Index

a
absorption efficiency 243, 244
adenosine triphosphate (ATP) 281
adsorption 189
AFM see atomic force microscopy (AFM)
amphiphile self-assembly 169–170
amphoteric materials 316
AN2690 284
AN2728 284
anisotropic nanocrystals growth 41
apoptosis 323
aqueous synthesis, of quantum dots 35, 36
architectonics, of nanoparticles 9–25
functional architectures, on
nanoparticle surface 23–24
Janus (asymmetric) nanoparticles 21–23
soft nanoparticles 10–15
solid nanoparticles 15–21
armchair edge 111–113, 115, 119
armchair nanoribbons 113, 114
ASSURED criteria 304
atomic force microscopy (AFM) 49
ATP see adenosine triphosphate (ATP)
azobenzene 228, 229

b
band edge discretization, in
semiconductor nanocrystals 34
BCP see block copolymers (BCP)
benzoxaborole-based copolymers (BOP) 286
bioconjugation, of nanocrystals 46
biological and biomedical diagnostics
immunoassays 304, 306
nucleic acid testing (NAT) 306
stimuli-responsive biomarker separations 306–308
stimuli-responsive diagnostics, in
developing world 308–309
biological and biomedical
immunoengineering 313–324
immune-activating biomaterials 318–320
immunoevasive biomaterials 314–318
immunosuppressive biomaterials 321–324
biological therapy, multi-responsive
polymer nanoparticles for
10–12
biomedical applications 125–135,
141–150
hollow structured multilayers and
126–130
layer-by-layer assembly 142–144,
146–149
multilayer shells 130–135
bio-mimetic assembly nanoparticles
13–15
biosensing 146–148
blebbistatin 297
block copolymer nanolithography 298, 299
block copolymers (BCP) 173, 176

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
Index

BMPs see bone morphogenetic proteins (BMPs)
bone morphogenetic proteins (BMPs) 148, 149
BOP see benzoazaborole-based copolymers (BOP)
Brillouin zone (BZ) 112
BZ see Brillouin zone (BZ)
C
cadmium-alkyldithiocarbamates 39
cancer treatment and carbon nanotubes 90
carbon nanotubes (CNTs) 203
carbon nanotubes, for drug delivery 86–91
carbon-nitrogen-frameworks (CNFs) 158–160
catalysis 62–65
cation exchange reactions 47
cavitation 190
CB6 177
CdS NRs 47
cellular and tissue engineering 148
cellular internalization 134
cellulose nanocrystals 202
cetyltrimethyl ammonium bromide (CTAB) 46
chemotherapy 129, 131
Chern metallic phase 161
chirality 169, 170, 173
CI see configuration interacation (CI)
clathrin-mediated endocytosis 97
clay nanosheets 268
CMPs see conjugated microporous polymers (CMPs)
CNFs see carbon-nitrogen-frameworks (CNFs)
CNTs see carbon nanotubes (CNTs)
COFs see covalent organic frameworks (COFs)
configuration interacation (CI) 115
confocal microscopy 87, 89
conjugated microporous polymers (CMPs) 193, 194
conjugated polymer nanoparticles (CPNs) 13
CoS hierarchical architecture (CSHPS-G) 207
counter electrodes 204
covalently functionalized halloysite nanotubes 93, 94
covalent organic frameworks (COFs) 192–193
covalent triazine-based frameworks (CTFs) 159–160
CPNs see conjugated polymer nanoparticles (CPNs)
Cryptococcus neoformans 96
crystalline microporous aluminosilicates 187
crystalline seed materials 43
CSHPS-G see CoS hierarchical architecture (CSHPS-G)
CTAB see cetyltrimethyl ammonium bromide (CTAB)
CTFs see covalent triazine-based frameworks (CTFs)
Cu$_2$S 47
d
da see diarylethene (DAE)
DCPD see dicyclopentadiene (DCPD)
density of states (DOS) 111–119
DHP see Dialdehyde heparin (DHP)
dialdehyde heparin (DHP) 127, 128
diarylethene (DAE) 227–232, 234, 235
diblock copolymers 173
dicyclopentadiene (DCPD) 266
Diels–Alder reaction 267
dipping coating 142
Dirac points 112
Dirac’s equation 156
directed self-assembly of block copolymers 173–175
DNA 176–179 of nanoparticles 179–181
dodecanethiol 44
doping, in channel/dielectric layers 229, 230
DOS see density of states (DOS)
doxorubicin (DOX) 129, 134, 135, 283, 286
Index

329

drain current 228–230, 232, 234, 235
drug carriers and uptake mechanisms 95–100
drug delivery, biomedicine 148
drug delivery system
 current thermo-responsive drug carriers 281–283
disease diagnosis, using nanomaterials 279–281
 smart nanocarriers, for benzoxaborole-based drugs 284–287
dual drug delivery systems 94–95
dye-sensitized solar cells 204

e
 EB nanolithography 299
eedge states 112–115
EDS see energy-dispersive X-ray spectroscopy (EDS)
EELS see electron energy loss spectroscopy (EELS)
electric field induced half-metallicity 117–119
electrochemical impedance spectroscopy 97
electron energy loss spectroscopy (EELS) 48
electron paramagnetic resonance (EPR) spectroscopy 49
electrospinning 38, 40, 64
electrostatic interactions hydrogel network 268
ELISA see enzyme-linked immunosorbent assay (ELISA)
endocytosis inhibitors 95
energy-dispersive X-ray spectroscopy (EDS) 48
energy-filtered transmission electron microscopy (EFTEM) 48
enhanced permeability and retention (EPR) effect 279
enzyme-linked immuno-sorbent assay (ELISA) 303, 305
1, 2-ethylenediamine 39
EXAFS see extended X-Ray absorption fine structure (EXAFS)
extended X-Ray absorption fine structure (EXAFS) 49
extinction efficiency 243, 244

f
 fabrication process 2, 3, 9, 14, 16, 19–22, 199–203, 205–207
 facile synthesis method 204
 F16CuPc phototransistor 226
 Fermi energy 111, 112, 114, 115, 117–119
 fiber sensor, cage in 260–261
 field effect transistors 54–57
 fluorescence microscopy 96, 98
 folate-lipid-conjugated mesoporous silica-coated graphene oxide 133
 four-dimensional (4D) printing 217, 218
 Fröehlich interaction 49
 Fröhlich condition 243

g
gas physisorption 188
Ge see germanium (Ge)
gene therapy and carbon nanotubes 90
 germanium (Ge) 242, 247–249
 GID see Grazing incidence diffraction (GID)
GISAXS see grazing incidence small-angle scattering (GISAXS)
gold nanorods 131, 133, 202
graphene see integrated composites and hybrids
 graphene system 111–119
 electronic states 112
 nanoribbons and edge states 112–115
 spintronic properties 115–119
 grazing incidence diffraction (GID) 49
 grazing incidence small-angle scattering (GISAXS) 49

h
 HAADF see high-angle annular dark field (HAADF)
 Haldane model 157, 158
halloysite nanotubes 91–95
hard-template matrices 39
HCPs see hyper cross-linked polymers (HCPs)
hexylphosphonic acid (HPA) 42, 43
hierarchic carbon capsule sensor 258–260
high-angle annular dark field (HAADF) 48
high resolution TEM (HRTEM) 48, 51, 53
hole doping effect 116
hollow structured multilayers 126–130
homogeneous doping approach 20
host-guest interactions, hydrogel network 267, 268
hot injection approach 37
HRTEM see high resolution TEM (HRTEM)
H-type aggregation 170–172
Hubbard model 115
hybrid materials and carbon nanotubes 88, 89
hydrogel network and self-healing materials 267–269
hydrothermal method 201, 203, 206, 207
hydrothermal synthesis method 39
hyper cross-linked polymers (HCPs) 193
hypocrellin B (HB) 129
hysteresis loops 189
types of 189–190

i
immune-activating biomaterials 318–321
immunoassays 304, 306
immunoevasive biomaterials 314, 318
immunosuppressive biomaterials 321–324
immunotherapy 90
incident-photon-to-carrier conversion efficiencies 59
infrared spectroscopy (IR) 49
inorganic asymmetric particles 22
integrated composites and hybrids 199–207
assembled form 0D–2D materials 199–201
assembled from 1D to 2D nanomaterials 201–203
assembled from 2D–2D nanomaterials 203–205
interface engineering 228, 229
International Union of Pure and Applied Chemistry (IUPAC) 187–189
ionic immunoevasive biomaterials 316
IR see infrared spectroscopy (IR)
isotherms, types of 188–189
IUPAC see International Union of Pure and Applied Chemistry (IUPAC)

j
J-type aggregation 170–172

k
Kane–Mele model 158
kinetically induced anisotropic growth mechanism 42–44

l
Landau levels 156
Langmuir–Blodgett method 52, 181
Langmuir monolayer film balance measurements 97
laser patterning, of electrical circuits 232–235
lateral flow tests (LFA) 305, 306
layer-by-layer (LBL) assembly 126–129, 142–144 see also sensing
biomedicine 146–149
layer architectures with tunable properties 144–146
layered graphene sensor 257–258
layered mesoporous carbon sensor 256–257
layered nanoparticles 19–21
LCST see lower critical solution temperature (LCST)
LFA see Lateral flow tests (LFA)
liquid-liquid interface precipitation method 40
lithographic techniques 35
LLCs see lyotropic liquid crystals (LLCs)
long chain alkyamine 37
lower critical solution temperature (LCST) 281, 282
lyotropic liquid crystals (LLCs) 192

m
macropores 188
magnetic fields and block copolymers 175–176
Majorana fermions 158
materials nanoarchitectonics 3–4 see also biological and biomedical immunoengineering; drug delivery system; biological and biomedical diagnostics
MCMs see multicompartment micelles (MCMs)
mechanobiology 291–300
micropatterning 292–297
nanopatterning 297–299
mercaptoundecanol 46
mesenchymal stem cells (MSCs) 148
mesopores 188–192, 201
mesoporous platinum nanoparticles 18
mesoporous silica nanoparticles see porous nanoparticles
metal carbamates 37
metal chalcogenide complexes 45
metal–ligand interactions
hydrogel network 268, 269
metal–organic frameworks (MOFs) 158, 160, 194–195
microcapsules 129, 130
microfluidic device reactor 40
micropatterning
of cellular shape and cluster geometry 292–294
dynamic 294–297
micropores 188, 193
microscale constructions 125
Mie resonance nanoparticles, for solar heat applications 242
analytical calculations 246–247
experiments 247–249
monorods 39
Moore’s law 1
MPC see poly(2-methacryloyloxyethyl phosphorylcholine)(MPC)
MSCs see mesenchymal stem cells (MSCs)
multicompartment micelles (MCMs) 22
multilayer shells and biomedical applications 130–135
multipods 39
multi-responsive polymer nanoparticles 10–11
multi-walled nanotubes (MWNTs) 86, 87, 96
MWNTs see multi-walled nanotubes (MWNTs)

n
nanocrystals (NCs) see one-dimensional (1D) nanocrystals
nanofibers (NFs) 38, 40, 57, 64, 214
nanoparticles directed self-assembly 179–181
nanopatterning 297–299
nanopores 188
nanoribbons (NRBs) 55–57
nanoribbons and edge states 112–115
nanosheets 204, 205
nanowires (NWs) 37, 39, 40, 42, 51, 52, 54, 56–60, 202, 205, 206, 226
NAT see Nucleic acid testing (NAT)
NMR see nuclear magnetic resonance (NMR) spectroscopy
NRBs see nanoribbons (NRBs)
NRs see nanorods (NRs)
nuclear magnetic resonance (NMR) spectroscopy 49
nucleic acid testing (NAT) 303–306
NWs see nanowires (NWs)

O
OFETs see organic field-effect transistors (OFETs)
OLED see organic light-emitting device (OLED)
oleyl-functionalization 46
one-dimensional (1D) nanocrystals 33–66
applications 50–65
essential characterization techniques 48–50
growth mechanisms 40–44
post-synthetic chemical transformation 47–48
post-synthetic surface modification 44–46
synthesis 35–40
one-pot heating-up method 20
one-pot synthesis method 16
one-step aerosol method 203
optical polarization 50–54
opto-electrical polymer nanoparticles 12–13
organic field-effect transistors (OFETs) 223–236
photochromism in phototransistors 224–226
organic-inorganic hybrids, porous 194
organic ligands 45
organic light-emitting device (OLED) 203
organometallic synthesis method 37
oriented attachment growth mechanism 40–42
ORR see oxygen reduction reaction (ORR)
Ostwald ripening process 44
oxygen reduction reaction (ORR) 203

\(p \)
paclitaxel 126
particle replication in non-wetting templates (PRINT) 19
PbS NCs 44, 51
PbS NRs 47
PDDA see poly(diallyldimethylammonium chloride) (PDDA)
PEG see poly(ethylene glycol) (PEG)
peptide-functionalized single-walled carbon nanotubes 91
peptide self-assembly 172–173
perovskite solar cell device (PSC) 203
PfHRP2 see Plasmodium falciparum histidine-rich protein 2 (PfHRP2)
photocatalytic activity 205
photochromism, in OFETs 224, 227–235
doping in channel/dielectric layers 229–230
interface engineering and laser patterning of electrical circuits 232–235
thin film as transistor channel 230–231
photoconductivity 60
photodetection and sensing 60–62
photodynamic therapy 129–131
photoluminescence quantum yields 50
phototransistors 223–226
single crystal-based and nanowire-based phototransistors 224–226
thin film-based 226
photovoltaic applications 57–60
P3HT see poly(3-hexylthiophene-2,5-diyl) (P3HT)
physisorption 188
physisorption isotherms 188
\(\pi \)–\(\pi \) stacking 170, 172
Plasmodium falciparum histidine-rich protein 2 (PfHRP2) 309
plasmon resonance nanoparticles 243–246
analytical calculations experiments 245–246
PNIPAAm see poly(N-isopropylacrylamide) (PNIPAAm)
POC see point-of-care (POC)
point-of-care (POC) 303
polarized Raman spectroscopy 316
poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) 230
poly(\(\varepsilon \)-caprolactone) (PCL) 213
poly(diallyldimethylammonium chloride) (PDDA) 144, 145
polyelectrolytes 127
poly(ethylene glycol) (PEG) 87, 314, 316
poly(ethylene-co-vinyl alcohol) (EVOH) 286
poly(ethylene-co-vinyl alcohol) (EVOH) 286
poly(3-hexylthiophene-2, 5-diyl) (P3HT) 226, 229, 230
polymer network architecture classification 212
polymers with intrinsic microporosity (PIMs) 193
poly(2-methacryloyloxyethyl phosphorylcholine) (MPC) 316, 318
poly(N-isopropylacrylamide) (PNIPAAm) 307, 309
poly(4-phenoxy methylstyrrene) (P4PMS) 226
polypropylic acid (PPAA) 319
poly(sodium 4-styrenesulfonate) (PSS) 144, 145
poly(styrene-block-polymethylmethacrylate) (PS-b-PMMA) 175
poly(ω-pentadecalactone) (PPDL) 216
porous materials, functional 187–196
classification of 188–190
frameworks 190–195
porous nanoparticles 15, 19
porphyrin 170, 172
post-graphene-era 155
post-synthetic chemical transformation, of nanocrystals 47–48
post-synthetic surface modification 44–46
powder X-ray diffraction (PXRD) 48
PPAA see polypropylic acid (PPAA)
PPDL see poly(ω-pentadecalactone) (PPDL)
pre-graphene-era 155
PRINT see Particle Replication in Non-wetting Templates (PRINT)
printing, four-dimensional (4D) 217, 218
printing, three-dimensional (3D) 217
protein biomarkers 303
PS-b-PMMA see poly(styrene-block-polymethylmethacrylate) (PS-b-PMMA)
PSC see perovskite solar cell device (PSC)
PSS see poly(sodium 4-styrenesulfonate) (PSS)
PTAA see poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA)
PXRD see powder X-ray diffraction (PXRD)
Pyrex tubes 193

q
QA-TPE see tetraphenylethene derivative (QA-TPE)
QCM see quartz crystal microbalance (QCM)
QDs see quantum dots (QDs)
quantum confinement effect 34, 35
quantum dots (QDs) 24, 33–35, 37, 46, 50, 52, 53, 62, 64, 280
quantum Hall effect 156, 157
quantum yields 50
quartz crystal microbalance (QCM) 256, 258, 259
quasicrystals 16

r
Raman spectroscopy 49
rbSME see thermally-induced two-way shape-memory effect (rbSME)
reduced graphene oxide (rGO) 200, 201, 203, 204, 207
resonant nanoparticles, for solar heat applications 241–250
applications 249–250
electromagnetic applications 243
Mie resonance nanoparticles 246–249
plasmon 243–246
rGO see reduced graphene oxide (rGO)
Ringsdorf model 279

S
SAED see selected area electron diffraction (SAED)
Saccharomyces cerevisiae 96
scanning electron microscope (SEM) 49
scanning tunneling microscopy (STM) 49
scanning tunneling spectroscopy (STS) 49
scattering efficiency 243, 244
Schottky barrier 228
SDAs see structure-directing agents (SDAs)
selected area electron diffraction (SAED) 48
self-assembly 167–182
amphiphile self-assembly 169–170
of block copolymers (BCP) 173–176
DNA directed self-assembly 176–179
nanoparticles directed self-assembly 179–181
peptide self-assembly 172–173
π-conjugated molecules self-assembly 170–172
self-healing materials 265–273
engineering applications 271–273
history of 266–267
hydrogels 267–269
medical applications 269–271
SEM see scanning electron microscope (SEM)
semiconductor quantum dots 33
sensing 255–262
cage, in fiber sensor 260–261
hierarchic carbon capsule sensor 258–260
layered graphene sensor 257–258
layered mesoporous carbon sensor 256–257
SERS see surface enhanced Raman spectroscopy (SERS)
SFSC see shape-memory fiber-shaped supercapacitor (SFSC)
shape-changing materials 209–211, 216
shape-memory alloys (SMAs) 210
shape-memory effect (SME) 211, 212, 214, 216, 217
shape-memory fiber-shaped supercapacitor (SFSC) 214, 215
shape-memory materials 209–218
shape-memory polymers (SMPs) 210–211, 215, 217
categorization of 212–213
with different architectures 213–216
future applications of 218
new directions 216–217
shape-memory surfaces (SMS) 214, 215
short-chain hydrophilic thiols 35
single crystal-based and nanowire-based phototransistors 224–226
single-source molecular precursor methods 37–39
single-walled nanotubes (SWNTs) 87, 90, 95, 97
SLBL see successive layer-by-layer method (SLBL)
smart nanocarriers, for benzoxaborole-based drugs 284
smart polymer nanoparticles 10, 13
SMAs see shape-memory alloys (SMAs)
SME see shape-memory effect (SME)
SMPs see shape-memory polymers (SMPs)
SMS see shape-memory surfaces (SMS)
soft nanoparticles 10–15
solid nanoparticles 15–21
solution–liquid–solid (SLS) growth approach 40
solvothermal synthesis method 39
spin coating 143–144
spin–spin correlation 115, 116
spintronic properties, of graphene system 115–119
spirooxazine 228
spiropyran 227–230
spray coating 144
spray drying strategy 19, 20
stimuli-responsive biomarker separations 306–308
stimuli-responsive diagnostics, in developing world 308–309
STM see scanning tunneling microscopy (STM)
structure-directing agents (SDAs) 192
STS see scanning tunneling spectroscopy (STS)
successive layer-by-layer method (SLBL) 20
supramolecular assembly 125–126
surface energy and selective ligand adhesion 42–43
surface enhanced Raman spectroscopy (SERS) 178–179
surface plasmon(s) 65
surface plasmon resonance 201
surfactant 36, 39, 42–44, 46
SWNTs see single-walled nanotubes (SWNTs)

T

tannic acids 256, 257
TBA see thrombin-binding aptamer (TBA)
TEM see transmission electron microscopy (TEM)
template-assisted growth methods 39–40
TEMPO see 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) 322
tetraphenylethene derivative (QA-TPE) 12
thermal decomposition 37, 39
thermally-induced two-way shape-memory effect (rbSME) 216, 218
thermodynamic and kinetic growth regimes 43–44
thermo-induced immunoseparation system 307
thin film-based phototransistors 226
three-dimensional (3D) and hierarchic nanoarchitecontics 199–209, 217
thrombin-binding aptamer (TBA) 131
time extended effect, on drug release 91, 93
time-resolved (TR) PL spectroscopy 50
TiN see titanium nitride (TiN)
titanium nitride (TiN) 242–246, 248, 250
toxicity, carbon nanotubes 90, 91
TR see time-resolved (TR) PL spectroscopy
TRAIL see tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)
transmission electron microscopy (TEM) 48
triblock copolymers 173
triblock terpolymers 22
tubular nanocontainers, for drug delivery 85–102
carbon nanotubes 86–91
drug carriers 95–100
halloysite nanotubes 91–95
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) 134–135
two-dimensional (2D) confined system 34
two-dimensional (2D) materials 155–162
emerging 158–161
graphene uniqueness as archetype of 155–158

U

UCNPs see upconversion nanoparticles (UCNPs)
UCST see upper critical solution temperature (UCST)
ultrafast techniques 50
ultrasmall asymmetric nanostructures 22
ultrathin film 125–135
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>ultraviolet photoelectron spectroscopy (UPS)</td>
</tr>
<tr>
<td>20</td>
<td>upconversion nanoparticles (UCNPs)</td>
</tr>
<tr>
<td>282</td>
<td>upper critical solution temperature (UCST)</td>
</tr>
<tr>
<td></td>
<td>UPS see ultraviolet photoelectron spectroscopy (UPS)</td>
</tr>
<tr>
<td>89, 90</td>
<td>vaccine treatment and carbon nanotubes</td>
</tr>
<tr>
<td>303</td>
<td>WHO see World Health Organization (WHO)</td>
</tr>
<tr>
<td>158</td>
<td>Wyle semimetals</td>
</tr>
<tr>
<td>158</td>
<td>Wyle's equation</td>
</tr>
<tr>
<td>49</td>
<td>XANES see x-ray absorption near edge structure (XANES)</td>
</tr>
<tr>
<td>49</td>
<td>XPS see X-ray photoelectron spectroscopy (XPS)</td>
</tr>
<tr>
<td>49</td>
<td>X-ray absorption near edge structure (XANES)</td>
</tr>
<tr>
<td>245</td>
<td>X-ray diffraction (XRD)</td>
</tr>
<tr>
<td>49</td>
<td>X-ray photoelectron spectroscopy (XPS)</td>
</tr>
<tr>
<td>49</td>
<td>X-ray reflectivity (XRR)</td>
</tr>
<tr>
<td>48, 49</td>
<td>X-rays diffraction techniques</td>
</tr>
<tr>
<td></td>
<td>XRD see X-ray diffraction (XRD)</td>
</tr>
<tr>
<td></td>
<td>XRR see X-ray reflectivity (XRR)</td>
</tr>
<tr>
<td>158</td>
<td>ZnS NCs</td>
</tr>
<tr>
<td>158</td>
<td>ZnS NRs</td>
</tr>
<tr>
<td>187, 190–191, 194</td>
<td>zeolites</td>
</tr>
<tr>
<td>34</td>
<td>zero-dimensional quantum dots</td>
</tr>
<tr>
<td>111–113, 115, 116, 119</td>
<td>zigzag edge</td>
</tr>
<tr>
<td>111, 113–115, 117–119</td>
<td>zigzag nanoribbons</td>
</tr>
<tr>
<td>37</td>
<td>zinc ethylxanthate</td>
</tr>
<tr>
<td>37, 42</td>
<td>ZnS NCs</td>
</tr>
<tr>
<td>37, 42</td>
<td>ZnS NRs</td>
</tr>
<tr>
<td>65</td>
<td>z-scheme photocatalysis</td>
</tr>
<tr>
<td>316</td>
<td>zwitterionic materials</td>
</tr>
</tbody>
</table>