Index

1-D FIR filter, 160, 167, 175
 z-transform implementation, 160
ad hoc techniques, 131
adjacency matrix, 2, 6, 147
 input node, 6
 internal node, 6
 output node, 6
 properties, 7
algorithm
 1-D FIR filter, 160, 167, 175
 1-D IIR filter, 209
 2-D IIR filter, 221
 adjacency matrix, 2, 6, 147
 analysis, 147
 classification, 7
 components, 4
 critical path, 146
 cycles, 150
decimation-in-frequency FFT, 299
decimation-in-time FFT, 295
decimator, 227
definition, 4
degree of parallelism, 146
depth, 146
directed graph, 4
discrete Fourier transform (DFT), 293
 fast Fourier transform (FFT), 295
finite-field polynomial division, 279
 full search block matching, 256
 GF(2^m) multiplication, 268
hardware implementation, 2
 implementation phases, 2
 interpolator, 236
 matrix multiplication, 185
 non serial-parallel, 9, 143
parallel, 8
parallelism, 10, 146
parallelization, 11
performance, 156
primary inputs, 5
primary outputs, 5
regular iterative, 10
sequence vector, 151
serial, 7
serial-parallel, 8
software implementation, 2
string matching, 245
 video compression, 255
 work, 146
anti-dependencies, 48
asymmetric multiprocessor (ASMP), 56
banyan network, 89
binary multiplication
 parallel, 30
 serial, 30
bit-parallel multiplication, 30
bit-serial multiplication, 30
bus interconnection network, 84
butterfly operation, 296, 299
 decimation-in-frequency, 300
 decimation-in-time, 295
 cache
 block, 35
 block size, 39
 coherence, 56
 design, 36
 hierarchy, 36
 hit, 35

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

337
cache (cont’d)
 line, 35
 miss, 35
 capacity misses, 39
 cold-start, 39
 compulsory miss, 39
 conflict misses, 39
 three C’s, 39
 tag, 35
Cilk++, 106
Cilk++ chunk, 108
Cilk++ for loop, 107
Cilk++ strand, 108
cloud computing, 60
cluster computing, 60
cold start, 39
communication
 -bound problems, 1
 broadcast, 65
 gather, 66
 multicast, 65
 one-to-all, 66
 one-to-many, 65
 one-to-one, 65
 overhead, 16
 reduce, 66
 unicast, 65
compiler directive, 115
compulsory miss, 39
computation domain, 186
compute intensity, 62
concurrency platforms, 3, 105
conflict misses, 39
connectivity matrix, 148
critical path, 10
critical section, 76
crossbar interconnection network, 86
crossbar network, contention, 87
cryptography, 267
cycles in directed graph, 150
cyclic algorithm, 143
 period, 144
DAG. See directed acyclic graph
data parallelism, 62
data race, 108
DCG. See directed cyclic graph
decimation-in-frequency FFT, 299
decimation-in-time FFT, 295
decimator, 227
 dependence graph, 228
 polyphase, 235
 scheduling, 230
degree of parallelism, 10, 146
dependence graph, 5, 167
dependence matrix, 169, 188
 nullspace, 189
dependent loop, 134
depth, 10, 146
DFT. See discrete Fourier transform
DG. See directed graph
directed acyclic graph (DAG), 5, 9, 143
 finite impulse response filter, 160
directed cyclic graph (DCG), 143
directed graph (DG), 4
cycles, 150
discrete Fourier transform (DFT), 293
distributed memory, 58
divide and conquer, 137
DRAM, 34
dynamic power consumption, 30
 fast Fourier transform (FFT), 295
 finite impulse response filter, 160
 finite-field polynomial division, 279
 Flynn’s taxonomy, 54
 four-way handshaking, 65
 frame wraparound, 219
Galois field, 267
GF(2^m) multiplication, 267
global variable, 108
graphic processing unit (GPU), 62
grid computing, 60
Gustafson-Barsis’s law, 21
hardware-software dependence, 2
HCORDIC, 139
head of line (HOL), 93
hyperobjects, 110
 independent loop, 133
 interconnection network, 55, 83
 input driven routing, 101
 input node, 6, 145
 input queuing, 92
 virtual output queuing, 100
input variable, 185, 186
input/output (I/O), 185, 186
instruction level parallelism (ILP), 45
 hazards
 RAW, 46
 WAR, 48
 WAW, 48
interconnection network
 banyan, 89
 bus, 84
 crossbar, 86
 mesh, 86
 MIN, 88
 ring, 85
 star, 85
 switch, 91
interior node, 10, 145
intermediate variable, 133
interpolator, 236
 index dependence graph, 237
 polyphase, 243
 scheduling, 238
L1 cache, 36
L2 cache, 36
lightweight process, 49
line wraparound, 219
linear systems, 305
load balancing, 134
loop
 dependent, 134
 independent, 133
 spreading, 135
 unrolling, 135
MAC. See multiply/accumulate
mapping, 15
massively parallel computing, 57
memory
 collision, 54
 features, 33
 hierarchy, 33
 mismatch ratio, 18
mesh interconnection network, 86
message passing, 56
message passing interface (MPI), 56, 67, 106
MIMD. See multiple instruction multiple data stream
MISD. See multiple instruction single data stream
monitor, 56
MPI. See message passing interface
multicore, 61
multiple input and output queuing, 99
multiple input queuing, 97
multiple instruction multiple data stream (MIMD), 54
multiple instruction single data stream (MISD), 54
multiple output queuing, 98
multiplication over Galois field, 267
multiply/accumulate (MAC) operation, 43
multiprocessors
 distributed memory, 56
 memory mismatch ratio, 19
 NUMA, 54
 shared memory, 54
 SIMD, 57
 systolic processor, 57
 UMA, 54
multistage interconnection network, 88
multithreaded processor, 49
multithreading, 49
 POSIX, 106
 Pthreads, 106
 WinAPI, 106
mutex, 56
mutual exclusion, 56
network-on-chip, 12, 83
NoC: network-on-chip, 12, 83
node
 input, 6, 157
 internal, 6, 158
 output, 6, 157
nonlocal variable, 108
nonserial-parallel algorithm: adjacency
 matrix, 6
nonserial-parallel algorithm (NSPA), 9, 143
nonserial-parallel algorithm parallelization, 145
nonuniform memory access (NUMA), 54
NSPA. See nonserial-parallel algorithm
NUMA. See nonuniform memory access
OpenMP, 112
 compiler directive, 114
Index

output dependencies, 48
output driven routing, 101
output node, 6, 157
output queuing, 94
 virtual input queuing, 98
output variable, 133, 160, 185

parallel algorithm, 8, 14
 definition, 14
 examples, 14
 implementation, 14
parallel architecture, 14
 definition, 14
parallelism, 10, 146
parallelization, 30
parallelization technique
 ad hoc, 131
 dependent loop, 134
 divide and conquer, 137
 independent loop, 133
 loop spreading, 135
 loop unrolling, 135
 partitioning, 136
 pipelining, 139
parasitic capacitance, 30
partitioning, 136
performance
 clock frequency, 30
 parallelization techniques, 30
 pipelining techniques, 39
pipeline, HCORDIC, 151
pipelining, 39, 139
polyphase, 235, 243
decimator, 235
interpolator, 243
POSIX, 56, 105
pragma, 113
procedural dependencies, 47
program indeterminacy, 108
projection
 dependence graph, 177
 direction, 178
 matrix, 178
Pthreads, 105
queuing
 virtual input queuing, 98
 virtual output queuing, 98
read after write (RAW), 46
regular iterative algorithm (RIA), 7, 167
resource conflicts, 74
resources, 29
RIA. See regular iterative algorithm
ring interconnection network, 85
routing algorithm, 86
sample time, 144
scheduling, 15
scheduling function, 174, 195
semaphore, 56
sequence vector, 151
serial algorithm, 7
 parallelization, 12
serial-parallel algorithm (SPA), 7
serial-parallel algorithm parallelization, 12
serial/parallel multiplication, 30
SFG. See signal flow graph
shared buffer, 96
shared memory, 54, 69
 multiprocessor, 69
shared variable, 69
signal flow graph (SFG), 174
SIMD
 compared with systolic processor, 59
 single instruction multiple data stream, 57
simple processor definition, 31
single instruction multiple data stream
 (SIMD), 54, 57
single instruction single data stream (SISD), 54
SM. See stream multiprocessor
SMP. See symmetric multiprocessor
software-hardware dependence, 2
SPA. See serial-parallel algorithm
span, 146
spatial locality, 34, 70
speedup, 15, 95
 acyclic algorithm, 156
Amdahl’s law, 19
 communication overhead, 18
 Gustafson-Barsis’s law, 21
star interconnection network, 85
strand, 108
stream multiprocessor (SM), 54, 62
superscalar
 antidependencies, 46, 48
 output dependencies, 48
 procedural dependencies, 47
 processor, 45
 resource conflicts, 47
 true data dependencies, 46
supply voltage (V), 30
switch, 91
 buffers, 92
 components, 91
 control section, 92
 fabric speedup, 95
 input queuing, 92
 multiple input and output queuing, 105
 multiple input queuing, 97
 multiple output queuing, 98
 output queuing, 94
 shared buffer, 96
 virtual routing/queueing, 100
VRQ, 100
symmetric multiprocessor (SMP), 56
synchronization, 56
system matrix, 305
systolic processor, 57
 implementation issues, 59
 compared with pipelining, 57
 compared with SIMD, 59
temporal locality, 34, 70
thread, 49
true data dependencies, 46
twiddle factor, 293
two-way handshaking, 66
uniform memory access (UMA), 54
uniprocessor performance, 29
variable
 input, 133, 160, 185
 output, 133, 160, 185
 intermediate, 133, 160, 185
very long instruction word (VLIW), 44
virtual input queue, 98
virtual output queue, 98
virtual routing/virtual queuing, 100
VRQ, 100
WAR. See write after read
WAW. See write after write
WinAPI, 105
work, 4, 10, 146
write after read (WAR), 48
write after write (WAW), 48
z-transform, 159