CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>FOREWORD</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>CONTRIBUTORS</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>1</td>
<td>An Overview of Polymer-Immobilized Chiral Catalysts and Synthetic Chiral Polymers</td>
<td>1</td>
</tr>
<tr>
<td>Shinichi Itsuno</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Polymeric Chiral Catalyst</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Polymers Having a Chiral Pendant Group</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Main-chain Chiral Polymers</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Dendrimer-supported Chiral Catalysts</td>
<td>6</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Helical Polymers</td>
<td>6</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Multicomponent Asymmetric Catalysts</td>
<td>7</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Continuous Flow System</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Synthesis of Optically Active Polymers</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Asymmetric Reaction on Polymer</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Helical Polymers and Hyperbranched Polymers</td>
<td>9</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Heteroatom Chiral Polymers</td>
<td>10</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Asymmetric Polymerization</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>
2 Polymer-Immobilized Chiral Organocatalyst 17
Naoki Haraguchi and Shinichi Itsuno

2.1 Introduction / 17
2.2 Synthesis of Polymer-immobilized Chiral Organocatalyst / 18
2.3 Polymer-immobilized Cinchona Alkaloids / 22
2.4 Other Polymer-immobilized Chiral Basic Organocatalysts / 27
2.5 Polymer-immobilized Cinchona Alkaloid Quaternary Ammonium Salts / 28
2.6 Polymer-immobilized MacMillan Catalysts / 35
2.7 Polymer-immobilized Pyrrolidine Derivatives / 42
2.8 Other Polymer-immobilized Chiral Quaternary Ammonium Salts / 46
2.9 Polymer-immobilized Proline Derivatives / 46
2.10 Polymer-immobilized Peptides and Poly(amino acid)s / 50
2.11 Polymer-immobilized Chiral Acidic Organocatalysts / 50
2.12 Helical Polymers as Chiral Organocatalysts / 51
2.13 Cascade Reactions Using Polymer-immobilized Chiral Organocatalysts / 52
2.14 Conclusions / 54
References / 56

3 Asymmetric Synthesis Using Polymer-Immobilized Proline Derivatives 63
Michelangelo Gruttadauria, Francesco Giacalone, and Renato Noto

3.1 Introduction / 63
3.2 Polymer-supported Proline / 66
3.3 Polymer-supported Prolinamides / 73
3.4 Polymer-supported Proline-Peptides / 75
3.5 Polymer-supported Pyrrolidines / 78
3.6 Polymer-supported Prolinol and Diarylprolinol Derivatives / 80
3.7 Conclusions and Outlooks / 84
References / 85

4 Peptide-Catalyzed Asymmetric Synthesis 91
Kazuaki Kudo and Kengo Akagawa

4.1 Introduction / 91
4.2 Poly(amino acid) Catalysts / 94
4.3 Tri- and Tetrapeptide Catalysts / 99
CONTENTS

4.4 Longer Peptides with a Secondary Structure / 110
4.5 Others / 118
4.6 Conclusions and Outlooks / 119
References / 120

5 Continuous Flow System using Polymer-Supported Chiral Catalysts

Santiago V. Luis and Eduardo García-Verdugo

5.1 Introduction / 125
5.2 Asymmetric Polymer-supported, Metal-based Catalysts and Reagents / 132
 5.2.1 Enantioselective Additions to C=O Groups / 132
 5.2.2 Diels–Alder and Related Cycloaddition Reactions / 136
 5.2.3 Enantioslective Cyclopropanation Reactions / 139
 5.2.4 Reduction Reactions / 142
 5.2.5 Oxidation Reactions / 143
5.3 Polymer-supported Asymmetric Organocatalysts / 147
5.4 Polymer-supported Biocatalysts / 151
5.5 Conclusions / 152
References / 153

6 Chiral Synthesis on Polymer Support: A Combinatorial Approach

Deepak B. Salunke and Chung-Ming Sun

6.1 Introduction / 157
6.2 Chiral Synthesis of Complex Polyfunctional Molecules on Polymer Support / 160
 6.2.1 Spirocyclic Compound Libraries / 160
 6.2.2 Macrocyclic Compound Libraries / 165
 6.2.3 Heterocyclic Compound Libraries / 168
 6.2.4 Natural-product-inspired Compound Libraries / 176
 6.2.5 Libraries Through Combinatorial Decoration of Natural Products / 184
 6.2.6 Divergent Synthesis of Small Molecular Libraries / 188
 6.2.7 Chiral Molecules Through Sequential Use of Polymer-supported Reagents / 192
6.3 Conclusions / 194
References / 195
7 Synthesis and Application of Helical Polymers with Macromolecular Helicity Memory 201

Hiroki Iida and Eiji Yashima

7.1 Introduction / 201
7.2 Macromolecular Helicity Memory / 203
 7.2.1 Macromolecular Helicity Memory in Solution / 203
 7.2.2 Macromolecular Helicity Memory in a Gel and a Solid / 213
7.3 Enantioselective Reaction Assisted by Helical Polymers with Helicity Memory / 218
7.4 Conclusions / 219
References / 219

8 Poly(isocyanide)s, Poly(quinoxaline-2,3-diyl)s, and Related Helical Polymers Used as Chiral Polymer Catalysts in Asymmetric Synthesis 223

Yuuya Nagata and Michinori Suginome

8.1 Introduction / 223
8.2 Asymmetric Synthesis of Poly(isocyanide)s / 224
 8.2.1 Synthesis of Poly(isocyanide)s Bearing Chiral Side Chains / 224
 8.2.2 Nonracemic Poly(isocyanide)s Without Chiral Pendant Groups / 239
8.3 Asymmetric Synthesis of Poly(quinoxaline) / 244
 8.3.1 Polymerization of 1,2-diisocyanobenzenes / 244
 8.3.2 Preparation of Nonracemic Poly(quinoxaline) / 246
8.4 Enantioselective Catalysis using Helical Polymers / 255
 8.4.1 Chiral Polymer Catalysts with Chiral Groups in the Close Proximity of the Reaction Sites / 255
 8.4.2 Chiral Polymer Catalysts with No Chiral Groups in the Proximity of the Reaction Sites / 258
8.5 Conclusions / 262
References / 263

9 C₂ Chiral Biaryl Unit-Based Helical Polymers and Their Application to Asymmetric Catalysis 267

Takeshi Maeda and Toshikazu Takata

9.1 Introduction / 267
9.2 Synthesis of C₂ Chiral Unit-based Helical Polymers / 269
9.2.1 Use of \(\text{C}_2\) Chiral Biaryl Moieties as Chirally Twisted Units in the Polymer Main Chain / 269

9.2.2 Synthesis of Stable Helical Polymers by the Fixation of Main-chain Conformation / 277

9.3 Asymmetric Reactions Catalyzed by Helical Polymer Catalysts / 282

9.4 Conclusions / 289

References / 290

10 Immobilization of Multicomponent Asymmetric Catalysts (MACs) / 293

Hiroaki Sasai and Shinobu Takizawa

10.1 Introduction / 293
10.2 Dendrimer-Supported and Dendronized Polymer-supported MACs / 294
 10.2.1 Dendrimer-supported MACs [4] / 294
 10.2.2 Dendronized Polymer-supported MACs [11] / 296
10.3 Nanoparticles as Supports for Chiral Catalysts [13] / 302
 10.3.1 Micelle-derived Polymer Supports [14] / 302
 10.3.2 Monolayer-protected Au Cluster (Au-MPC)-supported Enantioselective Catalysts [21] / 307
10.5 Metal-bridged Polymers as Heterogeneous Catalysts: An Immobilization Method for MACs Without Using Any Support [26] / 314
10.6 Conclusion / 318

References / 319

11 Optically Active Polymer and Dendrimer Synthesis and Their Use in Asymmetric Synthesis / 323

Qiao-Sheng Hu and Lin Pu

11.1 Introduction / 323
11.2 Synthesis and Application of BINOL/BINAP-based Optically Active Polymers / 324
 11.2.1 Synthesis of BINOL-based Optically Active Polymers / 324
 11.2.2 Application of BINOL-based Optically Active Polymers / 327
 11.2.3 Synthesis and Application of a BINAP-containing Polymer / 347
11.2.4 Synthesis of an Optically Active BINOL–BINAP-based Bifunctional Polymer and Application in Asymmetric Alkylation and Hydrogenation / 351
11.3 Synthesis and Application of Optically Active Dendrimers / 355
 11.3.1 Synthesis of BINOL-based Dendrimers and Application in Asymmetric Alkylation / 355
 11.3.2 Synthesis of Optically Active, Ephedrine-based Dendronized Polymers / 358
11.4 Conclusions / 360
Acknowledgment / 361
References / 361

12 Asymmetric Polymerizations of N-Substituted Maleimides 365
Kenjiro Onimura and Tsutomu Oishi
12.1 Introduction / 365
12.2 Chirality of 1-Mono- or 1,1-Disubstituted and 1,2-Disubstituted Olefins / 365
12.3 Asymmetric Polymerizations of Achiral N-Substituted Maleimides / 368
12.4 Anionic Polymerization Mechanism of RMI / 371
12.5 Asymmetric Polymerizations of Chiral N-Substituted Maleimides / 372
12.6 Structure and Absolute Stereochemistry of Poly(RMI) / 373
12.7 Asymmetric Radical Polymerizations of N-Substituted Maleimides / 378
12.8 Chiral Discrimination Using Poly(RMI) / 378
 12.8.1 1H NMR Titration / 380
 12.8.2 Optical Resolution Using Poly(RMI) / 381
12.9 Conclusions / 384
References / 385

13 Synthesis of Hyperbranched Polymer Having Binaphthol Units via Oxidative Cross-Coupling Polymerization 389
Shigeki Habaue
13.1 Introduction / 389
13.2 Oxidative Cross-coupling Reaction between 2-Naphthol and 3-Hydroxy-2-naphthoate / 391
13.3 Oxidative Cross-coupling Polymerization Affording Linear Poly(binaphthol) / 392
13.4 Oxidative Cross-coupling Polymerization Leading to a Hyperbranched Polymer / 396
13.5 Photoluminescence Properties of Hyperbranched Polymers / 400
13.6 Conclusions / 403
References / 404

14 Optically Active Polyketones

Kyoko Nozaki

14.1 Introduction / 407
14.2 Asymmetric Synthesis of Isotactic Poly(propylene-\textit{alt}-co) / 409
14.3 Asymmetric Synthesis of Isotactic Syndiotactic Poly(styrene-\textit{alt}-co) / 411
14.4 Asymmetric Terpolymers Consisting of Two Kinds of Olefins and Carbon Monoxide / 413
14.5 Asymmetric Polymerization of Other Olefins with CO / 414
14.6 Chemical Transformations of Optically Active Polyketones / 415
14.7 Conformational Studies on the Optically Active Polyketones / 416
14.8 Conclusions / 419
References / 420

15 Synthesis and Function of Chiral π-Conjugated Polymers from Phenylacetylenes

Toshiki Aoki, Takashi Kaneko, and Masahiro Teraguchi

15.1 Introduction / 423
15.2 Helix-sense-selective Polymerization (HSSP) of Substituted Phenylacetylenes and Function of the Resulting One-handed Helical Poly(phenylacetylene) / 425
15.2.1 Synthesis of Chiral π-Conjugated Polymers from Phenylacetylenes by Asymmetric-induced Polymerization (AIP) and Helix-sense-selective Polymerization (HSSP) of Chiral and Achiral Phenylacetylenes / 425
15.2.2 (HSSP) of Three Types of Monomers RDHPA, RDAPA, and RDIPA, Scheme 15.4a / 427
15.2.3 Modified HSSP / 432
15.2.4 Functions of One-handed Helical Polyphenylacetylenes Prepared by HSSP / 434
15.3 Chiral Desubstitution of Side Groups in Membrane State / 439
15.3.1 Polymer Reaction in Membrane State (RIM) / 439
15.3.2 Reaction in One-handed Helical Polymer Membranes: Synthesis of One-handed Helical Polymers with no Chiral Side Groups and no Chiral Carbons / 439
15.3.3 Reaction in Polystyrene Monolith: Synthesis of Chiral Porous Materials / 444
15.4 Synthesis of Chiral Polyradicals / 446
 15.4.1 Molecular Design of Optically Active Helical Polyradicals / 446
 15.4.2 Copolymerization of the Monomers Possessing Radical and Chiral Moieties / 447
 15.4.3 Synthesis of Chiral Polyradicals via HSSP of Achiral Monomers / 450

References / 454

16 P-Stereogenic Oligomers, Polymers, and Related Cyclic Compounds 457
Yasuhiro Morisaki and Yoshiki Chujo

16.1 Introduction / 457

16.2 P-Stereogenic Oligomers Containing Chiral “P” Atoms in the Main Chain / 458
 16.2.1 P-Stereogenic Tetraphosphines Containing Two Chiral “P” Atoms / 458
 16.2.2 P-Stereogenic Hexaphosphines Containing Four Chiral “P” Atoms / 461
 16.2.3 P-Stereogenic Oligomers Containing 6, 8, and 12 Chiral “P” Atoms / 464

16.3 P-Stereogenic Polymers Containing Chiral “P” Atoms in the Main Chain / 470
 16.3.1 P-Stereogenic Polymers Containing Chiral “P” Atoms in the Repeating Unit of the Main Chain / 470
 16.3.2 Optically Active Dendrimers Containing the P-Chiral Bisphosphine Unit as the Core / 473
 16.3.3 Helical Polymers Containing Chiral “P” Atoms in the Terminal Unit / 473

16.4 Cyclic Phosphines Using P-Stereogenic Oligomers as Building Blocks / 475
 16.4.1 Stereospecific Synthesis of trans-1,4-Diphosphacyclohexane / 475
 16.4.2 Synthesis of 1,4,7,10-Tetraphosphacyclododecane, 12-Phosphacrown-4 / 478
 16.4.3 Synthesis of 18-Diphosphacrown-6 / 480

16.5 Conclusions / 485

References / 485

INDEX 489