinoxalines, 550–551
6-Fluoro-4-alkyl(aryl)thioquinazolines
 preparation of, 627
2-Fluoro-6-O-propargyl-11,12-carbamate
 ketolide of erythromycin, 491
2-Fluoro-derivatives, of quinoxalines, 550–551
Fluoroquinolone antibiotics, 526
5-Fluorouracil (5-FU), 570
Flutamide, 560
Fluvastatin sodium (Lescol), 10, 56
 synthesis of, 73
Folic acid analogue, 637
Forasitan, synthesis of, 391–392
Formamidine, 348
Formamidine derivative, in erlotinib
 preparation, 600
Formamidine sulfonic acid condensation, in
 imidazole synthesis, 342–343
3-Formyl quinolines, 496
Fostedil, 289
[4 + 2]-cycloaddition reactions, 437, 585
 1-azaenones as dienes in, 442–445
 azadienophiles as dienes in, 444–445
 oxazinones as dienes in, 441–442
 pyrimidines as dienes in, 441–442
[4 + 2] hetero Diels–Alder (DA) cycloaddition,
 437–438
[4 + 2] processes, electrocyclicization of,
 525–526
4,5-disubstituted imidazoles, 344, 345
 syntheses of, 347–348
4,5-disubstituted oxazoles, 238
4,5-disubstituted pyrimidine derivatives, 581
4,5-disubstituted pyrimidines, 589
4-iodo pyridine derivative, 412
Four-membered heterocycles, 9
 defined, 1
4-monosubstituted pyrimidines, 589
4-substituted imidazoles, 334
4-substituted indole, racemic, 81–82
4-substituted pyrido[2,3-d]pyrimidines, 588
4-substituted quinazolines, 619–620, 621
4-substituted quinazolines, 623
4-thiosubstituted quinazoline, 627
FR143187, pilot scale of, 25–26
Fragmentation–recombination pathways,
 Skroup/Döneker–von Miller reaction
 and, 508–509
Fragment-based drug discovery, 547–548
Fredericamycin, 442
Free radical scavengers, oxygen-derived, 221
Furantazole, 289
Friedel–Crafts acylations, 33, 88, 128–129,
 317, 337
 in benzo thiophene chemistry, 165–166
 imidazoles and acylimidazoles and, 336
 of pyrazoles, 205
 of quinoline/isoquinoline, 481, 482
 in thiophene chemistry, 163
Friedel–Crafts alkylations, 337
Friedel–Crafts aromatic substitutions, 548
Friedel–Crafts reactions
 enantioselective variation of, 162
 involving benzofurans, 129
 involving benzothiophenes, 165–166
 involving furans, 128–129, 132–133
 in raloxifene synthesis, 183–184
 in thiophene chemistry, 161–162
Friedel–Crafts-type reaction, in quinoline
 compound synthesis, 510
Friedlander synthesis, of quinoline framework,
 499–501
Frondosin B, benzofuran ring system of, 152
Frova. See Frovatropitan (Frova)
Frovatropitan (Frova), synthesis of, 66
FTY-720 immunomodulator, 324
Fully elaborated side chains, 39–40
Fully substituted aminothiophenes, 176
Fully substituted oxazole production, 248–249
Fully substituted oxazole ring, 269
Fully substituted oxazolyl ketone, 241
Fultz, Michael, 536
Functionalized 2-aryl benzimidazoles, 366
Functionalized benzene intermediate, 367
Functionalized imidazole, 348
Functionalized pyrazoles, high throughput-screen of, 549–550
<table>
<thead>
<tr>
<th>Index</th>
<th>667</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functionalized thiophenes, 160</td>
<td></td>
</tr>
<tr>
<td>synthesis of, 161</td>
<td></td>
</tr>
<tr>
<td>Fungicides, 243, 289, 365. See also Anti-fungal entries</td>
<td></td>
</tr>
<tr>
<td>2-Furaldehyde, 149</td>
<td></td>
</tr>
<tr>
<td>Furan(s), 2, 4, 18, 119</td>
<td></td>
</tr>
<tr>
<td>aromaticity of, 119</td>
<td></td>
</tr>
<tr>
<td>β-substituted polyoxygenated, 150</td>
<td></td>
</tr>
<tr>
<td>bond lengths and angles of, 120</td>
<td></td>
</tr>
<tr>
<td>dipole moment of, 120</td>
<td></td>
</tr>
<tr>
<td>disubstituted, 135, 144</td>
<td></td>
</tr>
<tr>
<td>electrophilic substitution reactions involving, 131</td>
<td></td>
</tr>
<tr>
<td>halogenated, 128</td>
<td></td>
</tr>
<tr>
<td>iodination of, 131–132</td>
<td></td>
</tr>
<tr>
<td>metal-halogen exchange involving, 128</td>
<td></td>
</tr>
<tr>
<td>monobromination of, 127</td>
<td></td>
</tr>
<tr>
<td>mono-substituted, 141</td>
<td></td>
</tr>
<tr>
<td>nuclear magnetic resonance spectroscopy of, 120–121</td>
<td></td>
</tr>
<tr>
<td>polymerization of, 119</td>
<td></td>
</tr>
<tr>
<td>reactions at C2, 126–131</td>
<td></td>
</tr>
<tr>
<td>reactions at C3, 131–134</td>
<td></td>
</tr>
<tr>
<td>relative aromaticity of, 198, 373</td>
<td></td>
</tr>
<tr>
<td>resonance effect of, 19</td>
<td></td>
</tr>
<tr>
<td>steroid-based, 142</td>
<td></td>
</tr>
<tr>
<td>substituted, 128, 130, 144–145</td>
<td></td>
</tr>
<tr>
<td>synthesis of highly functionalized, 145–147</td>
<td></td>
</tr>
<tr>
<td>tetrastubstituted, 131–132</td>
<td></td>
</tr>
<tr>
<td>3-substituted, 136–137</td>
<td></td>
</tr>
<tr>
<td>trisubstituted, 144</td>
<td></td>
</tr>
<tr>
<td>Furan-based antimicrobials, 123</td>
<td></td>
</tr>
<tr>
<td>Furan-containing drugs/therapeutics, 129</td>
<td></td>
</tr>
<tr>
<td>possible liabilities of, 186–188</td>
<td></td>
</tr>
<tr>
<td>synthesis of, 153–158</td>
<td></td>
</tr>
<tr>
<td>Furan derivatives, 149–150</td>
<td></td>
</tr>
<tr>
<td>functionalized, 126</td>
<td></td>
</tr>
<tr>
<td>highly functionalized, 148</td>
<td></td>
</tr>
<tr>
<td>substituted, 143–144</td>
<td></td>
</tr>
<tr>
<td>tetrastubstituted, 139, 143</td>
<td></td>
</tr>
<tr>
<td>2,3,4-trisubstituted, 144</td>
<td></td>
</tr>
<tr>
<td>Furan formation, 250</td>
<td></td>
</tr>
<tr>
<td>Furan-fused cis-decalin, 148</td>
<td></td>
</tr>
<tr>
<td>Furanmethanol derivatives, synthesis of chiral, 150</td>
<td></td>
</tr>
<tr>
<td>Furanones, trisubstituted, 139. See also 3-Furanone</td>
<td></td>
</tr>
<tr>
<td>Furanoid fatty acid F₃, 137</td>
<td></td>
</tr>
<tr>
<td>Furan–pyrrole mixture, 42</td>
<td></td>
</tr>
<tr>
<td>Furan reactions, 126–137</td>
<td></td>
</tr>
<tr>
<td>Furan rings, 119</td>
<td></td>
</tr>
<tr>
<td>nitration of, 127–128</td>
<td></td>
</tr>
<tr>
<td>synthesis of substituted, 137–138, 138–139</td>
<td></td>
</tr>
<tr>
<td>Furan ring structures, toxicity from, 188</td>
<td></td>
</tr>
<tr>
<td>Furan ring system(s), 123, 186</td>
<td></td>
</tr>
<tr>
<td>preparation of, 137</td>
<td></td>
</tr>
<tr>
<td>Furan synthesis, 137–150</td>
<td></td>
</tr>
<tr>
<td>from carbohydrates, 149–150</td>
<td></td>
</tr>
<tr>
<td>Furanyl derivative, 174</td>
<td></td>
</tr>
<tr>
<td>Furanylpyrimidine derivative, 135</td>
<td></td>
</tr>
<tr>
<td>Furanzolidine (Furoxone), 123, 124</td>
<td></td>
</tr>
<tr>
<td>Furin, 123, 124</td>
<td></td>
</tr>
<tr>
<td>3-Furoate, 138–139</td>
<td></td>
</tr>
<tr>
<td>Furosemide (Lasix), 124, 186</td>
<td></td>
</tr>
<tr>
<td>Furosemide–glutathione conjugate, 186. See also Glutathione (GSH) adduct</td>
<td></td>
</tr>
<tr>
<td>Furoxone, 123, 124</td>
<td></td>
</tr>
<tr>
<td>2-Furyldimethylmalonate, 135</td>
<td></td>
</tr>
<tr>
<td>Furylmagnesium compounds, 128</td>
<td></td>
</tr>
<tr>
<td>Fused 2,3,4,6-tetrasubstituted pyridines, 435–436</td>
<td></td>
</tr>
<tr>
<td>Fused-furan synthesis, 148</td>
<td></td>
</tr>
<tr>
<td>Fused-imidazole rings, in imidazole synthesis, 347–349</td>
<td></td>
</tr>
<tr>
<td>Fused-imidazole ring system, 349</td>
<td></td>
</tr>
<tr>
<td>Fused-polycyclic pyridines, 448</td>
<td></td>
</tr>
<tr>
<td>Fused pyrimidines, five-membered-ring, 584</td>
<td></td>
</tr>
<tr>
<td>Fused quinoline heterocycles, 474</td>
<td></td>
</tr>
<tr>
<td>GABA receptor, 245. See also γ-aminobutyric acid (GABA) derivatives</td>
<td></td>
</tr>
<tr>
<td>Gabriel–Colman rearrangement, 522–523</td>
<td></td>
</tr>
<tr>
<td>Gabriel synthesis, of thiazoles, 314–315</td>
<td></td>
</tr>
<tr>
<td>γ-aminobutyric acid (GABA) derivatives, delivery of, 408. See also GABA receptor</td>
<td></td>
</tr>
<tr>
<td>γ-protons, of purimidine, 399</td>
<td></td>
</tr>
<tr>
<td>Ganciclovir, 572</td>
<td></td>
</tr>
<tr>
<td>Garcia–Gonzales reaction, 149</td>
<td></td>
</tr>
<tr>
<td>Gassman indole synthesis, 84–86</td>
<td></td>
</tr>
<tr>
<td>Gastroesophageal reflux disease (GERD)</td>
<td></td>
</tr>
<tr>
<td>treatment, 355</td>
<td></td>
</tr>
<tr>
<td>proton-pump inhibitors for, 355, 356</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal stromal tumor treatment, 592</td>
<td></td>
</tr>
<tr>
<td>Gefitinib (Iressa), 15–16, 598, 616</td>
<td></td>
</tr>
<tr>
<td>synthesis of, 627, 632</td>
<td></td>
</tr>
<tr>
<td>Gemcitabine, 560</td>
<td></td>
</tr>
<tr>
<td>Geodon, synthesis of, 88–89</td>
<td></td>
</tr>
<tr>
<td>Geometric isomers, 455</td>
<td></td>
</tr>
<tr>
<td>Gewald aminobenzothiophene synthesis, 180</td>
<td></td>
</tr>
<tr>
<td>Gewald aminothiophene reaction, 177, 178</td>
<td></td>
</tr>
<tr>
<td>Gewald thiophene synthesis, 171, 175–179</td>
<td></td>
</tr>
<tr>
<td>Gilmore’s modification, of Bartoli indole synthesis, 79</td>
<td></td>
</tr>
<tr>
<td>Girolline, 335</td>
<td></td>
</tr>
<tr>
<td>Glaxo process, 100</td>
<td></td>
</tr>
</tbody>
</table>
Index

Cleevec, 402, 416, 417, 592
Glioblastoma treatment, 82
Glipizide, 539
Glutathione (GSH) adduct, 111. See also Furomide–glutathione conjugate
Glycine site antagonists, synthesis of, 33
Glycoprotein GPlfo/GPlHa antagonists, Heck reaction and, 268
Glyoxal, in imidazole synthesis, 342
Godfrey application, Robinson–Gabriel synthesis and, 235–236
Golfomycin A, 173
Gonorrhea, 154
Gould-Jacobs reaction, of quinolines and isoquinolines, 503–506
Gout, 309
treatment of, 288, 289
G-protein-coupled receptors (GPCRs), 79, 107
Grabe–Ullmann reaction, 383
Graft rejection prevention, 323
Gramine, 62
dimethylaminomethyl group in, 62
Grandberg modification, of Fischer indole reaction, 68
Granisetron (Kytril), synthesis of, 221–222
Grignard pyridine derivatives, 413
Grignard reaction, 161
Grignard reagents, 64, 346–347, 578
in Bartoli indole synthesis, 77, 78
of thiazoles and benzothiazoles, 292, 293
GSK554418A, 107
Guanidine intermediates, 363
Guanidines, intramolecular arylation of, 363
Guanidinothiazole, 12
Guanine, 7
in nucleic acids, 570, 572
Guanylate cyclise, 223
Guareschi–Thorpe pyridine synthesis, 425, 430–431
Gutknecht pyrimidine synthesis, 543–544
H1-receptor antagonists, 401
for allergies, 356
H2 (H2)-histamine receptor antagonists, 123, 342, 343. See also Histamine-2 (H2)
receptor antagonists
H3-receptor antagonist, 288
H3 receptor antagonists, 335
Hagen, Timothy J., 373
Halfordiol, 237
Halides, of thiazoles and benzothiazoles, 302
α-Haloanilines, Pd-catalyzed reaction of, 70–71
Halo-benzothiophenones, 169
versatility of, 168
Halogenated furans, 128
Halogenated isoquinolines, 482–483
Halogenated pyroles, 20, 23–24, 31
Halogenation. See also Bromination;
Chlorination; Fluorination; Iodination;
Metal–halogen exchange; Quinoline halogens
of furans, 127, 131–132
of N-substituted imidazoles, 337, 338–339, 340–341
of quinazolines, 618–619
of thiazole, 291–292
of thiophenes, 159–160, 164–165
of triazoles, 375
Halogen dance, 412
3-Halogenopyridine, 455
Halogen pyridines, 411–413
Halomethylimidazoles, in Sonogashira coupling reactions, 264
Halooxazole preparation, 250–253
Halooxazoles, in Sonogashira coupling reactions, 264, 266
Halooxazole survey, 254
Halothiazoles
in Sonogashira coupling reactions, 264
substituted, 300
used as electrophiles, 304
Hantzsch, Arthur, 307
Hantzsch chemistry, 426
Hantzsch dihydropyridines, oxidation of, 428
Hantzsch method, of thiazole ring construction, 307–312
Hantzsch pyridine derivatives, 428
Hantzsch pyrrole synthesis, 40–42
Hantzsch thiazole synthesis, 129
Hantzsch-type pyridine synthesis, 429
Haouamine alkaloids, 432
Harr application, 239–240
Haruta application, 236
H-bond interactions, to human protein kinases, 595
HCl-mediated deprotection, in bosentan synthesis, 597–598
Heart failure, 157
angiotensin (AT) receptor antagonists for treating, 355, 357
PDE3 inhibitor for, 355, 356
Heck adduct, 101
Heck coupling, 267–269
Heck coupling protocol, quinoxalines and, 561–562
Heck reaction(s), 68, 100–105, 168
applied to thiazoles and benzothiazoles, 304
in pyridines, 415
tandem, 79
Heck–Suzuki reaction sequence, 424
Heck-type reactions, in polysubstituted
quinoline compound synthesis,
511–512
Heme, 5, 6
Hemoglobin, 471
(–)-Hennoxazale A, 233
Henry reaction, 43
Hepatitis B treatment, 571
Hepatitis C drug candidate, 239–240
Hepatitis C infection, 381
Hepatitis C virus (HCV) helicase inhibitors,
32–33
Hepatitis C virus (HCV) NS5B polymerase
inhibitors, 314
Hepatotoxicity, 111, 186–187, 322, 392–393
Hepsera, 571
Herpes viral infection treatments, 571, 572
Heteroaromatic organometallic reagents, 556
Heteroaromatic rings
protonation of, 548–549
selective fluorination of, 550–551
Heteroaromatic-substituted pyrimidines,
synthesis of, 578
Heteroaromatic thioethers, 260–261
Heteroaryl Heck reaction, 268–269
Heteroaryl thioethers, in Suzuki reaction, 260
Heteroatoms, 474
five-membered heterocycles with one, 8–12
five-membered heterocycles with two,
12–13
six-membered heterocycles with one, 13–15
six-membered heterocycles with two, 15–16
Heteroatom substituted pyrimidines,
condensation of, 583–584
Heterocycle aromaticity, 4–5
Heterocycle metalation, 245
Heterocycle nomenclature, 1–3
Heterocycle pKₐ values
of imidazole, 333
of oxazole, benzoxazole, and isoxazole, 244
of quinazoline and pyrimidine, 615
of quinoline and isoquinoline, 478
Heterocycle protonation, 244
Heterocycles
amino acids made of, 6
aromatic, 2, 4–5
azanaphthalene isomeric, 471
biosisosteric, 324
defined, 1
in drug discovery, 8–16
electron-deficient (-poor), 536
electron-deficient nitrogen, 556
electron-excessive aromatic, 18
as endogenous neurotransmitters, 6–7
five-membered, 2–3, 8–12, 12–13
four-membered, 1, 9
fused quinoline, 474
importance of, 5–8
purine, 570–571
pyrimidine, 569–573
quinoline and isoquinoline, 474–475
relative aromaticity of, 4–5, 198
relative aromaticity of five-membered, 373
saturated, 2
six-membered, 2, 3, 13–15, 15–16
steroids bearing, 75
three-membered, 1
Heterocycle transformation, pyridine synthesis
via, 455–457
A'-Heterocyclic carbene (NHC), 297
Heterocyclic compounds, 303
Heterocyclic nitrogen, 476
Heterocyclic organometallic reagents, 552
Heterocyclic ring, construction of, 235–243
Heterocyclic ring systems, pyrido[2,3-
4]pyrimidines as, 587–588
Heterocyclic systems, pyridine-containing, 439
[4 + 2] Hetero Diels–Alder (DA)
cycloaddition, 437–438
Hexacyclic indole intermediate, in Gassman
synthesis, 85
Hexamethyldisiloxane, 574
High blood pressure treatment, 616. See also
Hypertension entries
Highly aryl-substituted pyrrole carboxylates,
39
Highly functionalized furan derivatives, 148
Highly functionalized furans, synthesis of,
145–147
Highly functionalized tetrasubstituted furans,
147
Highly substituted benzofurans, synthesis of,
152
High through-put screen (HTS), of
functionalized pyrazoles, 549–550
 Hindered bases, in Pfitzinger synthesis,
501–502
Histamine, 6, 335
Histamine-2 (H₂) receptor antagonists, as anti-
ulcer drugs, 12. See also H₂ (H2)-
histamine receptor antagonists
Histidine, 6, 335
Histone deacetylase (HDAC) inhibitors, 32
HIV-1 attachment inhibitor, 108. See also AIDS entries; Human immunodeficiency virus (HIV) entries
HIV-1 integrase inhibitors, 108–109
HIV-1 non-nucleoside reverse transcriptase inhibitors, 383
HIV-1 protease inhibitors, 287–288, 289
HIV-1 reverse transcriptase inhibitor, 11
HIV/AIDS treatment, 571
HIV pol gene, enzymes encoded in, 108
HIV protease inhibitors, 295, 296, 322–323
Hiyama coupling, in pyridines, 416
H^+K^+-ATPase inhibitor, 13
HMG-CoA inhibitors, 9, 10, 21, 47
HMG-CoA reductase inhibitors, 15, 56. See also 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors
\(^1\)H-NMR spectra
 of benzimidazole, 354–355
 of benzo furan, 121
 of benzothiazole, 284
 of benzothiophene, 123
 of benoxazole, 231, 232
 of furan, 120
 of imidazole, 334
 of indazole, 199–200
 of indole, 54
 of oxazole, 231
 of pyrazine and quinoxaline, 536–537
 of pyrazole, 199
 of pyridine, 399
 of pyrimidine, 569
 of pyrrole, 19–20
 of quinoxaline, 615–616
 of quinoline and isoquinoline, 475–476
 of thiazole, 283–284
 of thiophene, 122
 of triazoles and tetrazoles, 374
Horner–Emmons coupling, 97–98
5-HT\(_6\) inhibitors, 106–107. See also 5-Hydroxytryptamine (5-HT)
Huajiaoisinoline, 474
Hückel's rule of aromaticity, 4
Hugershoffer synthesis, of aminobenzothiazoles, 316–318
Huigen 1,3-dipolar cycloaddition, 384
Huigen tetrazole rearrangement, 383
Human CMV infection, 572
Human eosinophil phosphodiesterase, 211
Human immunodeficiency virus (HIV), 402. See also AIDS entries; HIV entries
 Human immunodeficiency virus type 1 (HIV-1), 108
 Human protein kinases, H-bond interactions to, 595
 Huntington's disease, 104
Hydrazine(s)
 in pyrazole synthesis, 206
 in quinoxaline preparation, 541
 Skroup/Doebner–von Miller reaction and, 509
 in Zincke reaction, 407
Hydrazone(s)
 in indole synthesis, 66–67
 in pyrazole synthesis, 207
 treatment of crude, 68
Hydrazine synthesis, of indole, 66–67
β-Hydride elimination, 94
Hydrogenation, catalytic, 492
ortho-Hydrogen atoms, kinetic acidity of, 410
Hydrogen bonds. See H-bond interactions
Hydrogen chloride. See HCl-mediated deprotection
Hydrogen peroxide, oxidation of pyrazine and quinoxaline via, 546, 547
Hydroxamates, 32
Hydroxamic acids, 108
5-Hydroxy-1H-imidazoles, 353
4-Hydroxy-3-carbalkoxy quinoline derivative, 503
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, synthetic analogues of, 490. See also HMG entries
4-Hydroxy-7-chloroquinoline, Gould–Jacobs synthesis and, 506
Hydroxychloroquine, 526
6-β-Hydroxyeuropein, 134
Hydroxy-hydroxyrimidine intermediates, dehydration of, 574
2-Hydroxyimidazole, tautomerism of, 334
5-Hydroxyindole, 55
Nenitzescu synthesis of, 75–76
7-Hydroxyindole, Bartoli synthesis of, 79
Hydroxylation, of quinolines and isoquinolines, 483
Hydroxyl derivatives, in quinoline/isoquinoline oxidation, 492
3-Hydroxyisoxazole, 243
Hydroxy(1-thiophene-2-yl)acetates, 162
Hydroxymethylamine isosteric dipeptide intermediate, 295
Hydroxymethylation, of N-substituted imidazoles, 338
Index

N-Hydroxyphthalimide (NHPI), 548
2-Hydroxyxypyrindine, 430
Hydroxypyrindines, 249
3-Hydroxyxypyrindines, 455–456
4-Hydroxyquinazoline, 625, 626
4-Hydroxyquinoline carboxylates,
Gould-Jacobs synthesis of, 505
Hydroxyxthioacetamide, 181–182
5-Hydroxytryptamine (5-HT), 55. See also 5-HT inhibitors
Hyperplasia treatment, 124
Hypertension, 25, 157, 186, 338
angiotensin (AT$_1$) receptor antagonists for treating, 355, 357, 391–392
Hypertension treatment, 124, 423, 426. See also High blood pressure treatment
Hyperthermia, malignant, 153
Hyperuricemia, 309
treatment of, 590
Hypochlorite-TEMPO oxidation, 367
Hypotension, 624
Ibafloxacin, Gould-Jacobs synthesis of, 505
Ibotenic acid, 233
Imatinib (Gleevec), 416, 417, 592–595
Imatinib base, preparation of, 593
Imatinib mesylate (Gleevec), 402, 592
Imatinib synthesis, alternative, 594
Imidates, direct coupling of, 362
Imidazo[4,5-b]pyridines, 418
Imidazole(s), 2, 4, 6, 8, 333–335
acidity and basicity of, 201
basicity of, 333
conversion of imidazoles to, 353
metalation of, 341
N-substituted, 333–334
nuclear magnetic resonance spectroscopy of, 334
numbering and pKas of, 333
one-pot synthesis of, 345
relative aromaticity of, 198, 373
resonance structures of, 333
IH-Imidazole
conversion between 4- and 5-substituted products, 334
nuclear magnetic resonance spectroscopy of, 334
properties of, 333
Imidazole carbon atom reactions, 337
Imidazole-containing drugs, possible liabilities of, 353–354
Imidazole-fused rings, in imidazole synthesis, 347–349
Imidazole molecule, biological relevance of, 335
Imidazole phosphonium salt, in imidazole synthesis, 342
Imidazole ring, 335
reactivity of, 335–341
Imidazole ring construction(s), 341–353
imidazole synthesis via miscellaneous, 349–353
Imidazole ring system, 354
using 2-aminopyridines, 349–351
Imidazolidine, 2
Imidazolines, conversion to imidazoles, 353
Imidazolin-2-ylidinium salt, in imidazole synthesis, 350–351
Imidazolyl thiazole derivatives, 314
Imidazothiazole–chalcone derivatives, 296–297
imidoyl chlorides, intermediate, 514
Imine formation, double, 539
Imines in indole synthesis, 65–66
palladium-catalyzed coupling of vinylc, 448
Imitrex, 10, 56–57
synthesis of, 67
Immune-regulatory activities, 174
Immune-regulatory properties, 164
Immunocompromising conditions, 637
Immunomodulators, 324
Immunosuppressants, 340. See also Immunosuppressive agents
Immunosuppressive agents, 301, 323
Indazole(s)
molecular structure of, 198
nuclear magnetic resonance spectroscopy of, 199–200
properties of, 199
Indazole assembly, 223
Indazole-containing drugs, 220–223
Indazole-pyridine analogues, 423
Indazolones, 223
Indazols, 223
Indigo dye, 55, 56
Indigo synthesis, 56
Indinavir, 322–323
Indocarbazole DNA topoisomerase 1 inhibitor, 83
Indole(s), 2, 6, 54–88, 105
3-acylation of, 94
Bartoli synthesis of, 77–80
Batcho-Leimgruber synthesis of, 80–83
Indole(s) (cont.)
 Bischler–Möhlau synthesis of, 73–75
 C3 electrophilic substitution of, 62
 Cadogan–Sundberg synthesis of, 86–88
 2-carboxethoxy substituted, 67
 chemical prevalence of, 55
 cross-coupling reactions for, 91–105
 Fischer synthesis of, 65–68
 Gassman synthesis of, 84–86
 Larock synthesis of, 70–73
 Mannich condensation of, 62
 metalation of, 64–65
 Mori–Ban synthesis of, 68–70
 N1 protected, 64
 Nenitzescu synthesis of, 75–77
 nuclear magnetic resonance spectroscopy of, 54–55
 racemic 4-substituted, 81–82
 silylated, 71
 Indole-2-carboxylic acids, synthesis of, 104
 Indoleacetic methyl ester, 70
 Indole-based insulin mimic, 99
 Indole bond lengths, 54
 Indole-containing KDR kinase inhibitor, synthesis of, 99–100
 Indole-containing pharmaceuticals, 56
 Indole-containing serotonin receptor agonists, 66
 Indole cyclization, 85
 Indole derivatives, 80
 importance of, 56
 Indole nitrogen, C3 indole ring electrophilic substitution products and, 60
 Indole plant alkaloids, 55
 Indole protonation, 58
 Indole reactivities, 58
 Indole ring, 10, 55
 addition of nitrogen atom to, 105
 C2 electrophilic substitution on, 63, 64
 construction of, 65–88
 preparing, 65
 reactivity of, 58–64
 Indole-ring system, 110
 Indole scaffold, core tricyclic, 104
 Indole structure, 55
 Indole synthesis, triptans and, 100
 2-Indolylthione pharmacophore, 424
 3H-Indolium ion, 58
 Indoloquinolone antibacterial synthesis, 85–86
 Indolyl acrylic acid, deprotonation of, 102
 Indolylprodigiosin derivative, 98
 Indolyl-pyrimidine-dione, 93
 Indolyl steroids, 75

Index

 Indoxole, 96–97
 Induction, 409
 Inflammatory disease, 293
 Inhibitory activity, 148
 Insomnia medications, 349
 Insomnia treatment, 204, 388, 390
 Insulin mimic, indole-based, 99
 Integrase (IN), 108
 Interleukin-8 (IL-8) receptors, 306
 Intermediate alcohols, as diastereomeric mixture, 451
 Intermediate imidoyl chlorides, 514
 Intermittent claudication, treatment of, 392
 Intermolecular amidations, copper catalysis in, 361–362
 Intermolecular Heck reactions, 100, 103
 Intermolecular Negishi reaction, 263
 Intermolecular palladium(I)-mediated oxidative couplings, 92
 Intramolecular acylation reaction, 89
 Intramolecular arylation, of amidines and guanidines, 363, 364
 Intramolecular aza-Wittig reaction, 633–634
 in vascinone synthesis, 633–634
 Intramolecular Böger reactions, 439
 Intramolecular cobalt-catalyzed cyclotrimerization, 447–448
 Intramolecular condensation, of o-disubstituted benzenes, 492
 Intramolecular Cu-mediated N-arylations, scope and utility of, 364
 Intramolecular cyclization, 130–131, 133–134, 167
 at the C3 position, 167
 Intramolecular Diels–Alder (DA) reactions, 512–513
 double, 443
 of oximino malonates, 445
 of thiazole, 299
 Intramolecular electrophilic substitution, Schlitter–Müller variation and, 521
 Intramolecular electrophilic substitution reactions, 514
 Intramolecular Heck reactions, 100, 103–105
 Intramolecular heterosaryl Heck reaction, 103, 105
 Intramolecular Kondrat’eva pyridine synthesis, 441
 Intramolecular Kröhnke pyridine synthesis, 436
 Intramolecular N-arylation, of phenyl amidines, 366
 Intramolecular oxidative coupling, 92
Intramolecular oxidative cyclization, 317
Intramolecular oxidative C–H functionalization, palladium-catalyzed, direct, 320–321
Inverse-electron demand Diels–Alder (DA) reaction, 442, 443
Iodides, quinoline, 489, 490
Iodinated furans, 131–132
Iodinated pyrroles, prepared by direct iodination, 31
Iodination, 31
of furans, 131–132
of lithiumated oxazole, 246
Iodine-125, 543
Iodine-catalyzed tandem oxidative cyclization, 240
2-Iodo-4-lithio pyridine derivative, 412
Iodoaniline coupling, Pd-catalyzed, 71
Iodo cyclizations, 179, 182
4-Iodo-imidazole, 336
4-(5)-Iodo-imidazole, 335
3-Iodoindole, 96–97
2-Iodomethane, 269
2-Iodoazole, 250, 251
4-Iodoazole preparation, 251, 252
Iodoazoles, in Suzuki coupling, 259
Iodoquinol, Skroup/Doebner–von Miller synthesis of, 509–510
3-Iodoxyphene, 182
Ion-pair mechanism, in pyridine N-oxide rearrangement, 450
fressa, 15–16, 598, 616
synthesis of, 627, 632
Irinotecan, 474, 560
Iron-catalyzed \([2 + 2 + 2]\) cycloaddition reactions, of diynes, 447
Iron overload reduction, 388
Irreversible electrocyclic rearrangement, 65
Irritable bowel syndrome (IBS), 502
Isolinderalactone intermediate, 140
Isomeric heterocycles, azanaphthalene, 471
Isomeric products, in radio-labeled probe synthesis, 543
Isoniazid, 400, 401
Isonitrile cycloaddition, 352
Isoquinoline(s), 471–533
alkylation of, 484
Chichibabin amination on, 483
cross-coupling reactions involving, 488–492
electrophilic substitution at carbon atom of, 480–483
heterocyclic vs. nonheterocyclic sides in, 477
hydroxylation of, 483
metalation of, 487–488
nuclear magnetic resonance spectroscopy of, 475–477
nucleophilic substitution in, 483–486
oxidation of, 492
physical properties of, 477
properties, molecular structure, and applications of, 471–474
protonation of, 477–478
quinoline core construction for, 492–513
reactions with electrophiles, 482
reactions with peracids, 479
reduction of, 491–492
Sonogashira coupling involving, 490–491
Stille coupling involving, 491
Isoquinoline core(s)
biologically potent compounds with, 515
in Gabriel–Colman rearrangement, 523
in Pictet–Gams isoquinoline synthesis, 519
Isoquinoline core construction, 513–526
modern methods for, 510–513
Isoquinoline derivatives, Pictet–Gams isoquinoline synthesis and, 520–521
Isoquinoline frameworks, synthesis of, 520
Isoquinoline heterocycles, formation of 1-alkylated, 485
Isoquinoline-N-oxides, amphiphilic character of, 486–487
Isoquinoline preparation, 525
Isoquinoline ring, 525
reactivity of, 474–492
Isoquinolinium salts, 478, 484–485, 486
Isothiazole, 2
acidity and basicity of, 201
Isothiazoledine, 2
Isoxazole(s), 2, 231
acidity and basicity of, 201
C3 proton of, 233
electrophilic substitution in electron-rich, 245
in Sonogashira coupling reactions, 265
in synthetic medicinal compounds, 233
Isoxazole preparation, 243
Isoxazole reactions, 269–270
Isoxazole reactivity, 244
Isoxazole ring, construction of, 243
Isoxazole ring cleavage, 270
Isoxazolidine, 2
Iterative cross-coupling strategy, 623–624
Jackson variation, of Pomerantz–Fritsch reaction, 522
Jacobson cyclization, 318–320
Janus kinase 2 (JAK2) inhibitors, 324
Japp–Klingemann hydrazone synthesis, of indole, 66–67
Japp–Klingemann reaction decarboxylation strategy, for sumatriptan synthesis, 67
Japp oxazole synthesis, 237–238
Jeffrey conditions, 69, 70
Juliprosine synthesis, 431–432
K562 cancer cell line, 178
Kapidoz/Dexilant, 355, 356
Kappe dehydrogenation, 580
KDR kinase inhibitor, synthesis of indole-containing, 99–100
Ketoconazole CYP inhibition, 353–354
Keto-enols, 210–211
Ketone–amino ketone condensation, 37
Ketone condensation, 36
Ketones
propargyl, 144
in pyrimidine formation, 580
Keto-pyroles, tri-substituted, 38
Ketorolac (Acular, Toradol), 21, 22, 30–31
Ketoximes, unsaturated, 449
Kinase domain receptor (KDR) inhibitors, 87, 88
Kinetic acidity, of ortho-hydrogen atoms, 410
Knoevenagel condensation of aldose sugars, 149
to produce acrylonitrile intermediate, 175
in rosuvastatin synthesis, 600–601
Knorr condensation, 35, 36
Knorr pyrazole synthesis, 206–210
variations of, 210–214
Knorr pyrrole synthesis, 34–37
conventional, 36–37
modified, 37
Knorr reaction, involving quinolines/isoquinolines, 496–499
Konbu'acidin A, 20
Konrat'eva pyridine synthesis, 437, 439–441
intramolecular, 441
Krapcho condition, in trimethoprim synthesis, 591
Kröhne pyridine synthesis, 425, 435–437
under microwave irradiation, 436
Kuanonamine A, 318
Kuanonamine A analogue, 318
Kumada coupling, 554–555
in pyridines, 414
Kyrtin, synthesis of, 221–222
L1210 cancer cell line, 178
L-167307 p38 kinase inhibitor, 38
Lanosterol 14α-demethylase (L14DM)
inhibitor, 304
Lansoprazole (Prevacid), 355, 356
Lapatanib (Tykerb, Tyverb), 16, 123–124, 616, 617
Larock conditions, 69
Larock indole synthesis, 70–73, 99
Larock reaction, in azaindole synthesis, 106
Lasix, 124, 186
Lavendamycin, 438, 439, 491
Lawesson's reagent, 314, 315, 619
LDL (low density lipoprotein) cholesterol treatment, 600
Leaving groups, nucleophilic displacement of, 484
Leishmania, 136
Leptinotarsa, 134
Lescol, 10, 56
synthesis of, 73
Lespedeza A1, synthesis of, 151
Letrozole, 380
Leucascandrolide A, 233
synthesis of, 265
Leukemia, 402
Leukemia cells, inhibitory activity against, 630
Leukemia K562 cells, 285
Leukotriene antagonists, 111
Leukotriene receptor antagonists, 452
Leukotrienes, 62
Levofoxacine, 473
Lewis acid-catalyzed cyclizations, 148–149, 152
Lewis acid-mediated deprotection, in bosestan synthesis, 597–598
Lewis acids (LAs), 405
in pyridine synthesis, 433
Li, Jie Jack, 1, 18, 54, 198
Liebeskind variation, 420, 424
Life, code of, 7
"Ligand-free" conditions, 561–562
Linderalactone intermediate, 140
Liphagal, 133–134
Lipid-lowering agents, 600
Lipitor, 9, 10, 21
manufacture of, 39–40
safety of, 47–48
Lipophilicity, increasing, 173
Lithiated oxazoles, 279
regioselective iodination of, 246
Lithiation
C-metalated pyridine synthesis via directed, 409–411, 412
of oxazoles, 245
of pyrazoles, 205–206
of thiophenes, 160–161
2-Lithio-4-methylthiazole, 292
2-Lithiooxazole, 250
Lithio-picoline species, in bromine–magnesium exchange, 411
Lithium 2,2,6,6-tetramethylpiperidine
(LITMP), 160–161
Lithium diisopropylamide (LDA), 292, 294
Lithium pyridine derivatives, 413
LiTMP lithiation, 160–161
Livalo, 15
Liver toxicity, 392–393
Loiseleur’s method, in imatinib synthesis, 593
Lone pair electrons, 4, 13, 14, 18, 58, 398, 477, 478, 456
Losartan, 338, 339–340
Lotronex, 93
Lou, Sha, 569
Luciferin, 285, 286
Lundbeck synthesis, 95–96
Lunesta, 15, 16
Lung cancer, 572
Lung cancer treatment, 598
Lutetium A synthesis, base-catalyzed condensation in, 633
Lupus erythematosus, treatment of, 526
LY16758 (raloxifene), 181
biological evaluation and synthesis of, 183
LY2059346 synthesis, 44
LY231514 (Aliinta), 42
LY311727, Nenitzescu synthesis of, 76
LY317615 protein kinase C (PKC) inhibitor, 82, 83
Lyme’s disease, 154
M4 muscarinic antagonists, 76–77
Mafloquine, 401, 402
α-Magnesium oxime ethers, 578
Magnesium carbenoid, 578. See also Furymagnesium compounds
Magnesium–halogen exchange, involving furans, 128
Magnesium–halogen exchange reaction, involving furans, 132
Malaria, chemotherapy of, 471–472. See also Anti-malarial entries
Malignant hyperthermia, 153
Malonate derivative, in bosantan synthesis, 596
Mannich bases, 25
as potential anti-malarial agents, 28
as potential antipsychotic agents, 26, 27
Mannich condensation, of indole, 62
Mannich reaction
of N-substituted imidazoles, 338–341
with pyrrole, 24–28
of quinoline/isooquinoline, 481, 482
Mannich-type alkylation, in fused-imidazole ring synthesis, 349
“Masked protective group,” 72
Matsugi method, Skroup/Doebner–von Miller reaction and, 509
Mauve dye, 56
Maxair, 401, 402
Maxalt, 57
synthesis of, 71–72
MDL-899, 46
MDL 103371 glycine receptor antagonist, 97–98
MeCN. See Acetonitrile (MeCN)
Medicinal chemistry
Bartoli indole synthesis in, 78
biososteres in, 323–325
Cadogan–Sundberg indole synthesis in, 87
Fischer indole synthesis in, 66
palladium-catalyzed cross-couplings in thiazole, 300
standard reactions in synthetic, 300
Stille coupling reaction and, 306
thiophenes in, 125–126
Medicinal compounds, oxazoles in, 233
Medicines, imidazole in, 335
Meerwein arylation, 153
Mefloquine, 471, 472
preparation of, 498
Melatonin, 6–7, 55
Meldrum acid method, 243
Meloxicam, 322
2-Mercurio benzimidazole, 363
Mesothelioma treatment, 572
Mesylation, of secondary amine functionality, 602–603
Metabolic oxidation products, 46
Metabolic pathway inhibition, quinolone drugs and, 527
“Metabolic purpose,” 321
Metalated benzoxazoles, 244
Metalated compounds, 293
Metalated oxazoles, in Negishi coupling, 261
Metalation
of diazine ring, 551–553
of indoles, 64–65
of N-substituted imidazoles, 341
Index

Metalation (cont.),
of oxazoles, 245–249
of pyrazoles, 205–206
of pyrroles, 34
of quinolines and isoquinolines, 487–488
of quinoxaline ring, 552–553
Metal-catalyzed C–C/C–N cross-coupling reactions, in pyridine-containing drug synthesis, 413–416
Metal-catalyzed cross-coupling reactions, 413, 488–492
for indoles, 91–105
Metal-catalyzed cyclization
in isoquinoline ring construction, 524–525
in quinoline ring construction, 511–512
Metal-halogen exchange, 487–488. See also Halogenation
C-metalated pyridine synthesis via, 411–413
involving furans, 128, 132
in thiophenes, 161
Metal-mediated annulation processes, 525
Metal-mediated cyclization
in isoquinoline ring construction, 524–525
in quinoline ring construction, 511–512
Metal-mediated substitution reactions, of quinazolines and quinazolinones, 623–624
Metastatic breast cancer, 380
meta-substituted anilines, 507
(+)-3β-Methacryloyloxyfuranoeremophilane synthesis, 148
Methanesulfonamide derivative, in rosuvastatin synthesis, 600–601
Methanesulfonic acid deprotection, in bosentan synthesis, 597–598
Meth–Cohn quinoline synthesis, 506–507
Methotrexate (MTX), 572–573
Methoxsalen (Oxxoralen), 125, 156–157
6-Methoxy-2-(4-bromophenyl)benzothiophene, bromination of, 164
Methoxyamino-ketones, 212–213
4-Methoxybenzothiazol-2-ylamine, 316
ortho-Methoxythiobenzamides, 319
3-Methyl-1H-pyrazole, 201–202
5-Methyl-1H-pyrazole, 201–202
Methyl 3,4-dihydroxybenzoate, O-alkylation of, 599
5-Methyl-3-oxazol, 243
Methyl 5-formylpyrrole-2-carboxylate, 29
Methyl alcohol, 452
Methyl amine, in raltitrexed synthesis, 640
Methylation, of thiophenes, 160
Methyl carbamimidothioate, 576–577
N-Methyl-D-aspartate (NMDA)-type glycine receptor antagonist, 97, 104
Methyl diazonium, 347
Methylene groups, in Friedlander synthesis, 501
3-Methyl group, oxidation of, 111
3-Methylindole liabilities of drugs containing, 110–111
P450-mediated bioactivation of, 110
3-Methylindole core, 74
2-Methylisoquinoline derivative, 453
Methyl-protected bipyrrole, 24
Methylypyrrole, 26
Methyl pyrrole-2-carboxylate, 29, 32
Methylsulfonyl steroid derivatives, 174
3-Methylthiophene, lithiation of, 160–161
Metronidazole, 335
Metzger/Planck mechanistic proposal, 319
Micardis, 355, 357
synthesis of, 360
Michael acceptors, 43
C3 indole ring electrophilic substitution products using, 60
ynones as, 510
Michael addition, 130, 203
in Kröhnke pyridine synthesis, 435
to indole ring, 59, 60
in pyridine synthesis, 432–433
Michael adducts, 587–588
Micrococcin, 285, 286
Micrococcin P1, 286, 287, 429
Microtubule targeting agents, 302
Microwave, in imidazole synthesis, 349–351
Microwave irradiation, Kröhnke pyridine synthesis under, 436
Microwave synthesizer, 588
Migraines, treatment of, 56–57, 66, 68, 69, 70.
See also Anti-migraine entries
Mild reaction conditions, for benzimidazole synthesis, 360
Minpress, 124, 616
Mintezol, 365
Mirapex, 288
Mirtsetron, Gould–Jacobs synthesis of, 505
Mitomycin C, 9
Mitsunobu reaction, 242–243, 452
Mixed Lewis acid approach, 150
Miyaura reaction, 489. See also Suzuki–Miyaura reactions
Modified Bischler–Möhlau method, 75
Modified Fiesselman benzothiophene synthesis, 180
Modified Fieselman thiophene synthesis, 173, 178
Modified Gewald benzo thiophene synthesis, 180
Modified Knorr pyrrole synthesis, 36, 37
Molecular reactivity, 546–553
Molindone, butyrophenone analogues of, 35
Monoaddition, 346–347
Monobromination of furans, 127
of thiophene, 159–160
Mono-substituted benzene rings, cyclization of, 492
Mono-substituted furans, 141
Monotrim, 591
Montforts pyrrole synthesis, 43
Montmorillonite K-10 clay supported cupric nitrate, 428
Mopidolazine (MDL-899), 46
Mori–Ban indole synthesis, 68–70, 102
of sumatriptan analogues, 69–70
Mori–Ban reaction, 103
Mullins, Richard J., 231
Multicomponent coupling reaction (MCR), 345
Multi-component domino reaction, in quinoline ring construction, 511
Multi-component reaction (MCR), imidazole preparation via, 351–352
Multi-drug resistance modulator, 219
Multifunctionalized pyrimidines, 580
Multiple sclerosis, 324
Münchnones, 352
Murine leukemia cell lines, 45
Muscarinic antagonists, 76–77
Muscle relaxants, 153, 235, 388, 616
Muscle-relaxing properties of papaverine, 517
Mycalazol 11, 45
Mycobacterium tuberculosis, 429
Mycobacterium tuberculosis growth inhibitors, 220
 rational design of, 215
Myzus, 134
N-1 alkylated triazole, 377, 378, 379
N1 protected indoles, 64
N-2 alkylated triazole, 377, 378
N-2 substituted triazoles, 376
N-4 alkylated triazole, 378
NADH enzyme, model systems of, 426
NAD+/NADH co-enzyme analogue synthesis, 407
Nakadomarins, 130–131
(+)-Nakadomarin A, tetracyclic ring system of, 148
Nakainamide A, 400
Nalidixic acid, 473
N-alkylated benzothiazolium salts, 297. See also Nitrogen alkylation (N-alkylation)
N-alkylated thiazolium salts, 296, 297
N-alkyl benzimidazoles, 361–362
Naphthanicquinazolinones, 629
2-(2-Naphthyl)quinolines, in Pfitzinger synthesis, 502
Napieralski, Bernard, 513
Naramig, 10
synthesis of, 100–101
Naratriptan (Amerge, Naramig), 10, 57
synthesis of, 100–101
N-aryl amides, 581, 582–583
N-arylation, 363
transition metal-mediated, 361
N-arylation chemistry, in 2-aminobenzimidazole construction, 362–363
Nasea, 57–58
Natural antibiotics, 285
Naturally occurring anti-bacterials, synthetic analogues of, 585
Natural products
diazine, 538–539
pyrazines in biologically active, 538–539
pyridine system in, 400
pyrimidine structure in, 570–573
thiazole ring of cyclopentide, 294
N-benzyl bisaryl hydrazone conversion, 367
N–C fragment condensations, 608
N-chlorosuccinimide (NCS), 618–619
N-difluoromethylation, of 2-phenyl-1,2,4-triazole, 378–379
Nebert-type cyclizations, 578
Nefazodone, synthesis of, 589
Negishi coupling, 93–96, 249, 559
involving quinolines and isoquinolines, 488–489
in oxazole chemistry, 261–262
in pyridines, 415
with 2-pyridylzinc bromide, 263–264
scope of, 262–264
thiazoles and benzothiazoles in, 302–304
Negishi coupling reaction, 418
Negishi cross-coupling reaction, 136, 137
Negishi cross-coupling, 416
modification of, 512
Nelfinavir, 322
Nelotanserin, 204
Index

Nenitescu indole synthesis, 75–77
Neclinderalactone intermediate, 140
Neproultrytoxicity, of quinolones, 526
Nequinate, Gould–Jacobs synthesis of, 505
Nervous system disorders, treatment of, 78. See also Central nervous system (CNS)
Neural nicotinic acetylcholine receptor (nAChR) agonists, 400–401
Neurodegenerative disorders, 104
Neuroimaging techniques, Alzheimer’s disease and, 543
Neurokinin antagonists, nonpeptidic, 502–503
 Neurokinins, 502
Neurological disorders, 44
Neuromuscular blocking agents, 479–480
Neuropathic pain, treatment of, 36
Neuropsychiatric diseases, treatment for, 29
Neurotensin, 29–30
nonpeptidic analogues of, 29–30
Neurotoxicity properties, 147
Neurotoxins, 88
Neurotransmitters, heterocycles as, 6–7
Nexium, 13, 355, 403
 synthesis of, 357
NHC catalysis, 298. See also N-heterocyclic carbene (NHC)
NH chemical shift, for indole, 54
N-heterocyclic carbene (NHC), 297. See also NHC catalysis
N-hydrogen, of pyrazole, 201
N-hydroxyphthalimide (NHPi), 548
Nickel-catalyzed cross-coupling reaction, to form biologically active molecules, 554–555
Nicotine, 400, 401
Nicotinic acetylcholine receptor (nAChR) antagonists, 422–423
Nicotinic acid amide, 8
Nieman–Pick C1-like 1 (NPC1L1) protein inhibitor, 9
Niemietowski reaction, 501
in nonatexed synthesis, 640
Niemietowski synthesis, 625, 626–631
 variations on, 629
Niferidipine, 426, 427
Nifemuzone, 218
Nifitran, 123, 124
Nifurquinazol (nifurquinazol), synthesis of, 635–636, 638–639
N-imination, of boronic acids, 449
Nifurfurantoin (Nifran), 123
Nitrating
C3 indole ring electrophilic substitution
 products using, 59
of furan rings, 127–128
of N-substituted imidazoles, 337, 338
of pyrazole, 204
of quinoline/isoquinoline, 481
 selectivity of, 338
of thiazole, 291
Nitrile-ijunes
cobalt-catalyzed [2 + 2 + 2]-cycloaddition reactions of, 447
reaction of, 446
Nitrile-diynes substrates, 447–448
Nitrile imides, 383
Nitriles
 aromatic, 163
 in photo-catalyzed [2 + 2 + 2]-cycloaddition reactions, 446
 in pyrimidine synthesis, 578–579
Nitrile surrogates, 583–584
Nitrile ylide, 270–271
Nitrilium species, resonance-stabilized, 578–579
Nitroalkene reaction, 43
ortho-Nitrobenzaldehydes, 501
Nitrofururan-based antibiotics, 638
Nitrofurans, antibacterial, 639
Nitrofurantoin (Nifran), 124
Nitrofurazone (Furin), 123, 124, 127–128
5-Nitrofururalacetate, 127–128
5-Nitrofururalacetate, 578–579
Nitroalkene reaction, 43
ortho-Nitrobenzaldehydes, 501
Nitrofururan-based antibiotics, 638
Nitrofurans, antibacterial, 639
Nitrofurantoin (Nifran), 124
Nitrofurazone (Furin), 123, 124, 127–128
5-Nitrofururalacetate, 127–128
Nitrogen
electrophilic attack at pyridine ring, 404–409
heterocyclic, 476
oxidation of pyrazine and quinoxaline, 546–547
Nitrogen alkylation (N-alkylation). See also N-alkylated entries
in imidazole, 335–337
of thiazoles, 298
of triazoles, 375, 377–378, 378–382
Nitrogen atom(s)
electrophilic addition to quinoline and isoquinoline, 478–480
in pyrazine and quinoxaline rings, 536, 546–548
in pyridine ring, 398
in quinoline and isoquinoline rings, 474–475
Nitrogen heterocycles
electron-deficient, 556
via modified Negishi cross-coupling, 512
Nitrogen reactivity, in pyrazines and quinoxalines, 546–548
4-Nitro imidazole, 336
Index

4-Nitro-N-methoxymethyl imidazole, 336
4-Nitro- pyrazole, 204
Nitro-quinolinium salt, 485-486
6-Nitroquinoline, 551
Nitro reduction, in sildenafil synthesis, 605, 606
Nitroso intermediate, in Bartoli indole synthesis, 78
Nitrosylation, 220
α-Nitrostilbenes, deoxygenation of, 86-87
α-Nitrostyrenes, deoxygenation of, 86-87
α-Nitrotoluene derivatives, condensation of, 80
NMDA antagonists, Meth-Cohn synthesis and, 507
N-methyl-D-aspartate (NMDA)-type glycine receptor antagonist, 97
Nolatrexate, 616
Nolatrexed, 616, 617
synthesis of, 639-640
Non-aminide factor Xa inhibitors, 213
Non-competitive APA antagonists, 214
Non-nucleoside reverse transcriptase inhibitors, 383
Nonpeptide angiotensin II antagonists, 212
Nonpeptide angiotensin II receptor antagonist, 25
Nonpeptide glycoprotein GPIIb/GPIIIa antagonists, Heck reaction and, 268
Nonpeptidic neurokinin antagonists, 502-503
Nonprostanoid prostacyclin (PG12) mimetics, 202-203
Nonsteroidal anti-inflammatory drugs (NSAIDs), 21, 22, 38, 220-221, 234, 235, 322, 616. See also NSAID antibacterials
Norepinephrine, 12
Norfloxacin(e), 472, 473, 526
Norvir, 287-288, 289, 322-323
Novel quinoxaline derivatives, synthesis of, 542-543
N-oxidation, of thiazoles, 298-299
N-oxides, 453, 559. See also Isoquinoline-N-oxides; Quinoline-N-oxides
azaindoles and, 109
for nucleophilic attacks, 487
pyridine, 454, 456
quinoline and isoquinoline, 479
in quinoline/isoquinoline oxidation, 492
rearrangement of pyridine, 450-452
N-phenyl-2-benzothiazolamine, 317
N-protected 2-thiopyrroles, 31
N-protonated isoquinolines, 478
NSAID antibacterials, 484. See also Nonsteroidal anti-inflammatory drugs (NSAIDs)
N-substituted imidazoles, 333-334, 344
hydroxy methylolation of, 338
in Mannich reactions, 338-341
metalation of, 341
nitrations and halogenations of, 337
Nuclear magnetic resonance (NMR) spectroscopy
of benzimidazole, 354-355
of benzofuran, 121
of benzothiazole, 284
of benzothiophene, 122
of benzoxazole(s), 231, 232
of furan, 120-121
of imidazole, 334
of indazole, 199-200
of indole, 54-55
of oxazole, 231, 232
of pyrazine and quinoxaline, 536-537
of pyrazole, 199
of pyridine, 399-400
of pyrimidine, 569
of pyrrole, 19-20
of quinazoline, 615-616
of quinoline and isoquinoline, 475-477
of thiazole, 283-284
of thiophene, 122
of triazoles and tetrazoles, 374-375
Nuclear Overhauser effect (nOe), 55, 200
Nucleic acids. 7. See also DNA entries; RNA entries
purines and pyrimidines in, 570-571, 572
Nucleophile preparation, quinolinyl, 489
Nucleophiles
organometallic, 487-488
PyBroP-mediated coupling with, 580-581
pyridine reactivity with, 404
Nucleophilic addition, 363
in imidazole synthesis, 347-348
to N-substituted imidazoles, 338
in Zincke reaction, 406
Nucleophilic addition reactions, diazine metalation and, 552
Nucleophilic amides, attack of, 576-577
Nucleophilic aromatic reaction, 549
Nucleophilic aromatic substitution, quinoxaline and, 550
Nucleophilic atoms, in alkyne/alkene cyclization, 523, 524
Nucleophilic attacks, 173, 483, 484
N-oxides for, 487
Nucleophilic carbamoyl radical, pyrazine and quinazoline reactions with, 548
Nucleophilic catalysts, 297
Nucleophilic cyclization, 524
Nucleophilic displacement, of leaving groups, 484
Nucleophilic substitution
in oxazoles, 245–249
in quinolines and isoquinolines, 483–486
Nucleophilic zinc halides, of thiazoles and benzothiazoles, 302
N-unsaturated imidazoles, nitration of, 338
N-vinyl amides, 581, 582–583
O-alkylation, of methyl 3,4-
dihydroxybenzoate, 599
Obatoclax, synthesis of, 98
Obesity treatment, 200–201
o-disubstituted benzenes, intramolecular condensation of, 492. See also ortho-
entries
Ofloxacin(e), 473
Olanzapine (Zyprexa), 12, 125–126
Olmesartan, 346–347
Olmesartan medoxomil, 340
Omeprazole (Prilosec), 13, 14, 402–403
Onaka application, 237
Ondansetron (Zofran), 93
1,2,4,5-tetrasubstituted imidazoles, 343
1,3,5-trisubstituted imidazole, 351
1,3-dipolar addition, 386
1,3-dipolar cycloaddition, 214, 215, 217, 384
of acetylenic dipolarophiles, 299–300
1,4-substituted isoquinolines, synthesis of, 524
1,5-disubstituted triazoles, 384
One-pot synthesis
of 2-arylpyrindines, 427
of deferasirox, 388
of dihydroxypridines, 428
of imidazoles, 345
of substituted pyridines, 449–450
of substituted thiazoles, 320s
of tiabendazole, 365
1-substituted isoquinolines, via
Schlitter–Muller variation, 521
Opioid receptors, binding of, 173
Opioids, via Pictet–Spengler reaction, 517
Orbitals, quinoline, 477. See also Electrons; π-electrons
Organic compounds, solubility of, 588
Organoboron reagents, 96
Organohalides, Pd-catalyzed coupling reaction of, 100
Organolithiates, 292
Organolithium-mediated diversification, of peptide thiazoles, 294
Organometallic compounds, 556
Organometallic nucleophiles, 487–488
Organometallic reagents
aromatic and heterocyclic, 552
C–C–N cross-coupling reactions with, 409–425
heteroaromatic, 556
Organometallics, pyridine synthesis advances with, 448–450
Organozinc reagents, 93
Oropharyngeal candidiasis, 380
ortho-acylaniline derivatives, in Friedlander synthesis, 499, 500
Orthoester condensation, in benzimidazole synthesis, 360
Ortho ester–iminoester–amidine equilibriums, 586
ortho-metallation, 487–488
ortho-methoxythiobenzamides, 319
ortho-nitrobenzaldehydes, 501
Osteoporosis, 183
prevention of, 73, 125
Osteoporosis treatment, 103
Otitis, 154
Ovarian cancer cells, 550
Over-halogenation, of N-substituted imidazoles, 340–341
Oxabicyclococtane system, 440–441
1,3,4-Oxadiazole synthesis, 383
Oxamyl chloride
C3 electrophilic substitution of, 61
C3 indole ring electrophilic substitution products using, 59
Oxaprazin, 235
Oxazinones, as dienes in [4 + 2]-cycloaddition reactions, 441–442
Oxazol-2-ylzinc chloride, 261
Oxazoles, 2, 231–241, 439–440
as azadienes, 439–441
C2-metalated, 244
C2 proton of, 232
C2-silylated, 247–248
C2-substituted, 246
C4-substituted, 246
C5-substituted, 248
cross-coupling reactions of, 250–269
cycloaddition of, 439–440
Diels–Alder reaction of, 249
4,5-disubstituted, 238
in the heterocycaryl Heck reaction, 268
metalation and nucleophilic substitution in, 245–249
molecular structure of, 231
nuclear magnetic resonance spectroscopy of, 231, 232
palladium-catalyzed cross-coupling reactions of, 250
properties of, 231, 232–233
reactivity of, 232–233, 244–250
regioselective iodination of lithiated, 246
Sonogashira coupling of, 264–267
Stille coupling reaction in, 253–257
substituted, 240
Suzuki coupling of, 257–261
in synthetic medicinal compounds, 233
Oxazole-containing drugs, possible liabilities of, 270–271
Oxazole metalation, 245–249
chemoselectivity in, 247
Oxazole nucleus preparation, 241
Oxazolepiperidine scaffold, 268
Oxazole production, 248–249
Oxazole rings
construction of, 235–241
fully substituted, 269
Stille coupling reaction of, 255
Oxazole syntheses, additional, 240–241
Oxazolidine, 2
Oxazoline intermediate, in Pictet–Gams isoquinoline synthesis, 519–520
Oxazolinone, 585
5-Oxazolone, 243
Oxazolyboronic acid preparation, 257
Oxazolyl ketone, fully substituted, 241
Oxazolylzinc chloride preparation, 261–262
2-Oxazolylzinc chloride, 262
Oxetane, 1
2H-Oxete, 1
Oxidation
dihydrosildenafil, 606, 607
hypochlorite-TEMPO, 367
of 3-methyl group, 111
of pyrazine and quinoxaline nitrogen atoms, 546–547
of quinolines and isoquinoines, 492
N-Oxidation, of thiiazoles, 298–299
Oxidation reagents, 428
Oxidative C–H functionalization, palladium-catalyzed, direct intramolecular, 320–321
Oxidative cleavage, of pyrrole ring, 46
Oxidative coupling(s)
intermolecular, 92
intra- and palladium-catalyzed, 92–93, 488
Oxidative coupling/cyclization, of pyrroles, 30–31
Oxidative coupling/cyclization reaction, 92
Oxidative cyclization(s), 92, 488
of aryl thioimide, 318
imidazole synthesis via, 353
intramolecular, 317
iodine-catalyzed tandem, 240
Oxidative-Heck reaction, 168
Oxidative metabolism, 46–47, 321, 322
Oxidative pathway delay, 322
Oxidized nitrogen, 559–560
Oxidizing agents, pyrazine and quinoxaline and, 546
Oxime moiety, in situ reduction of, 34–35
Oximino derivatives, cycloaddition of, 444
Oximino malonates, intramolecular
Diels–Alder reactions of, 445
Oxindole-containing drug synthesis, 88–91
Oxindoles, 54
Oxirane, 1
Oxo acid chloride, 61
Oxolinic acid, 472, 473
synthesis of, 478, 504
Oxosorafen, 125
Oxygenation, region-selective, 547
Oxygen-derived free radical scavengers, 221
Oxyphenbutazone, 219
Oxytripyridinophosphonium intermediates, 581

P2Y12 receptor, 187
P13Kα inhibitor, 133–134
P38 kinase inhibitors, 142, 172
p38 MAP kinase inhibitor, 74, 214
P388 murine leukemia cell line, 45
P-9236 synthesis, 179–180
Paul–Knorr conditions, 138
Paul–Knorr cyclization, 38–39
Paul–Knorr furan synthesis, 140–143
Paul–Knorr pyrrole synthesis, 37–40
Paul–Knorr synthesis, 137
Pain, drug discovery for, 107
Palladation, electrophilic, 320–321
Palladium(II) catalyzed cyclocarbonylation reaction, 4(3H)-quinazolinone derivative synthesis via, 635
Palladium(II)-mediated oxidative couplings, intermolecular, 92
Palladium-assisted cyclization, in rutaecarpine synthesis, 624
Palladium catalyst, 94
Palladium-catalyzed arylation, 376
Palladium-catalyzed cyclization, 361
Palladium-catalyzed cyclization-coupling reaction, 146–147
Palladium-catalyzed cross-coupling, 421
of amines, 171
Palladium-catalyzed cross-coupling reactions, 254–257, 409
of oxazoles, 250
Palladium-catalyzed coupling, of vinyleic imines, 448
Palladium-catalyzed coupling reactions comparing, 559
of organohalides, 100
Palladium-catalyzed C–C bond-forming reactions, 96
Palladium-catalyzed direct intramolecular oxidative C–H functionalization, 320–321
Palladium-catalyzed hydrogenation reaction, in sildenafil synthesis, 605
Palladium-catalyzed oxidative coupling, 92–93, 488
Palladium-catalyzed processes, 71, 72. See also Pd-catalyzed entries
Palladium-catalyzed reactions, 257
applications in drug discovery, 416–425
of pyrazines and quinoxalines, 556–562
Palladium-catalyzed Suzuki cross-coupling reaction, of a bromothiophene, 169
Palladium chemistry. See also Direct Pd-activation; Pd entries
of pyrroles, 44–46
of thiazoles and benzothiazoles, 300–307
Palladium intermediates, carbonyl-inserted, 421
Panagonists, 308
Pancreatic cancer treatment, 598
Panic disorders, 387
Pantoprazole (Protonix), 355, 356
Papaverine, via Pictet–Spengler reaction, 517
Parasites, treating malarial, 471–472. See also Anti-parasitic entries
Parasiticide, 365
Parasitic infections
potential treatment for, 27
Parasitic worm eradication, 355, 356. See also Anthelmintic entries
Parkinson’s disease, 401
treatment of, 90
Parkinson’s research, 77
(+)–Paspalicnine synthesis, 85
(+)–Paspalinine synthesis, 85
Pauling’s electronegativity, 18
Pd(OAc) 2 catalyst, 488. See also Palladium entries
Pd(PPh 3)/MnO 2 co-catalytic system, 320–321
Pd-catalyzed haloamine reaction, 70–71
Pd-catalyzed iodoamine coupling, 71
PDE3 inhibitor, for heart failure, 355, 356. See also Phosphodiesterase entries
Pd-promoted cyclization, imidazole preparation via, 351–352
Pechmann pyrazole synthesis, 214–217
Pellizzari reaction, 387
Pemetrexed (Alimta), 572, 573
Penta-substituted pyridine synthesis, 438
Penta-substituted pyrroles, 39, 40, 48
Pepcid, 12, 13
Pepcidine, 288
Peptidase-4 (DPP-4) inhibitors, 389
Peptides
thiazolyl, 286
21-amino-acid, 595
Peptide thiazoles, organolithium-mediated diversification of, 294
Peracids, reactions with quinoline and isoquinoline, 479
Percoxis (Dynastat), 234
Perflucarin, Gould–Jacobs synthesis of, 505
Perfluoroalkylation, in thiophene chemistry, 164
Pericyclic reactions, of oxazoles, 249–240
Peripheral artery disease (PAD), 79
Peripheral vascular disease, 392
Perkin, William, 56
Perkins reaction, 151
Peroxisome proliferator-activated receptor-γ (PPARγ) agonists, 359. See also PPARγ modulator
Peroxisome proliferator-activated receptor-γ (PPARγ) inhibitors, 86
Peroxisome proliferator-activated receptors (PPARs), 308
Petrovko-Kritschenko pyridine synthesis, 425
Pfitzinger synthesis, of quinoline framework, 499, 501–503
Pfizer anti-HIV program, 108
P-glycoprotein, 392
Pharmaceutical agents. See also Drug entries benzimidazole core in, 355
benzothiazole heterocycle in, 289
Pharmaceuticals (pharmaceutics)
adenine in, 571
furan- and benzofuran-based, 153–158
<table>
<thead>
<tr>
<th>Index</th>
<th>683</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyrimidine structure in, 570–573</td>
<td></td>
</tr>
<tr>
<td>ring systems in, 125</td>
<td></td>
</tr>
<tr>
<td>Pharmacophore isoquinoline core, via</td>
<td></td>
</tr>
<tr>
<td>Pictet–Spengler reaction, 517</td>
<td></td>
</tr>
<tr>
<td>Phase-transfer catalyst, for</td>
<td></td>
</tr>
<tr>
<td>Ciancianic–Dennstedt reaction, 455</td>
<td></td>
</tr>
<tr>
<td>β-Phenethylamine, 517. See also Dopamine entries</td>
<td></td>
</tr>
<tr>
<td>3-Phenyl-1,2,4-triazole</td>
<td></td>
</tr>
<tr>
<td>N-difluoromethylation of, 378–379</td>
<td></td>
</tr>
<tr>
<td>N-Phenyl-2-benzothiazolamine, 317</td>
<td></td>
</tr>
<tr>
<td>Phenyl amidines, intramolecular N-arylation of, 366</td>
<td></td>
</tr>
<tr>
<td>Phenylamino-pyrimidine-type protein kinase C (PKC) inhibitor, 416–417</td>
<td></td>
</tr>
<tr>
<td>2-Phenylobenzimidazole, 383</td>
<td></td>
</tr>
<tr>
<td>1-Phenylbenzimidazoles, 361</td>
<td></td>
</tr>
<tr>
<td>2-Phenylobenzothiazole, 318</td>
<td></td>
</tr>
<tr>
<td>Phenylbutazine, 219</td>
<td></td>
</tr>
<tr>
<td>Phenylcarbazoles, 105</td>
<td></td>
</tr>
<tr>
<td>4-Phenyl derivative, of 2,4-dichloroquinazoline, 621</td>
<td></td>
</tr>
<tr>
<td>Phenyl ether, 452</td>
<td></td>
</tr>
<tr>
<td>Phenylethyl amines, in Pictet–Spengler reaction, 516–519</td>
<td></td>
</tr>
<tr>
<td>Phenyhydrzone, 65</td>
<td></td>
</tr>
<tr>
<td>Phenyhydrzone, 65</td>
<td></td>
</tr>
<tr>
<td>Phenyl-iodolyl ether, 78</td>
<td></td>
</tr>
<tr>
<td>S-Phenyl-N-ethylimidazole, 336</td>
<td></td>
</tr>
<tr>
<td>2-Phenylsulfonyl substituted oxazole, 252</td>
<td></td>
</tr>
<tr>
<td>Phillips reaction, 357, 361</td>
<td></td>
</tr>
<tr>
<td>Phoxazolone A, 255, 256</td>
<td></td>
</tr>
<tr>
<td>Phosphazenes, 152</td>
<td></td>
</tr>
<tr>
<td>Phosphodiesterase IV (PDE IV) inhibitor, synthesis of, 420–421. See also PDE3 inhibitor</td>
<td></td>
</tr>
<tr>
<td>Phosphodiesterase 5 (PDE5), 603</td>
<td></td>
</tr>
<tr>
<td>Phosphorhastostol 3-kinase-like kinase (PIKK), 561</td>
<td></td>
</tr>
<tr>
<td>Phosphonium-based reagents, 581</td>
<td></td>
</tr>
<tr>
<td>Phosphonium salts</td>
<td></td>
</tr>
<tr>
<td>in imidazole synthesis, 342</td>
<td></td>
</tr>
<tr>
<td>of N-chlorosuccinamide, 618–619</td>
<td></td>
</tr>
<tr>
<td>Phosphorous reagents, 346</td>
<td></td>
</tr>
<tr>
<td>Phosphor-tyrosine mimetic synthesis, 419</td>
<td></td>
</tr>
<tr>
<td>Photo-catalyzed [2 + 2 + 2]-cycloaddition reactions, 446</td>
<td></td>
</tr>
<tr>
<td>Photochemistry process, 446</td>
<td></td>
</tr>
<tr>
<td>Photoisomerization, of benzisothiazole to benzothiazole, 321</td>
<td></td>
</tr>
<tr>
<td>Photonsensitizers, 156</td>
<td></td>
</tr>
<tr>
<td>Photosynthesis, 6</td>
<td></td>
</tr>
<tr>
<td>Pictet–Gams isoquinoline synthesis, 519–521</td>
<td></td>
</tr>
<tr>
<td>modifications of, 520</td>
<td></td>
</tr>
<tr>
<td>Pictet–Spengler reaction, 63, 133, 516–519</td>
<td></td>
</tr>
<tr>
<td>Pictet–Spengler-type cyclization, Skroup/Doebrer–von Miller reaction and, 508–509</td>
<td></td>
</tr>
<tr>
<td>π-electrons, 4, 5, 13. See also 6π-electrocyclization entries</td>
<td></td>
</tr>
<tr>
<td>in imidazole molecule, 333</td>
<td></td>
</tr>
<tr>
<td>in indole molecule, 58</td>
<td></td>
</tr>
<tr>
<td>in oxazole and benzoazazole molecules, 232</td>
<td></td>
</tr>
<tr>
<td>in pyrazine and quinoxaline molecules, 536</td>
<td></td>
</tr>
<tr>
<td>in pyridine molecule, 398</td>
<td></td>
</tr>
<tr>
<td>in pyrimidine molecule, 569</td>
<td></td>
</tr>
<tr>
<td>in pyrrole molecule, 18</td>
<td></td>
</tr>
<tr>
<td>in quinoline and isoquinoline molecules, 477</td>
<td></td>
</tr>
<tr>
<td>Pim kinase family, selective inhibitors of, 549</td>
<td></td>
</tr>
<tr>
<td>Pim kinase inhibitors, 542</td>
<td></td>
</tr>
<tr>
<td>Pimobendan (Acardi), 355, 356</td>
<td></td>
</tr>
<tr>
<td>synthesis of, 358–359</td>
<td></td>
</tr>
<tr>
<td>Pinner method, of pyrimidine preparation, 574</td>
<td></td>
</tr>
<tr>
<td>Pinner reaction, in sildenafil synthesis, 606, 607</td>
<td></td>
</tr>
<tr>
<td>Piperaquine, 471</td>
<td></td>
</tr>
<tr>
<td>Piperazine, 3</td>
<td></td>
</tr>
<tr>
<td>Piperidine(s), 3</td>
<td></td>
</tr>
<tr>
<td>pyridinyl substituted, 454</td>
<td></td>
</tr>
<tr>
<td>Piperidinyl compounds, 454</td>
<td></td>
</tr>
<tr>
<td>Pirbuterol (Maxair), 401, 402</td>
<td></td>
</tr>
<tr>
<td>Piriteprim, thiophene-containing derivatives of, 177</td>
<td></td>
</tr>
<tr>
<td>Pituitary function regulation, 408</td>
<td></td>
</tr>
<tr>
<td>Pivastatin calcium (Livalo), 15</td>
<td></td>
</tr>
<tr>
<td>pKa. See Heterocycle pKa values</td>
<td></td>
</tr>
<tr>
<td>Plasminogen activator inhibitor 1 (PAI-1), 61</td>
<td></td>
</tr>
<tr>
<td>Plasmodium falciparum, 292</td>
<td></td>
</tr>
<tr>
<td>Platelet aggregation drugs, 11</td>
<td></td>
</tr>
<tr>
<td>Platelet aggregation inhibition, 125</td>
<td></td>
</tr>
<tr>
<td>Platelet aggregation inhibitors, 184, 474</td>
<td></td>
</tr>
<tr>
<td>Plavix, 11, 125–126, 187</td>
<td></td>
</tr>
<tr>
<td>synthesis of, 184–185</td>
<td></td>
</tr>
<tr>
<td>PMPA, 571</td>
<td></td>
</tr>
<tr>
<td>Pneumocystis carinii, 177</td>
<td></td>
</tr>
<tr>
<td>Pneumocystis carinii pneumonia (PCP), 637</td>
<td></td>
</tr>
<tr>
<td>Pneumotoxin, 110</td>
<td></td>
</tr>
<tr>
<td>Polarized imine group, in quinoline and isoquinoline, 477</td>
<td></td>
</tr>
<tr>
<td>Polyaniline salts, as a polymeric acid catalyst, 540–541</td>
<td></td>
</tr>
<tr>
<td>Polyene cyclization, acid-catalyzed, 133–134</td>
<td></td>
</tr>
<tr>
<td>Polyhalogenated materials, imidazoles and, 337</td>
<td></td>
</tr>
<tr>
<td>Polymeric acid catalyst, polyaniline salts as, 540–541</td>
<td></td>
</tr>
</tbody>
</table>
Polymerization, of furan, 119
Polymerization, of imidazoles, 338
Polyoxoxygenated furans, \(\beta \)-substituted, 150
Poly-substituted pyrimidine synthesis, 576
Poly-substituted quinoline compound synthesis,
Heck-type reactions in, 511–512
Poly-substitution, in pyrolyte ring, 23
Pomerantz–Fritsch reaction, 521–522
Porphyria, 5
Positron emission tomography (PET),
Alzheimer's disease and, 543
Potassium channel opener, 429
Povarov reaction, 512–513
PPAR\(\gamma \) modulator, 86. See also Peroxisome proliferator-activated receptor-\(\gamma \) (PPAR\(\gamma \)) entries
process synthesis of, 103
Pramipexole (Mirapex), 288, 310–311
Prazosin (Minipress), 124, 616
2,4-quinazoline system of, 631
Premazepam, 47, 48
Prevacid, 355, 356
Preveon, 571
Prilosec, 13, 402–403
Primquine, Skroup/Doebner–von Miller synthesis of, 509
Primary amides, dehydration of, 583
Prinomide, 47, 48
“Privileged structures,” 425
Probes, synthesis of radio-labeled, 543
Prodigiosins, 45–46
Pro-drugs, 11, 14
Proglitazone (Actos), 86
Progout, 591
Proline, 6
Proline chimeras, 94
Proline-homocysteophane, asymmetric synthesis of, 94
Proloprim, 591
Propargyl alcohols, 376. See also Propargylic alcohols
Propargyl amide cycloisomerization, 241
Propargylic alcohols, cycloaddition of, 320
Propargyl ketones, 144
Proquazone (Briarton), 616, 617
Prostacyclin (PG12) mimetics, 202–203
Prostacyclin receptor agonists, Schollkopf oxazole synthesis and, 238
Prostate cancer, 560
Protease(s) (PR), 108, 547
Protein kinase B/Akt inhibitors, 423
Protein kinase C (PKC) inhibitors, 152
phenylamino-pyrimidine-type, 416–417
Protein kinase inhibitors, 16
Proteins, antiapoptotic, 98
Protein synthesis inhibition, 287
Protein tyrosine kinase (PTK) inhibitors, 632, 635, 637
Protein tyrosine kinases (PTKs), 636–637
Protonated enamine tautomers, 65
Protonation
of heteroaromatic rings, 548–549
of heterocycles, 244
of indole ring, 58
of pyrazine and quinoxaline nitrogen atoms, 546
of pyrrole ring, 22
of quinoline and isoquinoline, 477–478
Proton enhancement, 55
Protonix, 355, 356
Proton NMR spectra. See \(^1\)H-NMR spectra
Proton-pump inhibitors (PPIs), 403
for gastroesophageal reflux disease treatment, 355, 356
Protons
of oxazoles and benzoxazoles, 232–233
of purimidine, 399
Pseudomonas aeruginosa, 285
Pseudomonas putida, 548
Pseudo-pteraxazole, 233
Psoralen, 156
Psoriasis, 156
Psychiatric disorders, 44. See also Antipsychotic entries
Psychosis, 125
Pulmonary disorders, 62
Purine(s)
molecular structure of, 571
pyrimidine and, 570, 571
Purine bases, 7
Purine specific nucleoside hydrolase, 28
Purine synthesis, 311
PyBOP reagent, 581
PyBroP-mediated coupling, with nucleophiles, 580–581
PyBroP reagent, molecular structure of, 581
Pyraquoquinoline alkaloids, 474
Pyrazine(s), 3, 536–567
in biologically active natural products, 558–539
broad biological activity of, 558–559
deprotonation of, 552
difunctionalization of, 553
formation of, 539
medicinal applications of, 537–539
molecular structure of, 536
nuclear magnetic resonance spectroscopy of, 536–537
palladium-catalyzed reactions of, 556–562
properties of, 536–539
reactions with radicals, 548
synthesizing trisubstituted, 557–558
Pyrazine deprotection, 548
Pyrazine ring(s), 16
direct C–H arylation on, 554
zincation of, 552–553
Pyrazine ring coupling, 556
Pyrazine ring formation, 542
Pyrazofurin analogues, in Pechmann pyrazole synthesis, 216
2-Pyrazol-4-yl-substituted thiazole system, 312
Pyrazole(s), 2, 4, 198–217
acidity and basicity of, 201
bond lengths for, 198
C4 electrophilic substitution in, 203–205
C5-metalation of, 205–206
high through-put screen of functionalized, 549–550
Knorr synthesis of, 206–210, 210–214
nuclear magnetic resonance spectroscopy of, 199
Pechmann synthesis of, 214–217
properties and molecular structure of, 198
relative aromaticity of, 373
tautomerization of, 201–202
Pyrazole-5-boronic acid, 205
Pyrazole-5-ester, in Pechmann pyrazole synthesis, 216
Pyrazole derivatives, 429
Pyrazole ester, 215
Pyrazole N-hydrogen, 201
Pyrazole nitration, 204
Pyrazole ring(s)
alkylation of, 202–203
construction of, 206–217
electron-rich, 205
reactivities of, 202–206
Pyrazolidine, 5
Pyrazolols, 219–220
Pyrazolone(s), 198
Pyrazolone-containing drugs, 217–220
Pyrazolones, 219–220
Pyrazololo[3,4-c]pyridines, synthesis of, 211
Pyrazololo[3,4-d]pyrimidine, synthesis of, 586–587
Pyrazolyl benzoxazoles, 242
Pyridazine, 5
relative aromaticity of, 198
Pyridine(s), 3, 4, 5, 13–14, 398–470
anhydrous, 398
bond lengths for, 398
commercial preparation of, 399
direct lithiation of, 409–411
electron-deficient nature of, 398
electrophilic substitution in, 399
fused-polycyclic, 448
nuclear magnetic resonance spectroscopy of, 399–400
properties of, 398–400
quaternary salts of, 405
relative aromaticity of, 198
substituted, 448, 449–450
2,6-unsubstituted, 403–404
via oxazole cycloaddition, 440–441
Pyridine analogues, 441
Pyridine-containing compounds, 401
Pyridine-containing drugs, 400–403
potential liabilities for, 403–404
Pyridine-containing drug synthesis, metal-catalyzed C–C–C–N cross-coupling reactions in, 413–416
Pyridine-containing heterocyclic systems, 439
Pyridine-containing unnatural amino acids, 418
Pyridine coordination compounds, 405
Pyridine derivatives, 405, 428, 439–440, 448–449
reactivity of, 399
in Zincke reaction, 406, 407
Pyridine N-oxides, 406, 454, 456
rearrangement of, 450–452
Pyridine ring, 105, 401
electrophilic attack at nitrogen of, 404–409
selective reduction of, 492
Pyridine ring construction/formation, 249, 425–457
via condensation reactions, 425–437
Pyridine ring reactivity, 404–425
Pyridine scaffold, 435
Pyridine skeleton formation, 436
Pyridine substituted α-amino acids, 433–434
Pyridine sulfur trioxide, in rosuvastatin synthesis, 601
Pyridine synthesis
advances with organometallics, 448–450
transition-metal-catalyzed, 448
via cycloaddition reactions, 437–450
via heterocycle transformation, 455–457
via rearrangement reactions, 450–455
Pyridine system, in natural products, 400
Pyridine-thiazole cores, 434
Pyridinium, in pyridine synthesis, 432
Pyridinium chlorochromate (PCC), 405
Pyridinium salts, 404–405
 in pyridine synthesis, 456–457
 in Zinke reaction, 406, 407
Pyridinium sulfydryl intermediate, 14
Pyridinium ylide, 406
1-(2-Pyridinyl)alkyl alcohol derivative, 454
Pyridinyl analogues, 428
Pyridinyl substituted pyrroldiones/piperidines, 454
Pyridobenzodiazepinone synthesis, 425
Pyridoxal, 8
Pyridoxine (vitamin B_{6}), 249–250
 via oxazole cycloaddition, 440–441
Pyrido[2,3-d]pyrimidines, 587–588
Pyrido[3,2-d]pyrimidine, 323
Pyridyl-β-alanines, 433–434
Pyridyl livdrazines, 105
Pyridyl quinazoline derivative, synthesis of,
 632–633
2-Pyridylquinoline, 491
2-Pyridylzinc bromide, Negishi coupling with,
 263–264
Pyrimidin-2-thione derivatives, synthesis of,
 584
Pyrimidine(s), 3, 5, 569–613
 as dienes in [4 + 2]-cycloaddition reactions,
 441–442
dipole moment of, 569
 with electron-donating groups, 442
heterocycle pKa, values of, 615
molecular structure of, 569, 615
multifunctionalized, 580
N-C fragments in synthesizing, 578–579
nuclear magnetic resonance spectroscopy of,
 569
preparation of, 574
properties of, 569–573
relative aromaticity of, 198
substituted, 573
 synthesis of Fe(II)-binding agent, 451–452
synthesis of polysubstituted, 576
synthesis of substituted, 578
Pyrimidine-2-carboximidamide, in bosentan
 synthesis, 596
Pyrimidine analogues, 301
Pyrimidine bases, 7
Pyrimidine-containing drugs, synthesis of,
 590–608
Pyrimidine core, of sildenafil, 606, 607
Pyrimidine derivatives, 589–590
 synthesis of, 581–582, 583–584
Pyrimidine dichloride, in bosentan synthesis,
 597–598
Pyrimidinedione, in bosentan synthesis,
 597–598
Pyrimidine formation, 578–579, 580–581
Pyrimidine-fused ring systems, 570
Pyrimidine-fused systems, synthesis of,
 581–590
Pyrimidine iodide, in rosuvastatin synthesis,
 602, 603
Pyrimidine ring, 569
 construction of, 573–590
electronic density of, 569
 formation of, 585–586
Pyrimidine structure, natural products and
 pharmaceuticals possessing, 570–573
Pyrimidine synthesis, developing
 methodologies for, 608
Pyrimidinium salts, in imidazole synthesis,
 349–351
Pyrimidinone, cyclized, 604
Pyrimidinone B, in bosentan synthesis,
 597–598
Pyrrole(s), 2, 4, 5, 9, 10, 18–53. See also
 Bioactive pyroles
 added to Vilsmeyer reagent solution, 90
 bromination of, 23–24
dipole moment of, 120
direct coupling with carbonyl compounds,
 30
 halogenated, 20, 23–24, 31
 Mannich reaction with, 24–28
 nuclear magnetic resonance spectroscopy of,
 19–20
 oxidative coupling/cyclization of, 30–31
 palladium chemistry of, 44–46
 penta-substituted, 39, 40, 48
 reactivity of, 20
 relative aromaticity of, 198, 373
 substituted, 39, 40
 Vilsmeyer–Haack reaction and, 29–30, 32, 33
Pyrrole-2-acetic acids, 41
Pyrrole[3,4-b]quinolines, electrocyclic
 preparation of, 512
Pyrrole biotransformations, 46
Pyrrole carboxylates, aryl-substituted, 39
Pyrrole-containing drugs
 oxidized by cytochrome P-450 (CYP-450)
 enzymes, 46
 possible liabilities of, 46–48
Pyrrole esters, 43
Pyrrole-ISOquinolines, synthesis of, 480
Pyrrole Mannich bases, 25
 as potential anti-malarial agents, 28
 as potential antipsychotic agents, 26, 27
Index

in non-CNS therapeutic areas, 27–28
Pyrrole protonation, 22
Pyrrole ring, 19
 construction of, 34–44
 electronic density of, 48
 oxidative cleavage of, 46
 preferences for C2 electrophilic substitution, 23
 reactivity of, 22–34
 uses of, 21
Pyrrole synthesis, 25, 26, 34–44
Pyrrolidine(s), 2, 6, 18, 19, 441
 pyridinyl substituted, 454
Pyrrolidine enamine, 437–438
Pyrrolidiny: compounds, 454
Pyrolo[2,3-d]pyrimidine derivatives, 585
Pyrolo[2,3-d]pyrimidine analogues, 173
Pyrolopyridines, 105
Pyroloquinoline-based alkaloids, 474
Pyrolyl aldehydes, 32
2-Pyrryl substituted quinazolinone synthesis, base-catalyzed ring contraction in,
 633
Pyrrolium salts, in pyridine synthesis, 456

QF-0400B antipsychotic, 35
Qiao, Jennifer Xiaoxin, 398
Quaternary ammonium salt, 25–26
Quaternary carbon atoms
 of indazole, 200
 of indole, 55
Quaternary salts, of pyridines, 405
Quaternization, 336
Quinapril, via Pictet–Spengler reaction, 518
Quinazoline(0), 3, 16, 615–646
 halogenation of, 618–619
 heterocycle pKa values of, 615
 highly functionalized, 628
 metal-mediated processes and, 623–624
 molecular structure of, 615, 617
 natural and synthetic occurrences of, 616
 nuclear magnetic resonance spectroscopy of,
 615–616
 properties of, 615–617
 reactions of, 618–624
 synthesis of, 625–636
 thiomethylation of, 619
 transition metal–promoted reaction synthesis of, 634–636
Quinazoline-containing compounds,
 cyclization and rearrangement reactions and, 631–634
 Quinazoline-containing drugs, synthesis of,
 636–639
 Quinazoline derivatives
 preparation via Ullmann-type coupling, 634–635
 substitution of, 619–620
 Quinazoline pyridyl derivative, synthesis of,
 632–633
 Quinazoline ring systems, functionalizing, 618
 2,4-Quinazoline system, of prazosin, 631
 Quinazolone(s), 615–646
 metal-mediated processes and, 623–624
 molecular structure of, 615, 617
 naphthalenic, 629
 natural and synthetic occurrences of, 616
 properties of, 615–617
 reactions of, 618–624
 synthesis of, 625–636
 transition metal–promoted reaction synthesis of,
 634–636
 Quinazolone-based compounds, 639
 Quinazolone-containing drugs, synthesis of,
 636, 639–641
 4(3H)-quinazolinone derivatives
 via copper(II)-catalyzed condensation reaction, 635–636
 via palladium(II)
 catalyzed–cyclocarbonylation reaction, 635
 Quinazolone ring systems, functionalizing,
 618
 2-Quinazoliones, 615
 4-Quinazolones, 615, 616, 617
 QuindoLine, 488
 Quinine, 14, 15, 471, 472
 synthesis of, 499
 Quinolin-2-ones
 via electrocyclization processes, 513
 via modified Negishi cross-coupling, 512
 Quinoline(s), 3, 471–533
 Chichibabin amination on, 483
 cross-coupling reactions involving, 488–492
 dipole moments of, 475
 electrophilic substitution at carbon atom of, 480–483
 heterocyclic vs. nonheterocyclic sides in, 477
 hydroxylation of, 483
 metallation of, 487–488
 Meth–Cohn synthesis of, 506–507
 nuclear magnetic resonance spectroscopy of,
 475–477
Quinoline(s) (cont.)
 nucleophilic substitution in, 483–486
 oxidation of, 492
 physical properties of, 477
 properties, molecular structure, and
 applications of, 471–474
 protonation of, 477–478
 quinoline core construction for, 492–513
 reactions with electrophiles, 482
 reactions with peracids, 479
 reduction of, 491–492
 Skroup/Doebner-von Miller reaction and,
 507–510
 Sonogashira coupling involving, 490–491
 Stille coupling involving, 491
 substituted, 493
 Quinoline-5,8-diones, 492
 Quinoline alkaloid analogues, 494
 Quinoline bromides, 489, 490
 Quinoline compound precursors, Gould–Jacobs
 synthesis and, 505–506
 Quinoline compounds
 Skroup/Doebner-von Miller reaction and
 biologically active, 509
 yrones and alkynes in synthesizing, 510
 Quinoline compound synthesis, Heck-type
 reactions in, 511–512
 Quinoline-containing drugs, 14–15. See also
 Quinoline drugs
 possible liabilities of, 526–527
 Quinoline core construction, 492–513
 modern methods for, 510–513
 Quinoline derivatives, electrocyclic preparation
 of, 512–513
 2-Quinoline derivatives, 497
 4-Quinoline derivatives, 497
 Quinoline drugs, 471–472, 472–473
 Quinoline halides, 489
 Quinoline halogens, 490–491
 Quinoline heterocycles, 474
 Quinoline iodosides, 489, 490
 Quinoline/isoquinoline nitrogen atom, 479
 Quinoline-N-oxides, amphiphilic character of,
 486–487
 Quinoline orbitals, 477
 Quinoline ring, reactivity of, 474–492
 Quinoline ring construction, modern methods
 for, 510–513
 Quinoline ring system, in
 quinoline/isoquinoline reduction, 491–492
 Quinoline stannanes, 491
 Quinolinium salts, 478, 484–485, 486

Quinolinylborane reagents, 489
Quinolinyl nucleophile preparation, 489
Quinolone antibacterials, 472–473, 504
Quinolone antibiotics, 526–527
Quinolone drug interactions, 526–527
Quinolones, 471
2-Quinolones
 in Knorr reaction, 496–497
 substituted, 493
4-Quinolones
 in Conrad–Limpach reaction, 496–497
 synthesis of, 511
Quinoxaline(s), 3, 536–567
 formation of, 539
 medicinal applications of, 537–539
 molecular structure of, 536
 nuclear magnetic resonance spectroscopy of,
 536–537
 palladium-catalyzed reactions of, 556–562
 as potential chemotherapeutic drug
 candidates, 541–542
 properties of, 536–539
 reactions with radicals, 548
Quinoxaline-1,4-dioxide, 544–545
Quinoxaline derivatives, synthesis of novel,
 542–543
Quinoxaline heterocycle, expanding chemical
 reactivity on, 561–562
Quinoxaline ring, metalation of, 552–553
2(1H)-Quinoxalinone, 548
R1A/D adrenoceptor binding affinity, 314
R116010 anti-tumor agent, 317–318
Rabeprazole (AcipHex), 355
Racemic 4-substituted indole, 81–82
Radiation, 560
Radical cyclization, 104
Radicals, pyrazine and quinoxaline reactions
 with, 548
Radio-labeled probes, synthesis of, 543
Radiszewski reaction, imidazole synthesis via,
 344
Raloxifene (Evista), 11–12, 125–126, 164–165, 181
 constrained analogues of, 181
 synthesis of, 183–184
Raloxifene derivatives, 170
Raloxifene synthesis, 166
Raltitrexed, 616, 617, 639
 synthesis of, 640–641
Ramosetron (Nasca), 57–58
Raney nickel, 84, 85
Ranitidine (Zantac), 12, 123, 124
Ravuconazole, kilogram-scale synthesis of, 309–310
Reactive heterocycles, 20
Reactive intermediates, 321–322
in the physiological system, 47
Reactive metabolites, 321
Reactive nitroalkenes, 43
Reactivity
of pyrrole, 20
of pyrrole ring, 22–34
Rearomatization, 485–486
Picet–Spengler reaction and, 516
Rearrangement reactions, 382, 383
pyridine synthesis via, 450–455
quinazoline-containing compounds and, 631–634
Redox cycles, in Nenitzescu indole synthesis, 75–76
Reduction, of quinolines and isoquinolines, 491–492
Reduction/cyclization cascade, 130
Reductive annimation, 91
Reductive cyclization, 87, 359
Regioisomeric pyrazoles, in pyrazole synthesis, 207
Regioisomers
in pyrazole ring alkylation, 202, 203
of rimonabant, 209–210
synthesis of ropinirole, 91
Region-selective oxygenation, 547
Regioselective coupling, 268
Regioselective cross-coupling reaction, 258
Regioselective iodination, of lithiated oxazole, 246
Regioselective reactions, 71
Regioselective substitution reactions, 557
Regioselectivity, 409
electronic effects in, 514
pyrazine ring arylation and alkenylation, 554
Reisert compounds, 485
Reissert–Henze reaction, 453
Relative aromaticity, 198, 373
of heterocycles, 4–5, 373
Relpar, synthesis of, 70, 101–102
Remicent, 355
Renierol, synthesis of, 525
Requip, synthesis of, 90–91
Rezcriptor, 11, 57
Resonance hybrids, of pyrrole, 19
Resonance-stabilized nitrilium species, 578–579
Resonance structures
of imidazole, 333s
of pyrrole molecule, 18
Restless legs syndrome (RLS), treatment of, 90
Retro-Diels–Alder (RDA) reaction, 137,
143–144, 156, 437–438, 585
Retro-Ritter byproducts, 514
Retroviral activity, 474
Reverse transcriptase (RT), 108, 571
Reverse transcriptase inhibitors (NRTIs), 571
non-nucleoside, 383
Reyataz, 402
Rhabdomyolysis, 47
Rheumatoid arthritis treatment, 526
Rhodium-catalyzed C–H alkenylation, 448, 449
Ribavirin, 381
Riluzole, 289
Rimonabant (Acomplia), 200–201
synthesis of, 208–209, 217
Rimonabant regioisomers, 209–210
Ring cleavage, 270
Ring-closing metathesis (RCM), 147
Ring-closing methods, electrocyclic, 512–513,
525–526
Ring-closing reactions, acid-catalyzed, 148
Ring coupling, in pyrazine, 556
Ring-equivalent bioisosteres, 323
Ring-opening/ring-closing reaction, in pyridine
synthesis, 456
Ring substitution, in Gould–Jacobs reaction, 504
Ring systems, in pharmaceuticals, 125
Risperdal, 572, 573
Risperidone (Risperdal), 572, 573
Ritonavir (Norvir), 287–288, 289, 322–323
Rivoglitazone, 359
Rizatriptan (Maxalt), 57
Rizatriptan benzoate (Maxalt), synthesis of, 71–72
RNA, purines and pyrimidines in, 570–571, 572
RNA viruses, activity against, 141
Ro 31-8959, 295, 296
RO3201195, synthesis of, 214
Robinson–Gabriel synthesis, 235–236
Rofecoxib (Vioxx), 234
Rollinson, William, 536
Ropinirole (Requip), synthesis of, 90–91
Ropinirole regioisomers, synthesis of, 91
Rosfuran synthesis, 135–136
Rosiglitazone (Avandia), 86
Rosuvastatin (Crestor), 15, 600–603
Rosuvastatin calcium (Crestor), 56
Rosuvastatin ethyl ester, 601, 602
RSV infection, 381
Ru (ruthenium) (II)-catalyzed reactions, 384
Rubrospirene, 441
Rügheimer synthesis, 543
Ruppel, Joshua V., 119
Rutacearins, synthesis of, 624
RWJ-56423 arginyl-trypsinase inhibitor, synthesis of, 293
RWJ 68354, preparation of, 74
Safamycin A analogues, via Pictet–Spengler reaction, 518–519
Sandmeyer reaction, 250
Sandmeyer-type reactions, 385–386
Sangivamycin, 585
Saponification, ester, 139
Saponification reaction, in rosuvastatin synthesis, 602, 603
Saprisartan, 125, 157–158
Saquinavir (Ro 31-8959), 295, 296, 322–323
Saturated heterocycles, 2
defined, 1
SB-342219 selective δ-opioid agonist, 36–37
Scale-up issues, in sildenafil synthesis, 604–605
Schiff base formation, in Friedlander synthesis, 500
Schiff bases, in Pfützing synthesis, 502
Schistosomicides, 289
Schizophrenia, 179
treatment of, 572
Schlitter–Müller variation, of
Pomerantz–Fritsch reaction, 521
Schöllkopf oxazole synthesis, 238–239
ScAr reactions, of quinazolines and quinazolinoines, 618
Secondary amine functionality, mesylation of, 602–603
(±)-Selaginoidine, 133
Selective estrogen receptor modulator (SERM), 11, 73, 164
Selective fluorination, of quinoxalines, 550–551
Selective serotonin and norepinephrine reuptake inhibitor (SSNRI), 12
Selective serotonin reuptake inhibitors (SSRIs), 69
Sepsis treatment, 76
Serindole, 95
Serotonin, 6, 12, 55
Serotonin 5-HT\textsubscript{1A/1B} binding sites, 27
Serotonin 5-HT\textsubscript{3} receptor antagonist, 221
Serotonin (5HT) receptor ligands, 78
Serotonin–norepinephrine reuptake inhibitor (SNRI), 161–162
Serotonin receptor agonists, 56
indole-containing, 66
Serotonin reuptake inhibitors, 69
Serotonin uptake inhibitors, 390
7-substituted indoles, formation of, 77
7-substituted quinolines, Meth–Cohn synthesis of, 507
Side chains, fully elaborated, 39–40
Sigmatropic rearrangement, 44, 65, 78
[2,3]-Sigmatropic (Sommelet–Hauser) rearrangement, 84
Silanes, derivatized, 293
Sildenafil (Viagra), 603–607
Sildenafil citrate, second generation synthesis of, 605–606
Silver sulfadiazine, 570
Silylation, of oxazoles, 247–248
Silyl-substituted indoles, 71
Single-photon emission tomography, Alzheimer's disease and, 543
Sinistus, 154
Sitagliptin, synthesis of, 389–390
Six-membered heterocycles benzene-fused, 3
defined, 2
with one heteroatom, 13–15
with two heteroatoms, 15–16
6α-electrocyclization cascade reactions, 448
6α-electrocyclization reactions, 449
Skin infections, 154
Skroup/Doebner–von Miller reaction, 507–510
Sleep aid medications, 349
Smoking cessation drugs, 16, 539
Sn2 reaction, 64
Snyder, Nicole L., 119, 615
Sodelgitazar, 308–309
Sodium ethoxide (NaOEt), in inverse-electron demand Diels–Alder reaction, 442–443
Sodium tert-butoxide, 581
Solid cancer cell lines, 542
Solid-phase bromination, of thiophene, 160
Solid-phase synthesis protocol, 169
Solid-phase Zincke reaction, 408
Solid tumor malignancies, 98
Solifenacin, synthesis of, 515
Sommelet–Hauser rearrangement, 84
Sonogashira coupling, 99–100, 264–267, 304–305
of bromothiophenes, 170
involving quinolines and isoquinolines, 490–491
Index

in pyridines, 415
Sonogashira coupling reaction, 419–420, 576
Sonogashira cross-coupling, 424
Sonogashira cross-coupling reaction, 168
Sonogashira-type multicomponent domino reaction, in quinoline ring construction, 511
SO (sulfur oxide) transfer reagent, 185–186
Sparfloxacin, 473
Sporamoytic drugs, 517
Sphingosine-1 phosphate receptor 1 (S1P1) agonist, 303, 304, 324–325
Spiriva, 125–126
SSR182289A thrombin inhibitor, 419–420
Staedel synthesis, 543
Stannanes, 306–307
derivatized, 293
quinoline, 491
Stille coupling reaction of, 262–263
Stannylxazole preparation, 253
2-stannylxazoles, 253
4-stannylxazoles, 253
5-stannylxazoles, 253
Stannylpyrrole, 44
Stannylpyrrole aldehyde, 45
Steriodal pyrazine, 560
Steroid 5α reductase inhibitors, 489
Steroid-based furans, 142
Steroid derivatives, methylsulfonyl, 174
Steroids
bearing heterocycles, 75
indolyl, 75
Stetter-type multi-component reaction (MCR), imidazole preparation via, 351–352
Stille coupling
involving quinolines and isoquinolines, 491
in radio-labeled probe synthesis, 543
in substituted quinazoline preparation, 623–624
Stille coupling reactions, 44, 45, 93, 96, 154, 417, 419, 423
applied to thiouoles, 306–307
of C4 stannane, 262–263
of oxazole rings, 255
in oxazoles, 253–257
in pyridines, 414
in rosefurin synthesis, 135–136
scope of, 254–257
vinyl oxazole preparation through, 267
Stille cross-coupling, 306
Stille cross-coupling reaction, 422–423
Stille protocol, 559
Stobbe condensation, 367

Streptomyces, synthesis of signaling molecules of, 149
Streptomyces badius, 548
Streptomyces lavendulae, 9
Streptotigrin, 438, 439, 491
Stroke treatment, 97, 104
Structural alerts, risk associated with, 321
Structure–activity relationship (SAR), 221, 306, 323, 542
Structure–toxicity relationship (STR) studies, 304–305, 306
2-Styrylquinazoline-4(3H)-one analogues, generating, 630–631
Substituted 2-quinolones, 493
Substituted furan derivatives, 143–144
Substituted furan rings, synthesis of, 137–138
Substituted furans, 128, 130, 144–145
synthesis of, 145
Substituted furan synthesis, 147
Substituted furocoumarin synthesis, 145
Substituted halothiazoles, 300
Substituted oxazoles, 240
Substituted pyridines, 448, 449–450
Substituted pyridine synthesis, one-pot, 449–450
Substituted pyrimidines, pyrimidine ring construction and, 573
Substituted pyridazine synthesis, 578
Substituted pyroles, 39, 40
Substituted quinazolines, 623–624
synthesis of, 619
Substituted quinolines, 493
Skrupka/Doebner–von Miller reaction and, 507–508
Substituted tetrahydroquinolines, 513
Substituted thiazoles, one-pot synthesis of, 320
Substitution reactions
in AX7593 synthesis, 620–621
of 2,4-dichloroquinazoline, 621
intramolecular electrophilic, 514
metal-mediated, 623–624
of quinazoline derivatives, 619–620
of quinazolines and quinazolinones, 622–623
regioselective, 557
Sudoxicam, 322
Sugar fragments, in nucleic acids, 7
"Suicide" inhibitor, 187
Sulfadiazine, 570
Sulfamic acid, 290
Sulfamoyl-anidine, 12
Sulfathiazole, 287
Sulfenic acid, 187
2-Sulfanyl-benzimidazoles, 364
Sulfapyrazone, 219
Sulfonamide, in rosuvastatin synthesis, 602, 603
Sulfonamide antibiotics, 570
Sulfonation, thiazole, 290–291
Sulfonium ion, 84
Sulfonyl chloride, in sildenafil synthesis, 605
Sulfonyl pyrrole Mannich bases, 25
Sulfur oxide (SO) transfer conditions, 185–186
Sumatriptan analogues, Mori–Ban synthesis of, 69–70
Sumatriptan succinate (Imitrex), 10, 56–57
synthesis of, 67
Sundberg indole preparation, 69
Sundberg indole synthesis, 87
Sunitinib (Sutent), synthesis of, 89–90
Superacids, Fischer–Spengler reaction and, 517
Supraventricular arrhythmias, 132
Sutent, synthesis of, 89–90
Suzuki coupling(s), 45, 93, 96–98, 489–490, 550, 557, 558
of benzylated bromoindole, 61
of dibrominated pyrazine, 561
involving furans, 135
during obatoclax synthesis, 98
of oxazole(s), 257–261
scope of, 258–261
Suzuki coupling reactions, 418, 420, 424, 422
Suzuki cross-coupling reaction, 169
Suzuki–Miyaura reactions, 168, 300–302, 422
in CDP840 PDE IV inhibitor synthesis, 421
in producing rolaxifene derivatives, 170
in pyridines, 414–415
in synthetic chemistry, 169
Suzuki reaction, 157
heteroaryl thiocarbon thiones in, 260
Synthetic antibiotics, 473
Synthetic medicinal chemistry, standard reactions in, 300
Synthetic medicinal compounds, oxazoles, benzoxazoles, and isoxazoles in, 233
Systemic lupus erythematosus (SLE), treatment of, 526

Tachyarrhythmias, 125
Tadalafil (Cialis), synthesis of, 63, 64
Tagamet, 12
Talnetant, preparation of, 502–503
Tamoxifen, benzothiophene derivatives of, 181
Tandem diamination approach, in
benzimidazole synthesis, 362
Tandem Heck reaction, 79
Tandem oxidative cyclization, iodine-catalyzed, 240
Tarceva, 16, 598–600, 616, 617
synthesis of, 632
Targeted heterocycle yields, 589–590
Tautomerism
of 1H-benzimidazole, 354
in benzimidazoles, 354–355
of 2-hydroxy- or thioxy-imidazole, 334
of 1,2,4-triazole, 378
Tautomerization
in Knorr and Conrad–Limpach reactions, 497
of pyrazole, 201–202
Taxol-resistant tumor cell lines, 286
Tazobactam (Zosyn), 375
synthesis of, 386–387
Tebbe reagent, 453
Telmisartan (Micardis), 355, 357
synthesis of, 360
Telomestatin derivative preparation, through
Suzuki coupling, 260
Telomestatin trim-oxazole subunit, derivatization of, 256–257
Temafloxacin, 526
Temozolomide, 347–348
TEMPO (2,2,6,6-tetramethylpiperidinyloxy)
free radical, in rosuvastatin synthesis, 601
Tendinitis treatment, 526
Tenofovir, 571
Tenofovir disoproxil fumarate (TDF), 571
Temovastatin, 207–208
Terconazole, 381–382
Terminal alkynes, cross-coupling of, 99
Tertiary amide, 548
Tesefermin, 365
Tetraclortetrazine, synthesis of, 515–516
Tetrabutylammonium bromide (TBAB), in
bosentan synthesis, 597–598
Tetracyclic ring systems, nakadomarin, 148
Tetracyclic systems, 133
Tetrahedral intermediate, in quinazoline substitution, 620
Δ²-Tetrahydrocannabinol, 107
Tetrahydrofuran, 2
1,2,3,4-Tetrahydro isoquinoline, synthesis of, 516
Tetrahydroisoquinoline derivatives, 492
Tetrahydroisoquinoline derivatives, 492
Tetrahydroquinoline derivatives, 492
Tetrahydroquinolines, substituted, 513
Index

4,5,6,7-Tetrahydrothieno[3,2-c]pyridine synthesis, 185
Tetrahydrothiophene, 2
N,N,N',N'-Tetramethylethlenediamine (TMEDA), 553
Tetrasubstituted furan derivatives, 139, 143
Tetrasubstituted furans, 131–132
highly functionalized, 147
Tetrazone(s), 5, 373–395
molecular structures of, 373
nuclear magnetic resonance spectroscopy of, 374–375
in quinoxaline preparation, 541
relative aromaticity of, 198, 373
Tetrazone reactions, 382–383
Tetrazone ring
construction of, 391–392
reactivity of, 375–383
Tetrazone substitutions, 382
Thallation, 31
Thermal rearrangement mechanism, 270–271
Thermolysis, in indazole assembly, 223
Thiamin (vitamin B₁), 285
Thiamine hydrochloride (vitamin B₁), 427
Thiazole(s), 2, 8, 283–315, 321–325
basicity of, 290
bioisosteric role of, 324
as bioisosteres, 323–325
bond lengths for, 283
C-metalation of, 292–296
Cook–Heilbron synthesis of, 312–313
cycloadition in, 299–300
electrophilic attack on, 290
Gabriel synthesis of, 314–315
Grignard reagents of, 292, 293
from Hantzsch method, 308, 309, 310
Heck reactions applied to, 304
intramolecular Diels–Alder reaction of, 299
molecular structure of, 283
N-alkylation of, 298
as natural product components, 286
in Negishi coupling, 302–304
N-oxidation of, 298–299
nuclear magnetic resonance spectroscopy of, 283–284
palladium chemistry of, 300–307
in peptide research, 287
possible liabilities of drugs containing, 321–323
properties of, 283–284, 285
relative aromaticity of, 373
Sonogashira coupling on, 304–305
Stille coupling reaction applied to, 306–307
1,3-Thiazole(s), 290, 321, 323
alkylation of, 296–298
in Negishi coupling, 303
Thiazole-containing analogues, in Negishi coupling, 303
Thiazole deprotonation, 292
Thiazole deprotonation chemistry, 294
Thiazole derivatives, 302
imidazolyl, 314
Thiazole formation, 311
Thiazole-forming methods, 320–321
Thiazole functionalization, 305–306
Thiazole halogenation, 291–292
Thiazole medicinal chemistry, palladium-catalyzed cross-couplings in, 300
Thiazole nitration, 291
Thiazole N-oxides, 298–299
Thiazole ring, 283
construction of, 307–315
of cyclopeptide natural products, 294
Thiazole ring assembly, 308
Thiazole ring reactions, 290–300
Thiazole sulphonation, 290–291
Thiazolesulfonic acid, 290
Thiazole synthesis, 129
Thiazolidine, 2
Thiazolidine derivatives, 285
Δ²-Thiazoline ring, 285
Thiazolium salts, 296, 297
Thiazolium ylide, 297
Thiazolo[5,4-d]pyrimidine, 323
Thiazolyl bisamide CSF-1R kinase inhibitors, 311
Thiazolyl peptides, 286
Thieno-[3,2-b]-pyrroles, synthesis of, 167
Thienotriazene-4-one production, 175
Thietane, 1
2H-Thiete, 1
Thirane, 1
Thioacetal formation, 172
3-Thioketoxyindoles, 84
Thioamide, 309, 322, 323
Thioamide intermediate, 309
Thiobenzanilides
oxidative cyclization of, 318
thione–thiolate conversion in, 320
Thioethers
heteroaromatic, 260–261
in Suzuki reaction, 260
4-Thiophuran, 621
Thiol radical, 319
Thiomethylation, of quinazolines, 619
Thione–thiolate conversion, in thiobenzoanilides, 320
Thionyl chloride, in sildenafil synthesis, 605
Thiopeptide antibiotics, 286, 287, 429, 434
Thiopeptide antibiotic synthesis, 451
Thiophene(s), 2, 4, 8, 11, 12, 18, 119, 158–186
acylation reactions of, 162)
aromaticity of, 119
bond lengths and angles for, 122
C2 position of, 168
dipole moment of, 120
electron-rich, 125
functionalized, 160
halogenation of, 159–160
importance in medicinal chemistry, 125–126
lithiation of, 160–161
metal–halogen exchange in, 161
methylation of, 160
nuclear magnetic resonance spectroscopy of, 122
reactions at C2, 158–164
reactions at C3, 164–167
relative aromaticity of, 198, 373
resonance effect of, 19
solid-phase bromination of, 160
syntheses of, 171–179
synthesis of functionalized, 161
transition-metal-catalyzed cross-coupling
reactions of, 168–171
Thiophene analogues, 174
Thiophene-containing drugs, 125–126
possible liabilities of, 186–188
synthesis of, 183–186
Thiophene dimer formation, 167
Thiophene reactions, 158–171
Thiophene rings, 119
carboxylation of, 163–164
Thiophene ring structures, toxicity from, 188
Thiophene synthesis, Vilameier–Haack reaction
and, 162–163
Thiostrepton, synthesis of, 451
Thioureas, 363
Thioy rimidazole, tautomericism of, 334
Thompson, Alexander D., 119
[3+1+1] annulation process, 581
[3+2+1] annulation process, 584
3,4-disubstituted isoquinolines, 525
3,4-fused pyrimidin-2-one derivative, synthesis
of, 584
3-acylation, of indoles, 94
Three-bond formation, pyrimidine ring
constructions involving, 578–581
Three-component coupling reaction, ZnCl2-
catalyzed, 581
Three-membered heterocycles, defined, 1
3-substituted 2-chloroquinolines
Meth–Cohn synthesis of, 507
3-substituted 2-cyanotriazinones, 630
3-substituted furans, 136–137
3-substituted triazole alkylation, 378–379
Thrombin inhibitor, 419–420
Thrombosis, acute arterial, 61
Thymidylate synthase inhibitors, 639
Thymine, 7
in DNA, 570–571
Tiazabazole, 365
one-pot synthesis of, 365
Ticlopidine, synthesis of, 452
Tienilic acid, 186–187
Tilmanoxxib, 234, 236
Tiotropium (Spiriva), 125–126
Tioxazidazole, 289
Tipifarnib, preparation of, 481–482
Tipixatin, 61
synthesis of, 61
Titanium catalysis, in dianime condensation,
542
TMSCl, 427, 429
TMSCl, 427
Toll-like receptor (TLR) signaling, 526
Tolmetin, 21, 22
p-Tolylsulfonfylmethyl isocyanide (TosMIC),
239
Tonsillitis, 154
Toradol, 21, 22
Tosylmethyl isocyanide (TosMIC),
cycloaddition of, 344–345
Tosylpyrazole, lithiation of, 206
Toxicities, 46–47
from furan and thiophene ring structures,
188
Toxicity data, for quinoline-containing drugs,
526
Toxoplasma gondii, 177
Toyocamycin, 585
Transition-metal catalysis, in diazinc
formation, 539
Transition metal–catalyzed [2 + 2 + 2]-
cycloaddition reactions, 445–448
Transition metal–catalyzed approach, in
desoxyvascinonone synthesis, 636
Transition-metal-catalyzed cross-coupling
reactions, 134–137
in thiophene chemistry, 168–171
Transition-metal-catalyzed cyclizations,
152–153
Transition-metal-catalyzed ring-closure
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition-metal-catalyzed pyridine synthesis, 448</td>
</tr>
<tr>
<td>Transition metal complex catalyst systems, 446–447</td>
</tr>
<tr>
<td>Transition metal complexes, for [2 + 2 + 2]-cycloaddition reactions, 446</td>
</tr>
<tr>
<td>Transition-metal coupling reactions, of pyrazines and quinoxalines, 553–556</td>
</tr>
<tr>
<td>Transition metal–mediated approaches, benzimidazole core construction using, 361–367</td>
</tr>
<tr>
<td>Transition metal–mediated C–H bond functionalization, new methods for, 366–367</td>
</tr>
<tr>
<td>Transition metal–mediated N-arylation, 361</td>
</tr>
<tr>
<td>Transition-metal-promoted cyclization, 144–147</td>
</tr>
<tr>
<td>Transition metal–promoted reactions, quinazoline and quinazolinone synthesis via, 634–636</td>
</tr>
<tr>
<td>Transition metals, 144</td>
</tr>
<tr>
<td>Transmetalation, cyclic, 260</td>
</tr>
<tr>
<td>Trazodone, synthesis of, 390</td>
</tr>
<tr>
<td>Trecator, 430–431</td>
</tr>
<tr>
<td>Trialkylalanes, 624</td>
</tr>
<tr>
<td>Trialkylfuran preparation, 143</td>
</tr>
<tr>
<td>Triarylfurans, alkyl, 143</td>
</tr>
<tr>
<td>Triaryl furan synthesis, 142</td>
</tr>
<tr>
<td>Triarylpyrrole L-167307, assembly of, 38</td>
</tr>
<tr>
<td>Triazine(s), intramolecular cyclization of, 439</td>
</tr>
<tr>
<td>1,2,3-Triazene, 443–444</td>
</tr>
<tr>
<td>1,2,4-Triazine, as the azadione, 437–439</td>
</tr>
<tr>
<td>Triazolam, synthesis of, 390–391</td>
</tr>
<tr>
<td>Triazole(s), 5, 373–395</td>
</tr>
<tr>
<td>alkylation of, 377–382</td>
</tr>
<tr>
<td>bond lengths for, 374</td>
</tr>
<tr>
<td>molecular structures of, 373</td>
</tr>
<tr>
<td>nuclear magnetic resonance spectroscopy of, 374</td>
</tr>
<tr>
<td>relative aromaticity of, 198</td>
</tr>
<tr>
<td>1,2,3-Triazole, 373</td>
</tr>
<tr>
<td>NMR spectra of, 374</td>
</tr>
<tr>
<td>1H-1,2,3-Triazole, relative aromaticity of, 373</td>
</tr>
<tr>
<td>2H-1,2,3-Triazole, relative aromaticity of, 373</td>
</tr>
<tr>
<td>1,2,4-Triazoic acid, 373</td>
</tr>
<tr>
<td>NMR spectra of, 374</td>
</tr>
<tr>
<td>tautomers of, 378</td>
</tr>
<tr>
<td>1H-1,2,4-Triazole, relative aromaticity of, 373</td>
</tr>
<tr>
<td>4H-1,2,4-Triazole, relative aromaticity of, 373</td>
</tr>
<tr>
<td>1,2,3-Triazole alkylation, 377–378</td>
</tr>
<tr>
<td>1,2,4-Triazole alkylation, 378–382</td>
</tr>
<tr>
<td>Triazole-containing drugs, possible liabilities of, 392–393</td>
</tr>
<tr>
<td>1,2,3-Triazole reactions, 382–383</td>
</tr>
<tr>
<td>Triazole ring construction of, 384–392</td>
</tr>
<tr>
<td>reactivity of, 375–383</td>
</tr>
<tr>
<td>1,2,3-Triazole ring, construction of, 384–387</td>
</tr>
<tr>
<td>1,2,4-Triazole ring, construction of, 387–391</td>
</tr>
<tr>
<td>1,2,3-Triazole substitutions, 375–376</td>
</tr>
<tr>
<td>1,2,4-Triazole substitutions, 377</td>
</tr>
<tr>
<td>Tributyltin hydride, 104</td>
</tr>
<tr>
<td>Tricyclic indole-2-carboxylic acids, synthesis of, 104</td>
</tr>
<tr>
<td>Trifloyloxazole preparation, 250–253</td>
</tr>
<tr>
<td>Trifloyloxazoles, in Sonogashira coupling reactions, 264–265</td>
</tr>
<tr>
<td>4-Trifloyloxazoles, 251, 252</td>
</tr>
<tr>
<td>Trisopropylsilyl (TIPS) group, 24</td>
</tr>
<tr>
<td>Trimericaptotriazine (TMT), 72–73</td>
</tr>
<tr>
<td>Trimethoprim, 591</td>
</tr>
<tr>
<td>Trimethoquinol, via Pictet–Spengler reaction, 517–518</td>
</tr>
<tr>
<td>Trimethylaluminum, pyrazine ring arylation and, 554</td>
</tr>
<tr>
<td>Trimethylsilylamine, 453</td>
</tr>
<tr>
<td>Trimethylsilyl fluorosulfonyldifluoroacetate (TFDA), 354</td>
</tr>
<tr>
<td>2-(Trimethylsilyl) thiazole (TST, 2-TST), 294–295</td>
</tr>
<tr>
<td>Trimetrexate, 616, 617</td>
</tr>
<tr>
<td>synthesis of, 637–638</td>
</tr>
<tr>
<td>thiophene-containing derivatives of, 177</td>
</tr>
<tr>
<td>Trioxasalen, 156</td>
</tr>
<tr>
<td>Tri-peptide PLG (proline-leucine-glycine) mimetic, 403, 412</td>
</tr>
<tr>
<td>2,4,6-Triphenylpyridine, 435</td>
</tr>
<tr>
<td>Triprom, 591</td>
</tr>
<tr>
<td>Triptans, 66, 68, 70</td>
</tr>
<tr>
<td>indole synthesis and, 100</td>
</tr>
<tr>
<td>Tri-substituted furan derivatives, 149</td>
</tr>
<tr>
<td>Tri-substituted furanoates, 139</td>
</tr>
<tr>
<td>Tri-substituted furans, 137, 144</td>
</tr>
<tr>
<td>Tri-substituted keto-pyrroles, 38</td>
</tr>
<tr>
<td>Tri-substituted pyrazines, synthesizing, 557–558</td>
</tr>
<tr>
<td>Tri-tertiarybutylfuran, 143</td>
</tr>
<tr>
<td>Trypanosoma brucei rhodesiense, 292</td>
</tr>
<tr>
<td>Trypanosoma cruzi, 136</td>
</tr>
<tr>
<td>Tryptamine, 6, 7, 55</td>
</tr>
<tr>
<td>Tryptophan, 6, 55</td>
</tr>
<tr>
<td>D-Tryptophan methyl ester, 63–64</td>
</tr>
<tr>
<td>Tschitschibabin pyridine synthesis, 425, 431–432. See also Chichibabin entries</td>
</tr>
<tr>
<td>Tubercidin, 585</td>
</tr>
<tr>
<td>Tuberculosis medications, 545</td>
</tr>
<tr>
<td>Tuberculosis treatment, 430</td>
</tr>
</tbody>
</table>
Tubulin-binding agents, 169
Tumor cell lines, taxol-resistant, 286
Tumor growth suppression, 269
Tumor-induced angiogenesis, treatment of, 87
Tumors
antiproliferative properties against, 628
upregulation of EGFR expression in, 598
treatment of, 560–561
21-amino-acid peptides, 595
[2 + 2 + 2]-cycloaddition reactions, 445–448
transition metal complexes for, 446
2,3,4,6-tetrasubstituted pyridines, 435–436
Bohlmann–Rahtz synthesis of, 433
2,3,4-trisubstituted furan derivatives, 144
2,3,4-trisubstituted pyridine derivative, 403
2,3,5-trisubstituted pyridine, 412
2,3,5-trisubstituted furans, 146–147
2,3,5-trisubstituted pyridines, 422, 431
2,3′,6′-terpyridine scaffold, 435
2,3,6-trisubstituted pyridines, 446
Bohlmann–Rahtz synthesis of, 432–435
2,3-disubstituted benzofuran derivatives,
152–153
2,3-disubstituted furans, 146
2,3-disubstituted fucooquinolines, 145
2,4,5-trisubstituted pyrimidines, synthesis of,
578
2,4,6-trisubstituted pyridine derivatives,
435–436
2,4,6-trisubstituted pyridines, 426, 446
2,4,6-trisubstituted pyrimidines, synthesis of,
578
2,4-disubstituted imidazoles, 343
2,4-disubstituted quinazolines, 619, 624
2,4-disubstituted thiazoles, C5 lithiation of, 294
2,5-disubstituted furans, 144
2,5-disubstituted furan synthesis, 141
2,5-disubstituted oxazoles, 252
2,5-disubstituted oxazole synthesis, 241
2,6-substituted pyrimidin-4-ols, 575
2,6-unsubstituted pyridines, 403–404
Two-bond formation, pyrimidine ring
constructions involving, 573–578
2-substituted 3-furoates, 138–139
2-substituted-4(3H)quinazolinones, 628–629
2-substituted benzothiophenes, 180–181
2-substituted pyrimidines, 580
2-substituted pyrimidine-5-carboxylic esters,
synthesis of, 574–575
2-substituted quinazolines, amidine
synthesis of, 631
2-substituted quinazolinone, 625
synthesis of, 635–636
2-substituted thiazoles, 295
2,4-disubstituted imidazoles, 343
Tyrkerb (Tyverb), 16, 123–124, 616, 617
Type-2 diabetes treatment, 86, 308–309, 359
Tyrian purple, 55, 56
Tyrosine kinase inhibitors (TKIs), 16, 402, 416,
592
Tyrosine kinase inhibition, 598
Ulcers, 342
antihistamine drug for, 311
Ulcer treatment, 288, 403
Ullmann reaction, in nolatrexed synthesis, 640
Ullmann-type coupling, quinazoline derivatives
prepared via, 634–635
Ullmann-type reaction, in imatinib synthesis,
594–595
Uloric, 309
Ultrasound irradiation, 443
Umpolung chemistry, 298
United States, Imretrex sales in, 56–57
Unnatural amino acids, pyridine-containing, 418
Unsaturated amide, 548
α,β-Unsaturated carbonyl derivatives, amidine
addition to, 575–576
Unsaturated ketoximes, 449
Unsymmetrical benzoin, 74
Unsymmetrical diones, in Combes quinoline
synthesis, 495–496
Uracil, 7
in RNA, 571
Urea, cyclized, 557, 558
Urea derivatives, in imatinib synthesis, 595
Urea moiety, in imatinib synthesis, 595
Urinary incontinence, 429
treating, 515
Urinary tract infections (UTIs), 154, 591
treatment of, 570
Vaginal fungal infections, 381
Valacyclovir, 572
Valcyte, 572
Valdecoxib (Bextra), 234
Valganciclovir hydrochloride (Valcyte), 572
Valsartan (Diovan), 375
Valtrex, 572
Vandetanib (Zactima), 616, 617
Vanilloid receptor-1 antagonist, 316
van Leusen oxazole synthesis, 239–240
van Leusen pyrrole synthesis, 43
van Leusen reaction, imidazole synthesis via,
344–345
Index

Varenicline (Chantix), 16
Vascular disease, 392
Vascular endothelial growth factor (VEGF), 87
Vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors, Heck reaction and, 269
Vascular endothelial growth factor receptor (VEGFR) inhibitors, 417
Vasicinone synthesis, intramolecular aza-Wittig reaction in, 633–634
Vasocostrictors, 595
Vasodilator activity, 289
Vasodilators, 517
Vasoconstriction, 624
Velcade, 539
Ventricular arrhythmias, 132
Viagra, 603–607
Vilsmeier–Haack reaction, 29–30, 32, 33, 167 in thiophene chemistry, 162–163
Vilsmeier reaction, 76
Vilsmeier’s reagent, 588
Meth–Cohn quinoline synthesis and, 506, 507
indole ring and, 59
pyrrole added to, 90
Vinyl amides, 581, 582–583
Vinylic imines, palladium-catalyzed coupling of, 448
Vinyl oxazole preparation, through Stille coupling reaction, 267
Vioxx, 234
Viral infections, 381
Viracept, 571
Vitamin B_1_, 8, 285, 427
Vitamin B_6_, 8
Vitamin B_9_, 8, 249–250
Vitamin B_12_, 8
Vitiligo, 156
Vitronectin receptor, 103
Viviant, constructing indole ring of, 73–74
VX-497 hepatitis C drug candidate, 239–240
Wallach synthesis, of imidazoles, 340
Washing agents, 233–234
Weidenhagen reaction, imidazole synthesis via, 343
Willgerodt–Kindler conditions, 180
Wipf–Williams oxazole synthesis, 236–237
Wittig coupling, in rosuvastatin synthesis, 601, 602
Wittig reaction, 452. See also Aza-Wittig reaction
Wittig rearrangement, 130
Wolff–Kishner reduction, 88, 89
WS75624B (+)-(S)-WS75624B enzyme inhibitor, 423
Xanthine oxidase inhibitors, 288, 289, 309
Ylides
nitrile, 270–271
pyridinium, 406
thiazolium, 297
Yrones, cyclization of, 510
Z0947 potassium channel opener, 429
Zactima, 616, 617
Zafirlukast (Accolate), 11, 57, 111
synthesis of, 62–63
Zantac, 12, 123, 124
Zantid, 474
Zelitrex, 572
Zeta, 9
Zhang, Ji, 569
Zhang, Zheng, 373
Zileuton (Zyflo), 125–126
synthesis of, 161
Zileuton analogues, 180
Zincation, of pyrazine rings, 552–553
Zinc halides, of thiazoles and benzothiazoles, 302. See also Organozinc reagents; ZnCl_2_ entries
Zincene reaction, 405, 406–409
solid-phase, 408
Zincene salts, 406, 407, 486
Zinc pyridine salt, 488
Ziprasidone (Geodon), 321
synthesis of, 88–89
ZnCl_2_–catalyzed three-component coupling reaction, 581. See also Zinc entries
ZnCl_2_–mediated Bischler–Möhlau indole synthesis, 73
Zofran, 93
Zografos, Alexandros L., 471
Zolmitriptan (Zomig), 57
Zolpidem, 349
Zomepirac, 21, 22
Zomig, 57
Zosyn, 375
synthesis of, 386–387
Zyflo, 125–126
synthesis of, 161
Zyloprim, 590–591
Zyprexa, 12, 125–126